化学沉积镍基合金/纳米TiO_2复合镀层结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化钛是一种光催化活性很高的半导体材料,具有很好的实用价值。人们采用各种方法,以提高光催化效果。纳米TiO_2悬浮体系存在纳米TiO_2难以分离与回收的问题,限制了其使用。采用化学沉积方法,用金属镀层包覆纳米TiO_2,可以实现对其固载。化学镀镍磷二元合金镀层具有优良的物理和化学性能,在工程上获得了广泛的应用。化学镀镍磷二元合金体系中加入第三组分,可以使镀层的性能得到很大的提高。在化学镀溶液中加入不溶性颗粒,使之产生共沉积而形成同时具有基质金属和固体微粒两类物质综合性能的复合镀层。由于纳米粒子具有特殊的物理和化学性能,将纳米量级的不溶微粒取代微米颗粒形成纳米复合镀层从而使化学镀层复合了纳米材料的特异功能,如提高硬度、耐磨性和耐蚀性。本文尝试采用电泳-化学沉积两步工艺,提高了复合镀层中纳米颗粒含量。
     采用溶胶-凝胶方法成功制备了锌掺杂纳米TiO_2,光降解甲基橙溶液实验表明,掺杂浓度为0.8%时,经过500℃热处理后的Zn-TiO_2样品的光催化活性最高。对掺Zn量为0.8%的纳米TiO_2粉末进行渗氮处理,实验表明,Zn和N共掺杂的TiO_2的光催化性能最好,说明Zn与N有协同提高TiO_2光催化性能的作用。
     镀液组分和操作条件对化学沉积Ni-Zn-P合金的沉积速度和镀层成分均有影响,随着镀液中硫酸锌含量提高,沉积速度下降,镀层中锌含量提高,磷含量下降;随着镀液中次亚磷酸钠含量提高,沉积速度提高,镀层中磷含量提高;随着镀液pH值提高,沉积速度提高,磷含量减少,锌含量提高;随着镀液温度提高,沉积速度提高。镀态下化学沉积Ni-Zn-P合金由非晶态的相和镍的固溶体存在。热处理至400℃时出现Ni_3P相而且已基本完全晶化,至600℃时出现Ni_5Zn_(12)相。在500℃时显微硬度达到最大值HV1210。冲蚀实验结果表明,在流动腐蚀介质中化学沉积Ni-Zn-P合金层质量损失随介质流动速度提高,冲击角度的减小而增加。
     所获得化学沉积Ni-Sn-P沉积层为非晶态镍锡磷合金。随着镀液中四氯化锡和次亚磷酸钠含量的提高,沉积速度呈上升趋势,镀层中Sn的含量呈增加趋势,P的含量呈下降趋势;pH值在3-6范围内,随着镀液pH值增加,沉积速度成上升趋势;随着镀液温度的提高,沉积速度升高,镀层中磷含量呈下降趋势。冲蚀实验表明,随着冲蚀时间的延长,流体速度的提高,沉积层质量损失不断增加。在冲击角度为60°时,沉积层质量损失存在最大值。
     通过在化学沉积Ni-Zn-P合金溶液中加入纳米TiO_2粒子,可以获得Ni-Zn-P-TiO_2复合镀层,最佳工艺条件下TiO_2的包覆量为10.76wt%。在相同状态下,化学沉积Ni-Zn-P-TiO_2纳米复合镀层的显微硬度值均高于化学镀Ni-Zn-P合金的硬度。经400℃1小时热处理,复合镀层具有最大的硬度值。化学沉积Ni-Zn-P-TiO_2纳米复合镀层经300℃热处理后质量损失最低,有最好的耐蚀性能。冲蚀实验结果表明,随着介质冲击角度减小,介质流速增加,镀层质量损失增加。在流动介质中化学沉积Ni-Zn-P-TiO_2纳米复合镀层的耐冲蚀性能优于化学沉积Ni-Zn-P合金镀层。
     采用电泳沉积工艺获得纳米二氧化钛涂层,经随后进行的化学镀获得Ni-P/纳米TiO_2复合镀层。镀态下Ni-P/纳米TiO_2复合镀层是由结晶态和非晶态Ni-P合金及锐钛矿型纳米TiO_2组成的。在相同状态下,由于纳米颗粒的增强效应,复合镀层的显微硬度均高于镍磷合金镀层。由于纳米二氧化钛颗粒均匀的分布在镍磷化学镀层中,使Ni-P/纳米TiO_2复合镀层抗腐蚀性能大大加强。用甲基橙溶液进行的光催化反应表明,Ni-P/纳米TiO_2复合镀层具有较好的光催化效果。
Nano titanium dioxide is a kind of semi-conductor having good photo catalytic activity andpractical value. Various kinds of methods were employed to improve its photo catalytic activity. Itsapplication fields were restricted because of the difficulties of separating and recycling nano titaniumdioxide powders. Nano titanium dioxide particles can be loaded by electroless deposited coatings.Electroless plating Ni-P binary alloys have been achieved extensive application in industry, for thecoatings process excellent physical and chemical properties. Recent researches show that, byintroducing another constituent in the electroless deposited nickel-based binary alloys, the nickelbased ternary alloys can be obtained with the improved properties and performance. To add insolubleparticles in electroless plating bath and make them co-deposited with electroless deposited alloys, wecan obtain composite coatings which have excellent properties. As the nano-particles have quantumsize effect, small size effect, surface and interface effects, they have special physical and chemicalproperties. Nano composite coatings have specific functions such as hardenability, good wearresistance and good corrosion resistance. In this paper, Ni-P-nanometer TiO_2composite coatingswere prepared by electrophoretically deposite and electroless plating Ni-P alloy to improve thecontent of nano TiO_2particles in the coatings.
