特高压输变电工程输电线路设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于特高压输电线路的设计而言,导线选择是一个重要课题。特高压输电线路导线选择的重点是研究导线对电磁环境的影响。皖电东送淮南—上海特高压输变电工程广德县末段30km输电线路的导线选型设计,就重点从导线对电磁环境的影响方面做分析研究。
     首先根据特高压输送容量、负荷特性及国内外导线生产运行情况,选取6种线型,研究利用分裂导线降低输电线表面电场强度的原理,初步确定分裂根数,分别为6×JL/G1A-900、7×LGJ-800/55、7×ACSR-720/50、8×LGJ-630/45 9×LGJ-500/35、10×LGJ-400/35,并兼顾电气和导线的次档距振荡两个方面的特性,合理选取导线分裂间距;接着,应用加拿大SES公司的CDEGS软件中的SES-Enviro模块展开,分析比较导线的分裂数、子导线截面积、分裂间距、线间距离、对地高度对于导线表面电场强度、地面场强、无线电干扰和可听噪声的影响,从电磁环境影响的角度确定最佳的导线组合;最后,仍采用CDEGS中的SES-Enviro模块展开,分别对所选的6种导线结构的电磁环境特性做分析,计算Ⅰ串、Ⅴ串两种塔型,正、负两种相序下6种导线结构的导地线表面电场强度、离地1.5m处场强分布、无线电干扰和可听噪声,最终确定本次设计采用8×LGJ-630/45导线。
As for the design of ultra high voltage(UHV) transmission lines, the choice of conductors is one of the main problems. It is important that research influence of UHV transmission lines electromagnetic environment. It is important to analyze the influence by the electromagnetic environment to line.
     Firstly, according to the transmission capability of UHV、the burden characteristic and the produce and circulation of line in domestic and international, six kinds of line type are selected. They are researched principle that is to decrease the surface electric field intensity of line. The first step is to define the types that are included: 6×JL/G1A-900、7×LGJ-800/55、7×ACSR-720/50、8×LGJ-630/45、9×LGJ-500/35、10×LGJ-400/35, Because of the characteristic of the electric and the next distance of line, abruption distance of line is reasonable selected. Then the best line combination is defined from the influence of electromagnetic environment through analyzing the number of abruption、the area of line、the distance of abruption、the distance between of the line、the surface electric field intensity of line、the electric field intensity of ground、radio inference(RI) and the influence of audible noise(AN), by using the SES-Enviro mold in CDEGS soft of Canada SES company. At last by using the SES-Enviro mold, analyzing the characteristic of electromagnetic environment of the six kinds of line, calculating the surface electric field intensity of line、the distribution that is 1.5 meter to the ground、the radio inference and the influence of audible noise of the six kinds of line in the two kinds phase of plus and minus,the 8×LGJ-630/45 type line is defined in the design.
引文
[1]张殿生.电力工程高压送电线路设计手册[M].北京:水利电力出版社,2003.
    [2]倪光正等.工程电磁场数值计算[M].北京:机械工业出版社,2004:57-259.
    [3]刘华麟,吴湘黔,彭俊宏.云广1000kV特高压输电线路周围工频电磁环境研究[J].贵州电力技术,2006,9(8):17-20.
    [4]胡白雪.超高压及特高压输电线路的电磁环境研究[D].杭州:浙江大学,2006.
    [5]彭迎,阮江军.模拟电荷法计算特高压架空线路3维工频电场[J].高电压技术,2006,32(12):69-73,77.
    [6]Nakamura Akio, Okamoto Hiroshi, Cao Xianglin. Introduction to 1000kV transmission technologies conducted by Tokyo Electric Power Company[J]. Power System Tecfinology,2005,29 (6):1-5.
    [7]刘华麟,吴湘黔.500kV交直流输电线路周围电场对比分析研究[J].贵州电力技术,2006,9(05):1-4.
    [8]孙才华等.一种较准确的分裂导线表面场强计算方法[J].电网技术,2006,30(04):92-96.
    [9]俞集辉,周超.复杂地势下超高压输电线路的工频电场[J].高电压技术,2006,32(01):18-20,44.
    [10]戴玲等.考虑先导发展随机性的输电线路雷击仿真模型[J].高电压技术,2007,33(07):36-39.
    [11]Moyo N.M., Ijumba N.M., Britten A.C. Investigating contributing factors to HVDC corona noise[C]. PES 2005 Conference and Exposition in Africa, Proceedings of the Inaugural IEEE,2005:428-432.
