中能p-He碰撞实验研究与高能电子磁谱仪优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碰撞引起的原子分子过程,例如激发、电离和电子转移等,在揭示动力学机制等基础研究方面及实验室和天体等离子体等应用方面都很重要。过去对离子-原子碰撞的研究集中于高能区,对中能区的研究还比较匮乏。本论文工作利用反应显微成像谱仪技术,对50-100keV能量范围H+离子与He原子碰撞发生的单电子俘获过程和转移电离过程进行了实验研究,获得了态选择俘获截面、揭示了电子-电子关联作用并鉴别出动力学机制。为了对高能电子进行成像,通过计算和模拟束流动力学,我们对高能电子磁谱仪所涉及的磁铁系统进行了优化设计。
     对单电子俘获过程的研究表明,基态俘获是主要过程,而激发态俘获以及转移激发过程的贡献相对很小。对基态和激发态俘获过程,炮弹小角度散射占主导地位,说明动量主要通过俘获的电子转移,而核-核相互作用对此过程的贡献较小。与基态和激发态俘获相比,转移激发更倾向于在小碰撞参数时发生,核-核相互作用在此过程中也更重要。通过比较实验角微分截面结果和基于独立电子模型的计算结果,揭示出电子-电子关联效应在基态与激发态俘获过程中的作用可以忽略,但在转移激发过程中却比较重要。
     对转移电离过程,实验结果表明炮弹与电子和靶核动量交换占主导地位,电子主要通过炮弹-电子间的两体碰撞出射,两步机制在转移电离过程中比较重要。与考虑束缚能的电子两体碰撞出射特征比较我们发现,转移电离倾向于通过先转移后电离进行,且电子-反冲靶核这一高阶作用可能有贡献。对这里研究的中性化炮弹出射,在前向出射电子能谱上我们没有观察到之前文献中报道的cusp电子的贡献,通过初步分析我们认为对处于基态的中性炮弹出射不存在cusp电子,二次碰撞引起的假符合导致了文献中报道的cusp峰的出现。实验中同时获得了转移电离过程的全微分截面,这为理论提供了最严格的检验。
     高能电子磁谱仪利用磁铁系统对离子-原子碰撞中的高能电子出射角进行成像。通过对电子磁谱仪所涉及的束流动力学的计算和模拟,我们得到了能够满足成像条件的各种可能磁铁参数组合,经过比较确定了满足最好分辨的磁铁系统。进一步从传输矩阵出发我们对磁铁系统做了优化并提出了将来电子磁谱仪的最优设计参数。
Ionization and electron transfer occurring in ion-atom collisions havefundamental importance in the study of the dynamics and potential applications invarious fields, e.g. laboratory and astrophysical plasmas. Most of these studies wereperformed at high impact energies while the studies in the intermediate energy rangeare rare. In this work, single-electron capture and transfer ionization occurring incollisions of protons with He at energies ranging from50to100keV have beenexperimentally investigated by means of a reaction microscope. We obtained thestate-selective cross sections, revealed the importance of the electron-electroncorrelations and the dominate mechanisms in these processes. To map the high energyelectrons the magnetic system of the high-energy electron magnetic spectrometer wasoptimized.
     It was found that for single electron capture the ground state transfer is thedominant reaction channel, and excited states transfer has relatively smallcontributions to the cross sections. Transfer excitation process has a minorcontribution to the total cross sections. From the angular-differential cross sections forthe single transfer process, it was found that the momentum transfer mediated by theelectron is dominant because of the large contributions of small-angle scatterings,while the nucleus-nucleus interaction has a minor contribution. Compared to the singletransfer process, the transfer excitation process is more likely to take place at smallimpact parameters, which implies that the nucleus-nucleus interaction is moreimportant in this process. A comparison between the present experimental results and the theoretical calculations within the independent electron model reveals that theelectron-electron correlation effects, which are negligible in the single transfer process,manifest their importance in the transfer excitation process.
     For transfer ionization, the experimental results indicate that the momentumexchanges between the projectile and both the recoil ion and the electron dominate inthis process. The electron momentum distribution projected onto the scattering planedisplays some features characterized by binary encounter electron emission. Acomparison with the binary encounter model involving the binding energy effectreveals that the transfer ionization is more likely to happen in a sequential order oftransfer first and ionization second. Besides, the higher-order effect involving theinteraction between the electron and the residual recoil ion may also contribute to theelectron emission features. Another interesting observation in our data is the absenceof the cusp-shaped electrons centered at a speed equal to that of the incident projectilein the forward direction. This is contrary to the previous results. A preliminary analysisindicates that for neutralized outgoing projectile with the captured electrons in theground state the cusp does not exist and the contamination due to the double collisionscould cause the cusp-shaped electrons reported in the literature. In addition, the fullydifferential cross sections measured in the experiment provided the most rigorous testof the theories.
