聚鲁米诺复合物膜的电化学发光分析特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由综述和研究报告两部分组成。第一部分为综述,对电化学发光现象的发展历史及其反应类型进行了评述,并着重介绍了鲁米诺电化学发光体系在分析化学领域中的广泛应用。第二部分为研究报告,主要对聚鲁米诺与有机物或无机离子形成复合物膜修饰电极在电化学发光中的应用进行了研究。
     电化学发光分析(electrogenerated chemiluminescence analysis or electrochemilumiescence,ECL),是指直接利用电化学反应形成激发态发光体或通过电解产物之间、电解产物与体系中某组分之间进行化学反应产生发光体,并依据发光体产生的发光辐射信号实现分析物检测的发光分析方法。它是电化学与化学发光分析方法相结合的产物。这使得它不但具有化学发光分析法的许多优点如灵敏度高、线性范围宽及仪器设备简单等特点,还具有其自身优于化学发光分析法的一些特点,如反应的可控性强、发光区域确定便于信号检测以及许多化学发光活性高但不稳定的物质能现场生成并应用于发光分析之中等。
     鲁米诺电化学发光现象自二十世纪20年代末期被发现以来,在该现象发现的初期,电化学发光分析方法发展缓慢。到了80年代,鲁米诺电化学发光分析方法的发展非常迅速,进入90年代,电化学发光的仪器装置以及电极材料和光信号的传导材料等都进一步的发展,更加拓宽了鲁米诺电化学发光分析方法的研究领域,促进了鲁米诺电化学发光分析方法的实际应用。目前,国内外电化学发光研究的专家学者已经对鲁米诺电化学发光分析方法给予了足够的关注和青睐,该方法已经深入到环境分析、食品分析、免疫分析和药物分析等众多研究科学领域。
     近年来,鲁米诺电化学发光体系新分析特性的研究及其应用倍受人们的关注,其中,以聚鲁米诺为发光试剂的电化学发光分析方法尤其受到人们的关注。本论文的研究工作旨在利用聚鲁米诺与有机物或无机离子形成复合物膜修饰电极来优化聚鲁米诺电化学发光分析特性。在本论文的具体工作主要包括:
     1.基于电聚合和配位效应所构建的聚鲁米诺和金属离子复合物膜修饰电极,可极大的提高、优化聚鲁米诺的电化学发光分析特性。在一定条件下,聚鲁米诺—镍(Ⅱ)复合物膜在碱性条件下的弱电化学发光信号可以强烈的、选择性的被尿素所增敏,在最佳条件下,增敏电化学发光信号与尿素的浓度在2.0×10~(-9)g/mL~1.0×10~(-7)g/mL范围内呈线性关系,检出限为2×10~(-10)g/mL。
     2.在酸性条件下,鲁米诺与硫酸联苯胺可以通过电聚合的方法固定在石墨电极表面,并且,在碱性条件下,该修饰电极弱的电化学发光信号可以被过氧化氢强烈的增敏。据此,我们建立了一种测定过氧化氢的高灵敏度的电化学发光分析新方法。在最佳条件下,增敏电化学发光信号与过氧化氢的浓度在1.0×10~(-7) mol/L~2.0×10~(-10)mol/L范围内呈线性关系,检出限为6×10~(-11)mol/L。
Two parts are included in this thesis. In the first part of this thesis, thedeveloping history of Electrogenerated Chemiluminescent (ECL) and its type ofreaction are reviewed. In addition to these, the wildly analytical application of luminolECL system in the analytical chemistry are also given in this chapter.
     ECL is the luminescence generated by relaxation of exited state molecules that areproduced during an electrochemically initiated reaction in the near surface of theworking electrode. ECL is an important and powerful detection method in analyticalchemistry in recent years. So, this method not only retains the advantages over moreconventional CL. ECL analysis, compared with CL analysis, offered more alternativepotentials to regulate the ECL reaction for analytical purpose.
     Since the luminol-based ECL phenomenon was firstly observed by Harvey in 1929,the ECL was paid much attention by the analysts, and a lot of analytes had beendetected with luminal ECL system. ECL proved to be useful for analytical applicationand increasing investigations resulted in highly sensitive and selective detectionmethods. It has been applied successfully in many fields. Such as life science, clinicalmedicine, environment, immunoassays and DNA probe analysis etc.