     Zinc doped nano TiO_2particles were prepared by sol-gel method. The test of light degradatingmethyl orange showed that, the highest photo catalytic occurred when the concentration of zinc inTiO_2particle was0.8wt%and had been calcined at500℃.The TiO_2particles containing0.8wt%zinc were nitrided. The test of light degradating methyl orange showed that, the TiO_2particles dopedwith zinc and nitron have excellent photo catalytic property. This showed that zinc and nitron canimprove photo catalytic property of nano titanium dioxide simultaneously.
     The composition and operating conditions have great effect on the deposition rate andconstituent of electroless deposited Ni-Zn-P alloys. With the bath content of ZnSO4increased, thedeposition rate and the content of P in the coating decreased. With the bath content of NaH2PO2increased, the deposition rate and the content of phosphorus in the coating increased. With pH valueand temperature of the bath increased, the deposition rate increased and the content of phosphorus inthe coating decreased. The electroless deposited Ni-Zn-P alloy is composed with amorphour phaseand solid solution of nickel. Ni_3P phase appears and the coating is crystallized completely when ithas been heated to400℃. The Ni_5Zn_(12)phase appears when it has been heated to600℃.The greatestmicrohardness value appears when it has been heated to500℃. The results of erosion test show that,the mass loss of electroless deposited Ni-Zn-P alloy increased with corrosive medium flow rateincreased and erosion angle decreased.
     The results show that the electroless deposited Ni-Sn-P ternary alloy is amorphous. Thedeposition rate and the tin content in the coating increase, but the phosphorus content in the coatingdecreases with increasing the stannic chloride and sodium hypophosphite contents in the bath. Thedeposition rate increases with the pH value of the bath in the range of3to6. Mass loss of the coatingincreases with increasing the erosion time and the flow velocity of erosion solution, which has itsmaximum value as the coating impacted at an angle of60°.
     Electroless deposited Ni-Zn-P-TiO_2nano-composite coatings were prepared by adding nanoTiO_2particles into electroless plating bath. The content of TiO_2in the composite coatings is10.76wt%at the optium technological conditions.The hardness values of electroless depositedNi-Zn-P-TiO_2nano-composite coatings are higher than that of electroless plating Ni-Zn-P alloy atthe same conditions. The composite coatings have the highest hardness value when they are heattreated at400℃for one hour. The results of erosion test show that, the mass loss of coatings areincreasing with corrosive medium flow rate increasing and erosion angle decreasing. Electrolessdeposited Ni-Zn-P-TiO_2nano-composite coatings have better anti errosion property than Ni-Zn-Palloy coatings.
     The effect of the applied electric field strength, electric current and deposition durations onelectrophoretically depositing were studied. Suitable technological parameters of electroless platingNi-P solution were obtained.The microstructure of the composite coating was analyzed by XRD andSEM. The microhardness values of the composite coatings were tested.The methyl orange solutionwas used as the reactant to evaluate the photocatalytic activity of the catalyst samples. The resultsshow that, nanometer TiO_2particles are distributed uniformly in the composite coating. Themicrohardness values of the composite coatings are higher than that of Ni-P alloy coatings. Thecomposite coating processes better photocatalytic activity.
引文
[1]冯端,师昌绪,刘治国.材料科学导论—融贯的论述[M].北京:化学业出版社,2002
    [2]董允,张廷森,林晓娉.现代表面工程技术[M].北京:机械工业出版社,2005
    [3]王兆华.材料表面工程[M].北京:化学工业出版社,2011
    [4]任莹,路学成,黄勇.纳米涂层制备技术的进展[J].热处理,2009,24(1):12-16
    [5]翟金坤,黄子勋.化学镀镍[M].北京:北京航空学院出版社,1987
    [6]黎黎.化学复合镀工艺研究[D].上海:上海交通大学,2007
    [7]李宁,袁伟国,黎德育.化学镀镍基合金理论与技术[M].哈尔滨:哈尔滨工业大学出版社,2000
    [8]单传丽.化学沉积Ni-Cu-P基复合涂层制备及其废液处理的研究[D].合肥:合肥工业大学硕士学位论文,2009
    [9] Lee S.L.,LiangH.H.The structure and hardness of eleetroless Ni-Mo-P alloydeposition[J].plating and surface finishing,1992,79:56-59
    [10] Wu F B.,Tien S.K.,ChenW.Y.,et al.Microstructure evaluation and strengtheningmechanism of Ni-W-P alloy coatings[J]. Surface and Coatings Technology,2004,177:312-316
    [11] D. Mencer. Electroless deposition of amorphous Ni-Re-P alloys from acidic hypophosphitesolutions[J].Journal of Alloys and Compounds,2000,306:158-162
    [12] Mallory G O, Horhn T R. Electroless deposition of ternary alloys[J]. Plating and SurfaceFinishing,1979,66(4):40-46