    [12]Malik N H. A review of the charge simulation method and its applications[J]. IEEE Trans on Electrical Insulation,1989,24 (1):3-20.
    [13]孙朋,张晓冬.高压线工频电场数学模型及仿真[J].电力建设,2005,26(04):39-42,50:39-42,50.
    [14]吴光亚.高压输电线路用复合绝缘子电位和电场分布的计算与改善[J].电力设备,2004,5(01):29-32.
    [15]刘阳等.三维地电体的静电场数值计算[J].吉林大学学报:信息科学版,2005,23(05):565-568.
    [16]张煌,王新.用模拟电荷法求解无限大地面上封闭空心金属圆筒的电容[J].黑龙江大学自然科学学报,2007,24(04):471-475,479.
    [17]Desideri D, Guamieri M, Poil E. MV line electric field evaluation near a concrete pole[J]. IEEE Trans on Magnetics.2004,40 (2):718-721.
    [18]谈克雄,薛家麒.高压静电场数值计算[M].北京:水利电力出版社,1990.
    [19]盛剑霓等.电磁场数值分析[M].北京:科学出版社,1984.
    [20]倪光正,钱秀英,周佩白.电磁场的计算机辅助分析[M].西安:西安交通大学出版社,1985.
    [21]周省三,邵汉光.静态电磁场的数值计算[M].长沙:湖南大学出版社,1987.
    [22]蔡大用.数值代数[M].北京:清华大学出版社,1987.
    [23]万保权,邬雄,刘涤尘等.西北750kV输电线路的无线电干扰研究[J].高电压技术,2003,29(3):41-58.
    [24]黄道春等.紧凑型输电线异型分裂导线周围工频电场研究[J].高电压技术,2006,32(4):55-57.
    [25]Abdel-Salam M, El-Mohandes M T, El-Kishky H. Electric field around parallel DC and multi-phase AC transmission lines[J]. IEEE Trans on Electrical Insulation,1990,25 (6):1145-1152.
    [26]张宇等.架空线路分裂导线表面电位梯度的数值计算[J].高电压技术,2005,31(1):23-24,37.
    [27]黄炜纲.昌平-房山500kV紧凑型输电线路导线选型及排列[J].中国电力,2001,34(4):42-46.
    [28]IEEE X95.6.Standard for safety levels with respect to human exposure to electromagnetic fields,0-3kHz[S].2002.
    [29]邵方殷.330kV紧凑型输电线路导线选型[J].电网技术,1994,18(5):11-17.
    [30]Han Baoliang, Wei Jiading, Xu Yijun. The error evaluation of the electric field strength in the charge simulation method[C]. Proceeding of the 3rd Intrenational Conference on Properties and Applications of Dielectric Materials, Tokyo, 1991,2.
    [31]张士元.500kV送电线路采用三分裂导线经济效益分析[J].吉林电力技术,1992,4:3-4.
    [32]林秀丽,徐新华,汪大晕.建筑物对同塔双回路工频电场分布的影响[J].高电压技术,2007,33(04):69-72.
    [33]刘林.超高压输电线路电磁场数值仿真研究[D].重庆:重庆大学,2002.
    [34]谢鹏举.超高压输电线路对建筑物电磁环境的影响和屏蔽方案研究[D].重庆:重庆大学,2008.
    [35]向仲卿.水平排列同塔双回紧凑型输电线路电场的计算研究[D].南宁:广西大学,2007.
    [36]周恺.特高压直流输电线路电磁环境的计算研究[D].武汉:华中科技大学,2007.
    [37]倪光正.工程电磁场原理[M].北京:高等教育出版社,2002.
    [38]雷银照.轴对称线圈磁场计算[M].北京:中国计量出版社,1991.
    [49]Davis S, Mirick D.K., Stevens R.G., Residential magnetic fields and the risk of breast cancer[J]. Am J Epodemiol,2002,155:446-454.
    [40]王长清等.电磁场计算中的时域有限差分法[M].北京:北京大学出版社,1994.
    [41]Hayt W.H著,王大鹏等译.工程电路分析(第六版)[M].北京:电子工业出版社,2002.
    [42]周克定.工程电磁场专论[M].武汉:华中工学院出版社,1986.
    [43]盛剑霓等.工程电磁场数值分析[M].西安:西安交通大学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700