     Recent years, the investigation of new analytical performances and analyticalapplication in luminol-based ECL system has been paid much attention by the analysts.In this thesis, we focused our interesting on the optimizing ECL performance of theluminol system by polyluminol compositing films modified electrode. The works areincluded in the followings:
     1. The Investigation of the Electrochemiluminescence Performances of theCompositing Films of Polyluminol with Metal Ions and its Analytical Application
     In this paper, it was found that the compositing films made from polyluminol andsome metal ions (such as Ni~(2+), Fe~(2+) and Co~(2+)) can be easily generated on the surface ofthe graphite electrode by electropolymerizing luminol and these metal ions in the acidicmedium. Then, it was further found, compared to other resulting films, the compositingfilms made from polyluminol and Ni~(2+) presented the better electrochemiluminescence (ECL) analytical performance for urea based on its sensing effect for weak ECL signalof electro-oxidation polyluminol. Based on these findings, a novel ECL method for thedetermination of urea in urine samples was developed, and a new idea to improve theECL analytical performances of polyluminol by compositing metal ions was alsoproposed. Under the optimum experimental conditions, the ECL response regressedlinearly to the concentration of urea within the range from 2.0×10~(-9) g/mL to1.0×10~(-7)g/mL with a detecting limit of 1.7×10~(-10)g/mL.
     2. the Investigation of the Electrochemiluminescence Performances of theCompositing Films of Polyluminol with Organic Compound and its AnalyticalApplication
     Based the electropolymerizing method, the compositing film of polyluminol andorganic compounds, can be fabricated on the graphite electrode surface. Then, it wasfurther found the resulting films can be enhanced by hydrogen peroxide strongly inalkaline solution. Based on these findings, a novel method for the determination ofhydrogen peroxide in rainwater was develop. Under the optimum experimentalconditions, the enhancing ECL intensity was linear with the hydrogen peroxideconcentration in the range of the 1.0×10~(-7)mol/L to1.0×10~(-10)mol/L (correlationcoefficient, 0.9970) and the detection limit for H_2O_2 was 6×10~(11)mol/L.
引文
[1] Tokel N. E., Bard A. J.. Electrogenerated chemiluminescence. Ⅸ. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(ll) dichloride[J]. J. Am. Chem. Soc. 1972, 94(8): 2862-2863.
    [2] 安镜如,林金明,陈曦.电化学发光研究及其在分析化学中的应用[J],分析化学,1991,19(11):1340-1346.
    [3] 章竹君.能量转移发光分析[J].分析实验室,1993,12(1):25-29.
    [4] 章竹君,吕九如.化学发光分析和生物发光分析的新进展[J].痕量分析,1989,5(4):13-38.
    [5] Zhang Z. J., Zhang S. S., Zhang X. R.. A new chemiluminescence amplification reaction for the determination of HRP and labeled HRP[J]. Chem. Res. Chin. Univ., 1993, 9: 314-316.
    [6] Deaver D. R.. A new non-isotopic detection system for immunoassays[J]. Nature, 1995, 377: 758-760.
    [7] 王鹏,张文燕,周泓,朱果逸.电化学发光核酸杂交分析[J].科学通报,1998,43(21):2241-2247.
    [8] Faulkner L. R., Bard A. J.. Electroanalytical Chemistry[J]. New York: Marcel Dekker, 1977, 10: 1-2.
    [9] Cui H., Xu Y., Zhang Z. F.. Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode[J]. Anal. Chem., 2004, 76: 4002-4010.
    [10] 王伦,严凤霞,王筱敏.电致化学发光及其在分析化学中的应用[J].化学通报,1991,5:8-13.
    [11] Jaime G. V.. Electroluminescence[J]. Electroanalysis, 1991, 3: 261-267.
    [12] Knight A. W., Greenway G. M.. Occurrence. mechanisms and analytical applications of clectrogenerated chemiluminescence[J]. Analyst, 1994, 119(5): 879-890.
    [13] Preston P. J, Nieman T. A.. An electrogenerated chemiluminescence probe and its application utilizing tris(2,2'-bipyridyl)ruthenium(ll) and luminol chemiluminescence without a flowing stream[J]. Anal. Chem., 1996, 68: 966-970.
    [14] 陈国南,林振宇.生物活性物质的电致化学发光监测[J].化学发光研究进展,2004,26(4):66-74.
    [15] Knight A. W.. A review of recent trends in analytical applications of electrogenerated chemiluminescence[J]. Trends in Analytical Chemistry, 1999, 18(1): 37 47-62.
    [16] Won Y. L. Tris(2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science[J]. Mikrochim. Acta., 1997, 127: 19-39.