    [13]彭海波.化学镀Ni-Sn-P合金及其复合镀层的研究[D].天津:天津大学,2007
    [14]刘殿龙,杨志刚,刘璐,等.直流电沉积Ni-W-P镀层研究[J].稀有金属材料与工程,2010,39(1):60-64
    [15]陈钰秋,陈克明.化学镀Ni-W-P合金层镀覆工艺的研究[J].华中理工大学学报,1998,26(l):104-10
    [16] Palaniappa M, Seshadri S K Structural and phase transformation behaviour of electroless Ni-Pand Ni-W-P deposits[J]. Materials Science and Engineering A,2007,460-461:638-644
    [17]俞素芬,雷军,范伟光等.化学镀Ni-W-P合金沉积机理初探[J].材料保护,2001,34(12):18-19
    [18]杜楠,赵晴,Mark Pritzker.化学镀镍钨磷合金过程中的析氢行为和沉积机理[J].南昌航空工业学院学报(自然科学版),2002,16(4):18-21
    [19] Hu Y J, Wang T X, Meng J L, et al.Structure and Phase transformation behaviour ofelectroless Ni-W-P on aluminium alloy[J].Surface and Coatings Technology,2006,201(3-4):988-992
    [20] J.N. Balaraju, S. Millath Jahan, K.S. Rajam.Studies on autocatalytic deposition of ternaryNi-W-P alloys using nickel sulphamate bath[J]. Surface and Coatings Technology,2006,201(3-4):507-512
    [21] Shih-Kang Tien, Jenq-Gong Duh, Yung-I Chen. Structure, thermal stability and mechanicalproperties of electroless Ni-P-W alloy coatings during cycle test[J]. Surface and CoatingsTechnology,2004,177-178:532-536
    [22] Shih-Kang Tien, Jenq-Gong Duh. Thermal reliability of electroless Ni-P-W coating duringthe aging treatment[J]. Thin Solid Films,2004,469-470:268-273
    [23] Shih-Kang Tien, Jenq-Gong Duh, Yung I. Chen. The influence of thermal treatment on themicrostructure and hardness in electroless Ni-P-W deposit[J]. Thin Solid Films,2004,469-470:333-338
    [24] Yi-Ying Tsai, Fan-Bean Wu, Yung-I Chen, etc. Thermal stability and mechanical properties ofNi-W-P electroless deposits[J]. Surface and Coatings Technology,2001,146-147:502-507
    [25]谭风玲,姜秉元.化学沉积Ni-Mo-P合金工艺参数对性能的影响[J].材料开发与应用,2001,16(6):26-28
    [26]张翼,林玉娟,方永奎.化学镀非晶Ni-Mo-P与Ni-P镀层性能的对比[J].东北林业大学学报,2002,30(4):103-105
    [27]卢忠铭,高岩,郑志军.镀液pH值和钼酸根浓度对化学镀Ni-Mo-P沉积速度及镀层结构的影响[J].中国表面工程,2005,(2):44-49
    [28]闫洪.化学沉积Ni-Mo-P合金结构和耐蚀性的关系[J].化工机械,1994,21(2):98-100
    [29]谭风玲,姜秉元.化学沉积Ni-Mo-P合金镀层的组织与耐蚀性能[J].腐蚀与防护,2002,21(7):98-100
    [30]吴玉程,邓宗钢.Ni-Mo-P化学沉积三元合金的组织与性能研究[J].功能材料,1998,29(4):390-392
    [31]张刚,陆柱.热处理对化学镀Ni-Mo-P合金耐蚀性能的影响及其机理[J].华东理工大学学报,1994,2O(3):373-377
    [32] Yu-Hsien Chou, Yuh Sung, Yih-Ming Liu.Amorphous Ni-Mo-P diffusion barrier deposited bynon-isothermal deposition[J].Surface and Coatings Technology,2009,203:1020-1026
    [33]刘珍.溶液pH值对化学镀Ni-Co-P合金的影响[J].电镀与精饰,1999,21(1):17.
    [34] Matsubara H. Control of Magnetic Properties of Chemically Deposited Cobalt NickelPhosphorus Films by Electrolysis[J]. Journal of Electrochemistry Society,1994,141(9):2386-2390
    [35]王森林,孙永国,郑一雄,吴辉煌.工艺条件对化学镀Ni-Co-P合金的影响[J].材料保护,2002,35(10):18-19
    [36] A. Abdel Aal, A. Shaaban, Z. Abdel Hamid.Nanocrystalline soft ferromagnetic Ni–Co–P thinfilm on Al alloy by low temperature electroless deposition[J].Applied Surface Science,2008,254:1966-1971
    [37] Dong Nyung Lee, Kang-Heon Hur.The evolution of texture during annealing of electrolessNi-Co-P deposits[J].Scripta Materialia,1999,40(12):1333-1339,1999
    [38] Anuj Kumar, Mukesh Kumar, Dinesh Kumar.Deposition and characterization of electrolessNi-Co-P alloy for diffusion barrier applications[J]. Microelectronic Engineering,2010,87:387-390
    [39]于会生,罗守福,王永瑞.Ni-Cu-P化学镀工艺及组织结构的研究[J].材料工程,2001,2:30-33
    [40]吴玉程.化学镀镍铜磷三元合金沉积工艺的研究[J].电镀与涂饰,2000,19(2):1-5
    [41]周丽,殷凤仕.化学镀镍-铜-磷三元合金层的制备及其组织与性能研究[J].热加工工艺,2007,36(8):55-57
    [42] A. Abdel Aal, M.Shehata Aly. Electroless Ni-Cu-P plating onto open cell stainless steelfoam[J].Applied Surface Science,2009,255:6652-6655
    [43] Okamura,Liehman.Structure and corrosion resistance of electroless Ni-Cu-P[J]. Plating andSurface Finish,1992,79(5):57-59
    [44]刘继光,陈奎儒.PP化学镀Ni-Cu-P导电粉末及其涂覆ABS板电磁屏蔽性能研究[J].工程塑料应用,2006,13(5):49-55.
    [45] Xueping Gan, Yating Wu, Lei Liu,et al.Electroless plating of Cu-Ni-P alloy on PET fabrics andeffect of plating parameters on the properties of conductive fabrics[J]. Journal of Alloys andCompounds,2008,455:308-313
    [46] Schlesinger M,Meng X Y, Snyder D D. The microstructure and electrochemical properties ofelectroless Zn-Ni-P alloy [J]. J. Electrochem. Soc.,1991,138(2):406-410
    [47] Hamid Z A,Ghanem,W A,El Enin S A A. Process aspects of electroless deposition fornickel-zinc-phosphorous alloys[J]. Surface and Interface Analysis,2005,37(10):792-796
    [48]潘振中,罗建东,胡小芳.化学镀Ni-Zn-P合金工艺的研究[J].电镀与环保,2008,28(5):28-30
    [49]王殿龙,宫玉梅.酸性化学镀Ni-Zn-P工艺的研究[J].电镀与环保,2009,29(2):39-42
    [50]王森林,陈志明.热处理对化学沉积Ni-Zn(Fe)-P合金结构和性质的影响[J].功能材料,2005,36(5):798-802
    [51] BIELINSKI J, JAWORSKA A. Electroless deposition of Ni-Sn-P alloys from citratebath[J].Inzynieria Powierzchni,2005,23(1):36-42.