    [17] Gerardi R. D., Barnett N. W., Lewis S. W.. Analytical application of tris(bipyridyl) ruthenium(Ⅲ) as a chemiluminescence reagent[J]. Anal. Chim. Acta., 1999, 378: 1-41.
    [18] 王鹏,袁艺,朱果逸,张密林.电化学发光分析的新进展[J].分析化学,1999,27(10):1219-1225.
    [19] 许国宝,董绍俊.电化学发光及其应用[J].分析化学,2001,29(1):103-108.
    [20] Havery N.. Luminescence during electrolysis[J]. J. Phys. Chem., 1929, 33: 456-1459.
    [21] Kuwana T., Epstein B., Seo E.. Electrochemical generation of solution luminescence[J]. J. Phys. Chem., 1963, 67: 2243-2244.
    [22] Faulkner L. R., Bard A. J.. Electroanalytical chemistry[M]. New York, Marcel Dekker, 1977, 10: 1-95.
    [23] 徐国宝.电化学发光及其在分析化学中的应用[D].长春:中国科学院长春应用化学研究所.
    [24] Maloy J. T., Prater K. B., Bard A. J.. Electrogenerated chemiluminescence. V. rotating-ring-disk electrode, digital simulation and experimental evaluation[J]. J. Am. Chem. Soc., 1971, 93(23): 5959-5968.
    [25] Clarenbach S., Grabner E. W., Bunsenges B.. Electron paramagnetic resonance studies of the kinetics of the intramolecular cation migration process in alkali metal anthraquinone[J]. J. Phys. Chem., 1973, 77(5): 708-713.
    [26] Epstein B., Kuwana T.. Electrochemical generation of solution luminescence luminol and phthalhydrazide[J]. Photochem. Photobiol., 1965, 4:1157-1173.
    [27] Preston P. J. Nieman T. A.. An electrogenerated chemiluminescence probe and Its application utilizing Tris(2,2φ-bipyridyl)ruthenium(Ⅱ) and luminol chemiluminescence without a flowing stream[J]. Anal. Chem., 1996, 68: 966-970.
    [28] F(?)hnrich K. A., Pravda M., Guilbault G. G.. Recent applications of electrogenerated chemiluminescence in chemical analysis[J]. Talanta, 2001, 54(4): 531-559.
    [29] 王海燕博士论文,电化学发光方法及其应用的研究[D].长春.中国科学院长春应用化学研究所.
    [30] Rubinstein I., Bard A. J.. Polymer films on electrodes.5.electrochemistry and chemiluminescence at nation-coated electrodes[J]. J. Am. Chem. Soc., 1981, 103(17): 5007-5013.
    [31] Engstrom R. C., Johnson K. W., DesJadais S.. Characterization of electrode heterogeneity with electrogenerated chemiluminescence[J]. Anal. Chem., 1987, 59: 670-673.
    [32] Bowling R. J., Mcreery R. L., Pharr C. M., Engstrom R. C., Observation of kinetic heterogeneity on highly ordered pyrolytic graphite using electrogenerated chemiluminescence[J]. Anal. Chem., 1989, 61: 2763-2766.
    [33] Engstrom R. C.. Visualization of the edge effect with electrogenerated chemiluminescence[J]. J. Electroanal. Chem., 1987, 221 (2): 251-255.
    [34] Kuhn L. S., Weber A., Weber S. G.. Microring electrode/optical waveguide: ectrochemical characterization and application to electrogenerated chemiluminescence[J]. Anal. Chem., 1990, 62:1631-1636.
    [35] Collinson M. M., Pastore P., Maness K. M., Wightman R. M.. Electrochemiluminescence interferometry at microelectrodes[J]. J. Am. Chem. Soc., 1994, 116: 4095-4096.
    [36] Bartelt J. E., Drew S. M., Wightman R. M.. Electrochemiluminescence at band array electrodes[J]. J. Electrochem. Soc., 1992, 139: 70-74.
    [37] Walton D. J., Phull S. S., Colton D., Richards P., Chyla A., Javed T., Clarke L.. Ultrasonic enhancement of electrochemiluminescence from arylacetate electrooxidation[J]. Ultrasonics Sonochemistry, 1994, 1: 523-526.
    [38] Fan F. F., Cliffel D., Bard A. J.. Scanning electrogenerated microscopy. 37. light emission by electrogenerated chemiluminescence at SECM tips and their application to scanning optical microscopy[J]. Anal. Chem., 1998, 70(14): 2941-2948.
    [39] Qin W., Zhang Z. J., Liu H. J.. Chemiluminescence flow-through sensor for copper based on an anodic stripping voltammetric flow cell and an ion-exchange column with immobilized reagents[J]. Anal. Chem., 1998, 70(9): 3579-3584.
    [40] Zhang C. X., Zhang S. C., Zhang Z. J.. Determination of copper ions in waters by electrochemical stripping chemiluminescence analysis in situ[J]. Analyst, 1998, 123(6): 1383-1386.
    [41] 陈国南,林荣儿,段建平,张林,张帆.金属配合物和原子簇化合物的电致化学发光及其应用[J].分析科学学报,1999,15(4):332-335.
    [42] 徐国宝,董绍俊.电化学发光及其应用[J].分析化学,2001,29(1):103-106.
    [43] 陈国南,林荣儿,段建平,张林,张帆.金属配合物和原子簇化合物的电致化学发光及其应用[J].分析科学学报.1999,15(4):332-335.
    [44] 章竹君.电化学发光分析的新进展[J].陕西师范大学学报,2000,28(3):79-83.
    [45] Marcus R. A.. The theory of chemiluminescent electron-transfer reaction[J]. J. Chem. Phys., 1965, 43: 2654-2657.
    [46] Feldburg S. W.. Theory of controlled potential Electrogeneration of chemiluminescence[J]. J. Am. Chem. Soc., 1966, 88(3): 390-393.
    [47] Kim J., Faulkner L. R.. Anomalous transient behavior in the electrogenerated chemiluminescence of 9,10-diphenylanthracene[J]. J. Electroanal. Chem., 1988, 242(1): 107-121.
    [48] Bard A. J., Faulkner L. R.. Electrochemical Methods, Fundamentals and Applications New York: Wily, 1980: 621.
    [49] Braun F., Ann. Physik. Chem., 1898, 65: 361.
    [50] Ikonopisov S.. Problems. and contradictions in galvanoluminescence, a critical review[J]. Electrochim. Acta., 1975, 20(10):783-793.
    [51] Tajima S.. Luminescence, breakdown and colouring of anodic oxide films on aluminium[J]. Electrochim. Acta., 1977, 22(9): 995-1011.
    [52] Kankare J. J., Ryan D. E., Furstcan B. J.. Cathodic luminescence of oxide coverd aluminium and tantalum electrodes[J]. J. Chem., 1977, 55(77): 1193-1198.
    [53] Haapakka K., Kankare J., Kulmala S.. Feasibility of low-voltage cathodic electroluminescence at oxide-covered aluminum electrodes for trace metal determinations in aqueous solutions[J]. Anal. Chim. Acta., 1985, 171: 259-267.
    [54] Haapakka K., Kankare J., Puhakka O.. Fluorophor-enhanced cathodic electroluminescence at an oxide-covered aluminum electrode[J]. Anal. Chim. Acta., 1988,207:195-210.
    [55] Haapakka K., Kankare J., Lipiainen K.. Determination of polynuclear aromatic hydrocarbons in micellar solution by electrogenerated chemiluminescence[J]. Anal. Chim. Acta., 1988,215: 341-345.
    [56] Kulmala S., Kankare J., Haapakka K.. Electrogenerated luminescence of terbium(III) in aqueous solutions[J]. Anal. Chim. Acta., 1991,252(1): 65-76.
    [57] Kanare J., Falden K., Kulmala S., Haapakka K.. Cathodically induced time-resolved lanthanide(III) electroluminescence at stationary aluminium disc electrodes[J]. Anal. Chim. Acta., 1992,256(1): 17-28.
    [58] Jackson W. A., Bobbitt D. R.. Voltammetric and chemiluminescent characterization of a heptyl-thiol derivative of ruthenium tris bipyridine self-adsorbed onto indium tin oxide substrates[J]. Microchem, 1994, 49(1): 99-109.
    
    [59] Alaklene T.. Acta Chem. Seandinavica, 1997, 51: 541.
    [60] Vchikura K., Anal. Sci., 1991, 38: 419.
    [61] Brune S. N., Bobbitt D. R.. Effect of pH on the reaction of tris(2,2'-bipyridyl)ruthenium(III) with amino-acids: Implications for their detection[J]. Talanta, 1991, 38(4): 419-424.