    [52] XIE H W,ZHANG B W, YANG Q Q. Preparation,structure and corrosion properties ofelectroless amorphous Ni-Sn-P alloys[J].TransInst Metal Finish,1999,77(3):99-102
    [53]闫洪.陶瓷表面化学镀Ni-Sn-P合金[J].上海微电子技术和应用,1996,24(2):36-39
    [54]王红艳,叶向荣,刘琴,等.钢铁表面Ni-Sn-P合金镀层组成及其耐蚀性[J].应用化学,1999,16(5):45-48
    [55]宋长生,王国荣.热处理对化学镀Ni-Sn-P镀层结构和性能的影响[J].电镀与精饰,2000,22(1):9-11
    [56] ZHANG B W, XIE H W. Effect of alloying elements on the amorphous formation andcorrosion resistance of electroless Ni-P based alloys[J].Materials Science and EngineeringA,2000,281(1/2):286-291
    [57] BALARAJU J N, JAHAN S M, JAIN A, et al.Structure and phase transformation behavior ofelectroless Ni-P alloys containing tin and tungsten[J]. Journal of Alloys and Compounds,2006,8(9):319-327
    [58]于金库,邵光杰,兰英斌,等.非晶态Ni-Sn-P合金的腐蚀行为[J].腐蚀与防护,1997,18(4):9-10
    [59] XUE R J,WU Y C.Mechanism and microstructure of electroless Ni-Fe-P plating onCNTs[J].Journal of China University of Mining&Technology,2007,17(3):424-427
    [60] An Zhen-guo,Zhang Jing-jie,Pan Shun-long. Fabrication of glass/Ni-Fe-P ternary alloycore/shell composite hollow microspheres through a modified electroless platingprocess[J].Applied Surface Science,2008,255(5):2219-2224
    [61]李松梅,韩宇,刘建华,等. Ni-Fe-P三元合金的快速化学镀制备工艺研究[J].材料工程,2010,(8):44-50
    [62] WANG S L.Studies of electroless plating of Ni-Fe-P alloys and the influences of somedeposition parameters on the properties of the deposits[J].Surf Coat Technol,2004,186:372-376
    [63]王玲玲,赵立华,黄桂芳,等.化学镀Ni-Fe-P及Ni-Fe-P-B合金膜的磁性[J].材料导报,2001,15(3):65-67
    [64]王艳芝.化学镀Ni-Fe-P合金的组成、结构和耐蚀性[J].材料保护,2002,35(5):34-35
    [65]蒋太祥,吴辉煌.酸性溶液化学镀Ni-P-B合金及结构性能表征[J].电化学,2000,6(1):17-24
    [66]闫洪.化学镀Ni-P-B合金的工艺[J].表面技术,1993,(5):37-39
    [67]闫洪.化学镀Ni-P-B合金的工艺和耐蚀性的研究[J].功能材料,1993,24(6):544-547
    [68]王柏春,朱永伟,许向阳,等. Ni-P基化学复合镀的研究与应用[J].材料导报,2005,19(6):71-74
    [69] J.T. Winowlin Jappesa, B. Ramamoorthy,P. Kesavan Nair. Novel approaches on the study ofwear performance of electroless Ni–P/diamond composite deposites[J]. Journal of MaterialsProcessing Technology,2009,209(2):1004-1010
    [70] C.M. Das, P.K. Limaye, A.K. Grover, A.K. Suri. Preparation and characterization of siliconnitride codeposited electroless nickel composite coatings[J]. Journal of Alloys and Compounds,2007,436(1-2):328-334
    [71] Q. Zhao, Y. Liu, C. Wang. Development and evaluation of electroless Ag-PTFE compositecoatings with anti-microbial and anti-corrosion properties [J]. Applied Surface Science,2005,252(5):1620-1627
    [72] Franser J.Mechanism of composite electroplating,Metal Finishing,1993,43(6):97-102
    [73]松村宗顺.最近の复合あつきの动向.金属表面技术[J].1985,36(11):442
    [74] Guglielmi N.Kinetics of the deposition of inert particles from electrolytic bath[J].J ElectrochemSoc,l972,ll9(8):l009-1012
    [75]曹茂盛,杨会静,刘爱东,等.Ni-P-SiC纳米粒子化学复合镀工艺及力学性能研究[J].中国表面工程,2000,48(3):42
    [76]雷晓蓉,黎永钧.化学复合镀Ni-P-PTFE共沉积机理研究[J].西安交通大学学报,1997,31(3):53-58
    [77]谢华,钱匡武,陈文哲.Ni-P-金刚石三元化学复合镀工艺及沉积机理[J].材料保护,2002,35(9):22-24
    [78]胡小晔,吴玉程,刘家琴.碳纳米管预处理及化学复合镀研究现状[J].电镀与涂饰,2006,25(4):46-49
    [79]肖顺华,任玮,项卫胜,等.工艺条件对化学复合镀RE-Ni-Mo-P-WC沉积速度的影响及机理研究[J].材料保护,2004,37(12):20-21
    [80]黄新民,吴玉程,谢跃勤,等.Ni-P-纳米TiO2化学复合镀层[J].中国表面工程,2001,14(3):30-32