    [62] He L., Cox K. A., Danielson N D. Chemiluminescence detection of amino acids, peptides, and proteins using tris-2,2'-bipyridine ruthenium(III)[J]. Anal. Lett., 1990,23:195-210.
    [63] Chen X., Sato M., Lin Y. G. Study of the Electrochemiluminescence based on tris(2,2'-bipyridine) ruthenium(II) and alcohols in a flow jnjection system[J]. J. Microchem., 1998, 58(1): 13-20.
    [64] Hercules D. M., Lyte F. E.. Chemiluminescence from reduction reactions[J]. J. Am. Chem. Soc., 1966, 88(20): 4745-4746.
    [65] Tokel N. E., Bard A. J.. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride[J]. J. Am. Chem. Soc, 1972, 94(8): 2862-2863.
    [66] Noffsinger J. B., Danielson N. D.. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(Ⅲ)[J]. Anal. Chem., 1987, 59(6): 865-868.
    [67] Kenten J. H., Cassadei J., Link J.. Rapid electrochemiluminescence assays of polymerase chain reaction products[J]. Clin. Chem., 1991, 37(9):1626-1632.
    [68] Kenten J. H., Gudikane S. R., Link J.. Improved electrochemiluminescent label for DNA probe assays: Rapid quantitative assays of HIV-1 polymerase chain reaction products[J]. Clin. Chem., 1992, 38(6): 873-879.
    [69] Cui H., Zou G. Z., Lin X. Q.. Electrochemiluminescence of Luminol in Alkaline Solution at a Paraffin-Impregnated Graphite Electrode[J]. Anal. Chem., 2003, 75(2): 324-331.
    [70] Zhu L. D., Li Y. X., Tian F. M., Xu B., Zhu G. Y.. A novel flow through optical fiber biosensor for glucose based on luminol electrochemiluminescence[J]. Sens. Actuators. B., 2002, 86: 209-214.
    [71] Marquette C. A., Degiuli A., Blum L. J.. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate[J]. Biosens. Bioelectron., 2003, 19: 433-439.
    [72] Zhu L. D., Li Y. X., Zhu G. Y.. A novel renewable plant tissue-based electrochemiluminescent biosensor for glycolic acid[J]. Sens. Actuators. B., 2004, 98(2-3): 115-121.
    [73] Lv J., Luo L.. Zhang Z. J.. On-line galvanic cell generated electrochemiluminescence determination of acyclovir based on the flow injection sampling[J]. Anal. Chem. Acta., 2004, 510(1): 35-39.
    [74] Sun Y. G., Cui H., Li X. Q., Li Y. H., Zhao H. Z.. Flow injection analysis of pyrogallol with enhanced electrochemiluminescent detection[J]. Anal. Chim. Acta., 2000, 423: 247-253.
    [75] Zhu L. D., Li Y. X., Zhu G. Y.. Affinity chpomatographic-separation .2. novel stationary phases for affinity-chromatography-nucleobase-selective recognition of nucleosides and nucleotides on poly(9-vinyladenine)-supported silica-gelchin[J]. Chem. Lett., 2002, 13, 1093-1096.
    [76] 马红燕,郑行望,章竹君.流动注射电化学发光分析法测定诺氟沙星的研究[J].分析化学,2004,32:857-860.
    [77] Zhu L. D., Li Y. X.. Zhu G. Y.. Electrochemiluminescent etermination of L-cysteine with a flow-injection analysis system[J]. Anal. Sci., 2003, 19: 575-578.
    [78] Sun Y. G., Cui H., Lin X. Q.. Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method[J]. Talanta, 2000, 53: 661-666.
    [79] Zhu L. D., Li Y. X., Zhu G Y.. Anal. Lett., 2002, 35: 2527-2537.
    [80] Kearney N. J., Hall C. E., Jewbury R. A.. Anal. Comm., 1996, 33: 269.
    [81] Kawasaki T., Mada M.. Chemiluminescence high-performance liquid chromatography using N-(4-aminobutyl)-N-ethylisoluminol as a preeolumn labelling reagent[J]. J. Chromatogr., 1985, 328:121.
    [82] Chen X., Sato M. J.. Study of the electrochemiluminescence based on tris(2,2'-bipyridine) ruthenium(Ⅱ) and alcohols in a flow injection system[J]. Micreochem. J., 1998, 58(1): 13-20.
    [83] Haapakka K. E., Kankare J. J.. Chronoarnperometric stripping analysis following biocatalytic preconcentration[J]. Anal. Chim. Acta., 1982, 138(1): 19-26.