    [81]王新庆,李振华,朱海滨.纳米碳管对化学复合镀的影响[J].微纳电子技术,2002,26(3):26-28
    [82]蔺万峰,庄桂红,赖明,等.温酸性化学复合镀镍-磷-纳米氧化铝[J].电镀与涂饰,2011,30(6):14-17
    [83]高加强,刘磊,沈彬,等.纳米氧化铝粒子对化学镀镍-磷合金晶化行为的影响[J].中国有色金属学报,2004,(1):64-68
    [84]陈文哲,谢华,李勇,等. Ni-P-纳米金刚石化学复合镀新技术研究[J].材料导报,2004,18(8):271-273
    [85]王柏春,朱永伟,许向阳,等. Ni-P基化学复合镀的研究与应用[J].材料导报,2005,19(6):71-74
    [86]周苏闽,王红艳.一种化学复合镀层的研制及其耐腐蚀性研究[J].表面技术,1999,28(6):7-9
    [87]薛蒙伟,李小华,马美华.Cu-P-SiO2(CeO2)纳米复合化学镀层制备初探[J].化学时刊,2001(9):18-21
    [88]赵璐璐,金红,金彦,等.镍-磷-纳米SiO2化学复合镀层耐腐蚀特性研究[J].辽宁师范大学学报(自然科学版),2004,27(3):288-291
    [89]马美华,李峰,李小华,等.镍-磷-锌盐纳米复合化学镀层抗腐蚀性能的研究[J].应用化学,2001,18(7):509-512
    [90]张永忠.化学镀Ni-P-PTFE的工艺及性能[J].功能材料,1999,30(1):23-25
    [91] Ebdon P R.Composite electroless Nickel/PTFE coatings[J].Surface engineering,1987,3(2):114-116
    [92]陈卫祥,甘海洋,涂江平,等. Ni-P-纳米碳管化学复合镀层的摩擦磨损特性[J].摩擦学报,2002,(4):241-244
    [93]韩贵,陈卫祥,夏军宝,等.化学镀耐磨自润滑Ni-P复合镀层的摩擦磨损性能[J].摩擦学学报,2004,24(3):216-219
    [94]黄新民,吴玉程,郑玉春.纳米颗粒对复合镀层性能的影响[J].兵器材料与工程,1999,22(6):11-13
    [95]黄新民,吴玉程,郑玉春.纳米功能复合涂层[J].功能材料,2000,31(4):419-420
    [96]欧忠文.纳米材料在表面工程中应用的研究进展[J].中国表面工程,2000,(2):5-8
    [97]熊忠华,魏锡文,黄锋,等.化学复合镀Ni-P-TiO2光催化降解次甲基蓝[J].材料开发与应用,2002,17(1),11-13
    [98] Deguchi T, Imai K, Iwasaki M. Photocatalytically highly active nanocomposite films consistingof TiO2particles[J].Journal of the Electrochemical Society,2000,147(6):2263-2267
    [99] Deguchi T, Imai K, Matsui H.Rapid electroplating of photocatalytically active TiO2-Znnanocomposite,Journal of Electroanalytical Chemistry,1996402:21-224
    [100]薛茹君,吴玉程.无机纳米材料的表面修饰改性与物性研究[M].合肥:合肥工业大学出版社,2009
    [101] S.M.Moonir-Vaatchi.搅拌对Ni-P-MoS2化学复合镀的影响[J].材料保护,1999(1):40
    [102]卜金纬,黄根良.复合化学镀几个关键工艺因素研究[J].表面技术,2006,34(4):48-52
    [103]相英伟.化学复合镀纳米金刚石粉的研究[J].材料工程,2000(4):22-23
    [104]陈娜娜.改性纳米TiO2及其复合涂层的制备及性能研究[D].合肥:合肥工业大学,2010
    [105]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002
    [106] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2surface: principles mechanismsand selected results[J]. Chemical Reviews,1995,95(3):735-758
    [107]胡曰博.有序介孔TiO2材料的合成、表征及应用[D].成都:四川大学,2005
    [108]马军委,张海波,蓝振波,等.纳米二氧化钛制备方法的研究进展[J].无机盐工业,2006,38(10):5-7.
    [109]李大成,周大利,刘恒,等.纳米TiO2的制备[J].四川有色金属,2003,18(2):1-8
    [110]曹爱红,蓝心仁,袁启明.沉淀法制备TiO2纳米粉体的研究[J].硅酸盐学报,2002,30(5):83-86
    [111] Sonawane R S, Dongare M K. Sol-gel synthesis of Au/TiO2thin films for photocatalyticdegradation of phenol in sunlight[J]. Journal of Molecular Catalysis A: Chemical,2006,243(1):68-76
    [112] SUNG-SUH H M,CHOI J R,HAH H J,et a1.Comparison of Ag Deposition Effects onthe Photocatalytic Activity of Nanoparticulate TiO2under Visible and UV LightIrradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163(1-2):37-44
    [113] Hoffmann M R, Martin S T, Choi W, et al. Environmental Applications of SemiconductorPhotocatalysis[J]. Chemical Reviews,1995,95(1):69-96
    [114] Tsutomu Umebayashi, Tetsuya Yamabi, Hisayoshi Itoh,et a1.Analysis of ElectronicStructures of3d Transition Metal-doped TiO2Based on Band Caculations[J].Journalof Physics and Chemistry of Solids,2002,63(10):1909-1920
    [115] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-dopedtitanium oxides[J]. Science,2001,293(5528):269-271