    [84] Haapakka K. E., Kankare J. J.. Apparatus for mechanistic and analytical studies of the electrogenerated chemiluminescence of luminol[J]. Anal. Chim. Acta., 1982, 138(1): 253-262.
    [85] 安镜如,陈曦.碱性水溶液中ABEI的电致化学发光的研究[J].高等学校化学学报,1989,10(1),1110-1113.
    [86] 安镜如,陈曦,陈恒.硫酸双肼酞嗪的电化学发光的研究及应用[J].分析化学,1989,17(10):917.
    [87] 林祥钦,孙玉刚,崔华,碱性鲁米诺体系在玻碳和铂电极上的电位分辨电致化学发光研究[J].分析化学,1999,27(5):497.
    [88] 黄炳强.中性体系鲁米诺电化学发光的研究[D],苏州.苏州大学.2002.
    [89] Haapakka K. E., Kankare J. J.. Application of the electrochemiluminescence of luminol to the determination of copper[J]. Anal. Chim. Acta., 1980, 118(1-2): 333-340.
    [90] Chmura J., Slawinski J.. Acta Biologica Cracoviensia Series Zoologia, 2000, 42: 87.
    [91] Arwater J. E., Dehart J., Wheeler R. R.. J. Dissolved oxygen determination by electrocatalysed chemiluminescence with in-line solid phase media[J]. Biolumin. Chemilumin., 1998, 13(3): 125-130.
    [92] 王琦,郑行望,章竹君,王晓兰.电还原鲁米诺电化学发光法测定过氧化氢 [J].陕西师范大学学报,2002,30(3):83-86.
    [93] 丁春红,郑行望,章竹君,田穗康.电化学发光法测定铁[J].分析实验室,2004,23(2):18-20.
    [94] 郑行望,章竹君,王琦,丁春红.基于电还原鲁米诺电化学发光分析法测定水样中钼Ⅵ[J].分析化学,2003,31(9):1076-1078.
    [95] Zhu L. D., Li Y. X., Tian F. M., Xu B., Zhu G. Y.. Electrochemiluminesent determination of glucose with a sol-gel derived ceramic-carbon composite electrode as a renewable optical fiber biosensor[J]. Sens. Autuators B., 2002, 84(2): 265-270.
    [96] Murphy L. J.. Reduction .of interference response at a hydrogen peroxide detecting electrode using electropolymerized films of substituted naphthalenes[J]. Anal. Chem., 1998, 70: 2928-2935.
    [97] 李桂新,郑行望,熊海涛,章竹君.基于一次性薄层色谱电极高选择电化学发光分析法测定Ni(Ⅱ)的研究[J].化学学报,2006,64(15):1553-1558.
    [98] 熊海涛.一次性碳质膜电极电化学发光测定铅(Ⅱ)[J].广东微量元素科学,2007,14(1):49-50.
    [99] Zhang C. X., Zhou G J., Zhang Z. J.. Flow injection chemiluminescence determination of catecholamines with electrogenerated hypochlorite[J]. Anal. Chim. Acta., 1998, 374(1): 105-110.
    [100] Huang J. C., Zhang C. X., Zhang Z. J.. Flow injection chemiluminescence determination of isoniazid with electrogenerated hypochlorite[J]. Fresenius J. Anal. Chem., 1999, 363: 126-128.
    [101] 黄嘉初,张成孝,章竹君.电生次氯酸根流动注射化学发光法测定L-多巴[J].分析化学,1999,27(1):41-43.
    [102] Zhang Z. J., Zhang C. X., Zhang S. C.. Determination of copper ions in waters by electrochemical stripping[J]. Analyst, 1998, 123:1383-1386.
    [103] Qin W., Zhang Z. J., Liu H. J.. Chemiluminescence flow-through sensor for copper based on an anodic stripping voltammetric flow cell and anion-exchange column with immobilized reagents[J]. Anal. Chem., 1998, 70(17): 3579-3584.
    [104] 漆红兰,张成孝.电化学发光法测定盐酸普鲁卡因[J].分析实验室.2004.23(1):20-22.
    [105] Sun Y. G., Cui H., Li Y. H., Lin X. Q.. Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method[J]. Talanta, 2000, 53(3): 661-666.
    [106] Sun Y. G, Cui H., Li Y. H., Lin X. Q.. Determination of gallic acid by flow injection with electrochemiluminescent detection[J]. Anal. Lett., 2000, 33(15): 3239-3252.
    [107] Marquette C. A., Degiuli A., Blum L. J.. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate[J]. Biosens. Bioelectron., 2003, 19: 433-439.
    [108] Marquette C. A., Blum L. J. Self-containing reactant biochips for the electrochemiluminescent determination of glucose, lactate and choline[J]. Sens. Actuators. B., 2003, 90:112-117.
    [109] Zhu L. D., Li Y. X., Tian F.M., Xu B., Zhu G. Y.. Electrochemiluminescent determination of glucose with a sol-gel derived ceramic-carbon composite electrode as a renewable optical fiber biosensor[J]. Sens. Actuators. B., 2002, 84: 265-270.
    [110] Zhang C. X., Zhang H. H., Feng M. L.. Homogeneous electrogenerated chemiluminescence immunoassay using a luminal-labeled digoxin hapten[J]. Anal. Lett., 2003, 36 (6): 1103-1114.
    [111] Qi H. L., Zhang C. X.. Homogeneous electrogenerated chemiluminescence immunoassay for the determination of digoxin[J]. Anal. Chim. Acta., 2004, 501(1): 31-35.
    [112] 庄惠生,王琼娥,陈国南,黄金陵,林培城.AFP抗体的标记及其电致化学发光免疫分析研究[J].高等学校化学学报,1999,20:1194-1199.
    [113] Zhang G. F., Chen H. Y.. Studies of polyluminol modified electrode and its application in electrochemiluminescence analysis with flow system [J]. Anal. Chim. Acta., 2000, 419(1): 25-31
    [114] Ouyang C. S., Wang C. M.. Clay-enhanced electrochemiluminescence and its application in the detection of glucose[J]. J. Electrochem. Soc., 1998, 145: 2654-2659.
    [115] Ouyang C. S., Wang C. M.. Electrochemical characterization of the clay-enhanced luminol ecl reaction[J]. J. Electroanal. Chem., 1999, 474: 82-88.
    [116] 李桂新,郑行望,章竹君.Ni(Ⅱ)-聚鲁米诺复合物自组装膜修饰电极的电化学发光分析法测定氢氯噻嗪的研究[J],分析化学,2006,34(7):955-958.
    [117] Zhang L. L., Zheng X. W.. A novel electrogenerated chemiluminescence sensor for pyrogallol with core-shell luminol-doped silica nanoparticles modified electrode by the self-assembled technique[J], Anal. Chimca. Acta., 2006, 570(2): 207-213.
    [118] Yasuo Y. J.. Design parameters of bubble column reactors with and without solid suspensions[J]. Chem. Engineer., Japan, 1996,29(5): 849-851.
    [119] Aizawa M., Pro. BCEIA. Electroanal. Chem., 1997, F25.
    [120] Chen G. N., Wang J., Chen X., Duan J. P., Zhao Z. F., Chen H. Q.. The enhanced electrogeherated chemiluminescence of Ru(bpy)_3~(2+) by glutathione on a glassy carbon electrode modified with some porphine compounds[J]. Analyst, 2000, 125:22942-2298.
    [121] Yang M. L., Liu C. Z.. Qian K. J., He P. G., Fang Y. Z.. Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis[J]. Analyst, 2002,127: 1267-1271.
    [122] Marquette C. A., Blum L. J.. Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples[J]. Anal. Chim. Acta., 1999, 381(1): 1-10.
    [123] Cui H., Xu Y., Zhang Z. F.. Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode[J]. Anal. Chem., 2004, 76(14): 4002-4010.
    [124] Wilson R., Schiffrin D. J.. Chemiluminescence of luminol catalyzed by electrochemically oxidized ferrocenes[J]. Anal. Chem., 1996,68(7): 1254-1257.
    [125] Zhu L., Li Y. X., Zhu G. Y.. Electrochemiluminescent determination of glucose with a sol-gel derived ceramic-carbon composite electrode as a renewable optical fiber biosensor [J]. Sens. Actuators. B., 2002, 84(3): 265-270.
    [126] Chang Y. T., Lin K. C., Chen M. S.. Preparation, characterization and electrocatalytic properties of poly(luminol) and polyoxometalate hybrid film modified electrodes[J]. Electrochimica. Acta., 2005, 51(3): 450-461.
    [127] Lin K. C., Chen S. M. J.. Reversible cyclic voltammetry of the NADH/NAD~+ redox system on hybrid poly(luminol)/FAD film modified electrodes[J]. J. Electroanal. Chem., 2006, 589(1): 52-59.