    [116] KHAN S U M,AL-SHAHRY M,INGLER W B.Efficient Photochemical WaterSplitting by a Chemically Modified n-TiO2[J].Science,2002,297(5590):2243-2245
    [117]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002
    [118] A. Fujishima and K. Honda. Electrochemical Photolysis of Water at a SemiconductorElectrode[J]. Nature,1972,238(5358):37-38
    [119] Brad S J. Photoelectrochemistry and heterogeneous photocatalysis at semiconductor[J].Journal of Photochemistry and Photobiology A,1979,10:59-68
    [120]邢丽贞,冯雷,陈华东.光催化氧化技术在水处理中的研究进展[J].水科学与工程技术,2008,32(1):7-10
    [121] Hoffmann M R, Martin S T, Choi W, et al. Environmental Applications of SemiconductorPhotocatalysis[J]. Chemical Reviews,1995,95(1):69-96
    [122]陈建华,王晓林,张培新,等.纳米二氧化钛粉末离子掺杂研究[J].广西大学学报(自然科学版),2005,30(1):44-50
    [123] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titaniumoxides[J]. Science,2001,293(5528):269-271
    [124]朱永法.纳米材料的表征与测试技术[M].北京:化学工业出版社,2006:173-174
    [125]杨南如.无机非金属材料测试方法[M].武汉:武汉理工大学出版社,2006:63-76
    [126]吴刚.材料结构表征及应用[M].北京:化学工业出版社,2002
    [127]吴玉程,陈挺松,解挺,等.纳米TiO2稀土元素掺杂改性与光催化性能研究[J].功能材料,2005,36(1):124-125
    [128]杨建,薛向欣,王文忠,等.氧化物添加剂对TiO2相变和晶粒生长的影响机制[J].功能材料,2005,36(7):978-980
    [129]金丽娜,史志铭,闫龙.Zn2+掺杂对TiO2相变温度和晶粒尺寸的影响[J].人工晶体学报,2007,36(3):631-633
    [130]余锡宾,王桂华,罗衍庆,等.TiO2微粒的掺杂改性与催化活性[J].上海师范大学学报(自然科学版),2000,29(1):75-82
    [131]毛磊,童仕唐,张海禄,等.过渡元素离子表面改性锐钛型TiO2光催化活性规律探讨[J].武汉科技大学学报(自然科学版),2006,29(1):66-68
    [132]冯光建,刘素文,修志亮,等.氮掺杂二氧化钛纳米粉体的制备及光催化性能的研究[J].中国粉体技术,2008,14(3):39-42
    [133]姜晓霞.化学镀理论与实践[M].北京:国防工业出版社,2002
    [134]王柏春,朱永伟,许向阳等.Ni-P基化学复合镀的研究与应用[J].材料导报,2005,19(6)71-74
    [135]曾为民,赵俊宏,马玉录.化学镀Ni-W-P工艺及其应用[J].材料保护.2007,40(7):36-40
    [136]张志明,黄新民,刘岩等.化学镀Ni-Cu-P合金镀层[J].电镀与精饰.2007,29(2):12-15
    [137]杨海燕,卫英慧,侯利锋等.化学镀Ni-Co-P工艺与性能研究[J].稀有金属材料与工程,2008,37(11):1982-1986
    [138] Schlesinger M, Meng X Y, Snyder D D. Electroless Ni-Zn-P flims[J]. J. Electrochem. soc.,1990,137(6):1858-1859
    [139] Schlesinger M, Meng X Y, Snyder D D. The microstructure and electrochemical properties ofelectroless Zn-Ni-P alloy [J]. J. Electrochem. Soc.,1991,138(2):406-410
    [140] Valova E, Georgiev I, Armyanov S etc. Incorporation of zinc in electroless depositednickel-phosphorus alloys [J]. J. Electrochem. Soc.2001,148(4): C266.
    [141]潘振中,罗建东,胡小芳.化学镀Ni-Zn-P合金工艺的研究[J].电镀与环保.2008,28(5):28-29
    [142]王森林,徐旭波,吴辉煌.化学沉积Ni-Zn-P合金制备和腐蚀性能研究[J].中国腐蚀与防护学报.2004,24(5):297-300
    [143]朱绍峰,吴玉程,黄新民.化学沉积Ni-Zn-P合金及其冲蚀特性[J].功能材料,2010,41(07):1181-1185
    [144] Xie Haowen, Zhang Bangwei. Effects of preparation technology on the structure andamorphous forming region for electroless Ni-P alloys[J]. Journal of Materials ProcessingTechnology,2002,124(1-2):8-13
    [145] Zhong-hou LI, Zhi-yong CHEN, Sha-sha LIU, Feng ZHENG, A-gan DAI. Corrosion and wearproperties of electroless Ni-P plating layer on AZ91D magnesium alloy [J]. Transactions ofNonferrous Metals Society of China,2008,18(4):819-824
    [146]王柏春,朱永伟,许向阳,翟海军.Ni-P基化学复合镀的研究与应用[J].材料导报,2005,19(6):71-74
    [147] LIU W L, CHEN W J, TSAI T K, HSIEH S H, CHANG S Y. Effect of nickel on the initialgrowth behavior of electroless Ni-Co-P alloy on silicon substrate[J]. Applied Surface Science,2007,253:3843-3848.