    [128] Chen S. M., Lin K. C. The electrocatalytic properties of biological molecules using polymerized luminol film-modified electrodes[J]. J. Electroanal. Chem., 2002, 523(2): 93-105.
    [129] Wang C. H., Chen S. M., Wang C. M.. Co-immobilization of polymeric luminol, ron(Ⅱ) tris(5-aminophenanthroline) and glucose oxidase at an electrode surface, and its application as a glucose optrode[J]. Analyst, 2002, 127(11): 1507-1511.
    [130] 王智泳,郭文英,狄俊伟,屠一锋.鲁米诺在氧化铟锡玻璃上的电聚合及电化学发光性能研究[J].分析化学,2005,33(6):763-766.
    [131] Eggenstein C., Borchardt M., Diekmann C.. A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer[J]. Bios and Bioe, 1999, 14(1): 33-41.
    [132] Dallet P., Labat L., Kummer E.. Determination of urea, allantoin and lysine pyroglutamate in cosmetic samples by hydrophilic interaction chromatography[J]. J Chro B: Biom Scie and Appl, 2000, 742(2): 447-452.
    [133] Roig B., Gonzalez C., Thomas O.. Simple UV/UV-visible method for nitrogen and phosphorus measurement in wastewater[J]. Talanta, 1999, 50(4): 751-758.
    [134] Eugen P. K., Iryna V. G.. Oxidative condensation and chemiluminescence of 5-amino-2,3-dihydro-l,4-phtalazinedione[J]. Eur. polym. J., 2005, 41: 1315-1325.
    [135] 关怀民,程贤甦,章跃进.壳聚糖镍和壳聚糖镧配位聚合物的配位数研究[J].功能高分子学报,1999,12(4):431-442.
    [136] Richard D. G., Neil W. B., Simon W. L.. Analytical applications of tris(2,2'-bipyridyl)ruthenium(Ⅲ) as a chemiluminescent reagent[J]. Anal. Chim. Acta., 1999, 378(1): 1-41.
    [137] 方卢秋,杨季冬,李晓燕.NBS-荧光素-CTAC流动注射化学发光体系测定尿素的含量[J].四川师范大学学报,2004,27(3):288-291.
    [138] 王继贵.临床生化检验[M],湖南科技出版社,1996,563-564.
    [139] Tatsuma T., Okawa Y., Watanabe T.. Enzyme monolayer and bilayer modified tin oxide electrodes for the determination of hydrogen peroxide and glucose[J]. Anal. Chem., 1989, 61(21): 2352-2355.
    [140] Doblhoff D. O., Rechnitz (2 A.. Amperometric enzyme based biosensor for the detection ofxanthine via superoxide[J]. Anal. Lett., 1989, 22(5): 1047-1055.
    [141] Somasundrum M., Kirtikara K., Tanticharoen M.. Amperometric determination of hydrogen peroxide by direct and catalytic reduction at a copper electrode[J]. Anal. Chim. Acta., 1996, 319(1-2): 59-70.
    [142] Wang J., Lin Y., Chen L.. Organic-phase biosensors for monitoring phenol and hydrogen peroxide in pharmaceutical antibacterial products[J]. Analyst, 1993, 118(3): 277-280.
    [143] Cosgrove M., Moody G. J., Thomas T. D. R.. Chemically immobilized enzyme electrodes for hydrogen peroxide determination[J]. Analyst, 1988, 113(12): 1811-1815.
    [144] Amine A., Kauffmann J. M.. Electrochemical behavior of a lipid modified enzyme electrode[J]. Anal. Lett., 1989,22: 2403-2411.
    [145] Tatsuma T., Gondaira M., Watanabe T.. Peroxidase incorporated polypyrrole membrane electrode [J]. Anal. Chem., 1992, 64: 1183-1187.
    [146] Poznyak S. K., Kulak A. I.. Electroluminescent method for determining hydrogen peroxide and peroxydisulphate ions in aqueous solution using TiO_2 film electrodes[J]. Talanta, 1996,43(9): 1607-1613.
    [147] Chovin A., Garrigue P., Sojic N.. Electrochemiluminescent detection of hydrogen peroxide with an imaging sensor array[J]. Electrochimica. Acta., 2004, 49: 3754-3757.
    [148] Zen J. M., Chung H. H., Kumar A. S.. Flow injection analysis of hydrogen peroxide on copper-plated screen-printed carbon electrodes[J]. Analyst, 2000, 125: 1633-1637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700