    [148] Schlesinger M,Meng X Y, Snyder D D. The microstructure and electrochemical properties ofelectroless Zn-Ni-P alloy [J]. J. Electrochem. Soc.,1991,138(2):406-410
    [149] Boquan Jiang, Lin Xiao, Shufen Hu, Jian Peng, Hua Zhang and Minwei Wang. Optimizationand kinetics of electroless Ni-P-B plating of quartz optical fiber[J].OpticalMaterials,2009,31(10):1532-1539
    [150] T. S. N. Sankara Narayanan, A. Stephan, S. Guruskanthan. Electroless Ni–Co–B ternary alloydeposits: preparation and characteristics [J]. Surface and Coatings Technology,2004,179(1,2):56-62
    [151]王森林,战俊杰.化学镀镍-钴-铁-磷镀层的结构和磁性能[J].中国有色金属学报,2008,18(6):1105-1110
    [152] WANG Sen-lin. Studies of electroless plating of Ni-Fe-P alloys and the influences of somedeposition parameters on the properties of the deposits[J]. Surface&Coatings Technology,2004,186:372-376
    [153] Y. Liu, Q. Zhao. Study of electroless Ni-Cu-P coatings and their anti-corrosion properties [J].Applied Surface Science,2004,228(1-4):56-62
    [154] Wei-Long Liu, Shu-Huei Hsieh, Wen-Jauh Chen. Kinetics of electroless Ni-Cu-P deposits onsilicon in a basic hypophosphite-type bath [J]. International Journal of Minerals, Metallurgy andMaterials,2009,16(2):197-202
    [155] J.N. Balaraju, S. Millath Jahan, K.S. Rajam. Studies on autocatalytic deposition of ternaryNi-W-P alloys using nickel sulphamate bath [J]. Surface and coatings Technology,2006,201(3,4):507-512
    [156]王宏智,彭海波,陈君,王津生.化学镀Ni-Sn-P合金的研究进展[J].电镀与涂饰,2007,26(6):50-53
    [157] XIE H W, ZHANG B W, YANG Q Q. Preparation,structure and corrosion properties ofelectroless amorphous Ni-Sn-P alloys[J].Trans Inst Metal Finish,1999,77(3):99-102
    [158]王红艳,叶向荣,刘琴等.钢铁表面Ni-Sn-P合金镀层组成及其耐蚀性[J].应用化学,1999,16(5):45-48
    [159] Jinku Yu,Tianfu Jing,Jun Yang,Qun Li.Determination of activation energy for crystallizationsin Ni-Sn-P amorphous alloys[J].Journal of Materials Processing Technology,2009,209:14-17
    [160] Hiromi Yamashita, Hiroyuki Nose, Yasutaka Kuwahara, Yoshikatsu Nishida, Shuai Yuan,Kohsuke Mori. TiO2photocatalyst loaded on hydrophobic Si3N4support for efficientdegradation of organics diluted in water[J]. Applied Catalysis A: General,2008,350:164-168.
    [161] Deng Qin, Liao Dongliang, Xiao Xinyan. New Developments in immobilization technologyfor titanium dioxide photocatalyst[J]. Materials Review,2003,17(51):82-85
    [162] Pilkenton S, Hwang S J, Raflery D. Ethanol Photocatalysis on TiO2-Coated Optical Microfiber,Supported Monolayer, and Powdered Catalysts: An In Situ NMR Study[J]. J Phys ChemB,1999,103:11152-11160
    [163] Jean-Marie Herrmann, Halima Tahiri, Chantal Guillard and Pierre Pichat. Photocatalyticdegradation of aqueous hydroxy-butandioic acid (malic acid) in contact with powdered andsupported titania in water[J]. Catal Today,1999,54:131-141
    [164] Zhe O, Jin H. Novel silica gel supported TiO2photocatalyst sythesized by CVD method[J].Langmuir,2000,16(15):6216-6222
    [165] Takenori D, Kiyohisa I. Photocatalytilly highly active nanocomposite films consisting of TiO2particles and ZnO whiskers formed on steel plates[J].J Electronchem Soc,2000,147(6):2263-2267
    [166]朱绍峰,吴玉程,黄新民.Ni-P/纳米TiO2复合镀层的制备与性能[J].郑州大学学报(工学版)2009,20(1):39-42
    [167]张立德,牟季美.纳米材料学M].辽宁沈阳科学技术出版社,沈阳,1994.1-6
    [168]张凤桥,季孟波,李兰兰等.纳米粒子复合镀的研究现状[J].电镀与精饰.2005,27(6):18-23
    [169]吴玉程,叶敏,解挺等.电沉积二氧化钛功能薄膜的制备与组织转变研究[J].人工晶体学报.2006,35(3):612-616
    [170] G. Carac, L. Benea, C. Iticescu, T. Lampke etal. Codeposition of cerium oxide with nickel andcobalt: correlation between microstructure and microhardness [J].Surface Engineering.2004,20(5):353-359
    [171] C K Chen,M H Hon.The morphology and mechanical properties of TiN/Ni-P-SiC hybridcoatings[J].surface and coatings technology,2002,(155):214-220
    [172]鲁香粉,吴玉程,朱帮同等. Ni-P-TiO2纳米复合镀层的制备与性能研究[J].金属功能材料.2008,39(3):482-484
    [173] J.Novakovic, P.Vassiliou.Vacuum thermal treated electroless NiP-TiO2composite coatings[J].Electrochimica Acta,2009,54:2499-2503
    [174] Laizhou Song,Yanan Wang,Wanzhou Lin,Qian Liu.Primary investigation of corrosionresistance of Ni-P/TiO2composite film on sintered NdFeB permanent magnet[J]. Surface&Coatings Technology,2008,202:5146-5150
    [175] Huang Xinmin, Qian Lihua, Wu Yucheng, Zhu Hong. Characteristics of ElectrolessComposite Coating Consisting of TiO2Nanoparticles [J]. METALLIC FUNCTIONALMATERIALS,2004,11(2):15-19
    [176] Peng Feng, Ren Yanqun, Lei Jianguang. Preparation of titanium dioxide nanoparticles and itscatalytic activity in phenol degradation[J]. Modern chemical Industry,2002,22:108-110
    [177]朱绍峰,吴玉程,黄新民.化学沉积Ni-Zn-P-TiO2纳米复合镀层及其性能研究[J].热处理,2011,26(1):34-37
    [178] Schlesinger M, Meng XY, Snyder D D. Electroless Ni-Zn-P flims[J]. J.Electrochem. soc.,1990,137(6):1858-1859
    [179] Schlesinger M,Meng X Y, Snyder D D. The microstructure and electrochemical properties ofelectroless Zn-Ni-P alloy [J]. J. Electrochem. Soc.,1991,138(2):406-410
    [180] Valova E, Georgiev I, Armyanov S etc. Incorporation of zinc in electroless depositednickel-phosphorus alloys [J]. J. Electrochem. Soc.,2001,148(4): C266
    [181] Liu C, Tang X, Mo C, et al. Characterization and activity of visible-light-driven TiO2photocatalyst codoped with nitrogen and cerium[J]. Journal of Solid State Chemistry,2008,181(4):913-919
    [182] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titaniumoxides[J]. Science,2001,293(5528):269-271
    [183] Yu Huang, Zheng Xuxu, Yin Zhongyi, Tao Feng, Fang Beibei, Hou Keshan. Preparation ofNitrogen-doped TiO2Nanoparticle Catalyst and Its Catalytic Activity under Visible Light[J].Chinese Journal of Chemical Engineering,2007,15(6):802-807
    [184]朱绍峰,吴玉程,胡寒梅,黄新民.热处理对化学沉积Ni-Zn-P-TiO2复合镀层的影响[J].材料热处理学报,2011,(S1):162-165
    [185]柳飞,朱绍峰,林晓东,张永娟.热处理对化学沉积Ni-Zn-P合金组织与性能的影响[J].金属热处理,2010,35(10):21-24
    [186]杨战争,吕广庶,蔡刚毅.Ni-P-纳米金刚石化学复合镀研究[J].电镀与涂饰,2006,25(10):5-7
    [187] YU-JUN XUE, JI-SHUN LI, WEI MA etal. Sliding wear behaviors of electrodeposited nickelcomposite coatings containing micrometer and nanometer La2O3particles[J].J. MATER SCI,2006,41:1781-1784
    [189]蒋斌,徐滨士,董世运等.电刷镀纳米颗粒复合镀层的组织与沉积过程[J].表面技术,2005,34(3):16-17
    [190] C K Chen,M H Hon.The morphology and mechanical properties of TiN/Ni-P-SiC hybridcoatings[J].surface and coatings technology,2002,(155):214-220
    [191]孔纪兰,周上祺,任勤等.镍磷-纳米碳管复合镀层的力学性能[J].复合材料学报,2006,23(5)17-23
    [192] GROZA J R, GIBELING J C. Principles of particle selection for dispersion-strengthenedcopper [J].Mater Sci Eng,1993,A171:115-125
    [193]薛玉君,段明德,李济顺等.纳米和微米La2O3颗粒增强镍基复合镀层的摩擦磨损性能[J].中国机械工程,2006,17(3):311-314.
    [194]张文峰,朱荻.极板放置方式对电铸层中微米/纳米SiC复合量影响的研究[J].中国机械工程,2004,15(24):2241-2244
    [195] GARCIA I, FRANSAER J, CELIS J P. Electrodeposition and sliding wear resistance of nickelcomposite coating micro and submicro SiC particles [J].Surface and Coatings Technology,2001,148(2/3):171-178
    [196] VIDRINE A B, PODLAHA E J. Composite electrodeposition of ultrafine γ-alumina particlesin nickel matrices part I: Citrate and chloride electrolytes [J]. Journal of AppliedElectrochemistry,2001,31:461-468
    [197]王红美,徐滨士,马市宁等.纳米Al2O3颗粒增强镍基复合镀层的制备及微观力学性能[J].材料热处理学报,2005,26(1):81-85
    [198]魏孝信,梁志杰,曹勇.摩擦喷射电沉积制备Ni-Al2O3纳米复合镀层[J].电镀与涂饰,2006,25(5):7-10
    [199]吴蒙华,傅欣欣,李智等.超声电沉积镍/纳米碳化硅复合镀层组织结构研究[J].机械工程材料,2004,28(12):46-48
    [200] SHRESTHA N K,SAKURADA K,MASUKO M, et al.Composite coatings of nickel andceramic particles prepared in two steps [J]. Surface and Coatings Technology,2001,140:175-181
    [201] SHRESTHA N K, HAMALD B, SAJI T. Composite plating of Ni-P-Al2O3in two steps andits anti-wear performance[J].Surface and Coatings Technology,2004,183:247-253
    [202]田海燕,朱荻,曲宁松,朱增伟.电泳-电沉积制备纳米Al2O3增强镍基复合镀层的耐磨性能[J].机械工程材料,2009,33(3):65-71
    [203]田海燕,朱荻,曲宁松,朱增伟.电泳-电沉积制备纳米Al2O3增强镍基复合镀层中纳米颗粒的分布状态[J].机械工程材料,2009,33(6):14-21
    [204] Omer O, Biest V D, Vandeperre L. Electrophoretic deposition of materials [J].Annu. Rev.Mater. Sci.,1999,29:327-352
    [205]黄紫洋,刘榕芳,肖秀峰等.电泳沉积羟基磷灰石生物陶瓷涂层的研究进展[J].硅酸盐学报,2003,31(6):591-597
    [206]赵建玲,王晓慧,郝俊杰等.电泳沉积及其在新型陶瓷工艺上的应用[J].功能材料,2005,36(2):165-168
    [207] Cong Wang,J. Ma,Wen Cheng,etal. Thick hydroxyapatite coatings by electrophoreticdeposition[J]. Materials Letters,2002,57:99-105
    [208] Limmer SJ, Cao G. Sol-gel electrophoretic deposition for the growth of oxide nanorods[J].Adv. Mater.,2003,15(5):427-31
    [209] H. Abdoli, M. Zarabian, P. Alizadeh, S.K. Sadrnezhaad. Fabrication of aluminum nitridecoatings by electrophoretic deposition:Effect of particle size on deposition and dryingbehavior[J]. Ceramics International,2011,37:313-319
    [210]李宁,袁国伟,黎德育.化学镀镍基合金理论与技术[M].哈尔滨工业大学出版社,哈尔滨,2000,117-121
    [211]王锡春.电泳涂装技术[M].化学工业出版社,北京,2009
    [212] Laxmidhar Besra, Meilin Liu.A review on fundamentals and applications of electrophoreticdeposition (EPD)[J]. Progress in Materials Science,2007,52:1-61
    [213] Negishi H, Yanagishita H, Yokokawa H. Electrophoretic deposition of solid oxide fuel cellmaterial powders. In: Proceedings of the electrochemical society on electrophoretic deposition:fundamentals and applications, vol.2002-21, Pennington, USA,2002. p.214-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700