     The high-energy electron magnetic spectrometer enables one to map the emissionangle of the high-energy electrons. The beam optics of the electron spectrometer havebeen calculated and simulated in detail. We obtained the magnetic parameters fulfillingthe mapping condition and determined the magnetic system with the best resolution. Afurther investigation using the transfer matrix presented the optimum designparameters of the magnetic system.
引文
[1]徐克尊.高等原子分子物理学.北京:科学出版社,2006
    [2] Viacheslav Shevelko, Hiro Tawara, Atomic Processes in Basic and AppliedPhysics, Heidelberg: Springer is part of Springer Science+Business Media,2012
    [3] T. N. Rescigno, M. Baertschy, W. A. Isaacs, et al. Collisional Breakup in aQuantum System of Three Charged Particles. Science,1999, Vol.286:2474-2479
    [4] M. Schulz, R. Moshammer, D. Fischer, et al. Three-dimensional imaging of atomicfour-body processes. Nature (London),2003, Vol.422:48-50
    [5] R. Moshammer, A. Perumal, M. Schulz et al. Three-Body Coulomb ProblemProbed by Mapping the Bethe Surface in Ionizing Ion-Atom Collisions. Phys. Rev.Lett.,2001, Vol.87:223201(1)-223201(4)
    [6] Konstantin A. Kouzakov, Sergey A. Zaytsev, Yuri V. Popov, et al. Singly ionizing100-MeV/amu C6++He collisions with small momentum transfer. Phys. Rev. A.,2012, Vol.86:032710(1)-032710(1)
    [7] M. Schulz, R. Moshammer, D. Fischer, et al. Comment on “Singly ionizing100-MeV/amu C6++He collisions with small momentum transfer”. Phys. Rev. A.,2013, Vol.87:046701(1)-046701(2)
    [8] Konstantin A. Kouzakov, Sergey A. Zaytsev, Yuri V. Popov, et al. Reply to“Comment on ‘singly ionizing100-MeV/amu C6++He collisions with smallmomentum transfer’”. Phys. Rev. A.,2013, Vol.87:046702(1)-046702(2)
    [9] R. D rner, T. Vogt, V. Mergel, et al. Ratio of Cross Sections for Double to SingleIonization of He by85–400eV Photons. Phys. Rev. Lett.,1996, Vol.76:2654-2657
    [10] J. Macek and S. Yu. Ovchinnikov, Theory of Rapidly Oscillating ElectronAngular Distributions in Slow Ion-Atom Collisions. Phys. Rev. Lett.,1998, Vol.80:2298-2301
    [11] H. Ehrhardt, M. Schulz, T. Tekaat, et al. Ionization of Helium: AngularCorrelation of the Scattered and Ejected Electrons. Phys. Rev. Lett.,1969, Vol.22:89-92
    [12] H. Ehrhardt, K. H. Hesselbacher, K. Jung, et al. Collisional ionization of heliumby250eV electrons: experiments with completely determined kinetics. J. Phys. B,1972, Vol.5:2107-2116
    [13] J. R der, H. Ehrhardt, I. Bray, et al. Absolute triple differential cross section forelectron-impact ionization of helium at50eV. J. Phys. B,1996, Vol.29: L67-L73
    [14] M. Schulz, R. Moshammer, D. H. Madison, et al. Triply differential singleionization cross sections in coplanar and non-coplanar geometry for fast heavyion-atom collisions. J. Phys. B,2001, Vol.34: L305-L311
    [15] A. L. Godunov, Colm T Whelan, and H R J Walters. Fully differential crosssections for transfer ionization—a sensitive probe of high level correlation effectsin atoms J. Phys. B,2004, Vol.37: L201-L208
    [16] N. V. Maydanyuk, A. Hasan, M. Foster, et al. Projectile–Residual-Target-IonScattering after Single Ionization of Helium by Slow Proton Impact. Phys. Rev.Lett.,2005, Vol.94:243201(1)-243201(4)
    [17] M. Schulz, A. Hasan, N. V. Maydanyuk, et al. Kinematically completeexperiment on single ionization in75-keV p+He collisions. Phys. Rev. A,2006,Vol.73:062704(1)-062704(9)
    [18] M. F. Ciappina, W. R. Cravero, and M. Schulz. Post-collisional effects on singleionization in75keV p+He collisions. J. Phys. B,2007, Vol.40:2577-2586
    [19] R. D rner, V. Mergel, O. Jagutzki, et al. Cold Target Recoil Ion MomentumSpectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys.Rep.,2000, Vol.330:95-192
    [20] J. Ullrich, R. Moshammer, A. Dorn, et al. Recoil-ion and electron momentumspectroscopy: reaction-microscopes. Rep. Prog. Phys.,2003, Vol.66:1463-1545
    [21] J. Eichler and Th. St hlker. Radiative electron capture in relativistic ion–atomcollisions and the photoelectric effect in hydrogen-like high-Z systems. Phys. Rep.,2007, Vol.439:1-99
    [22] M. Nofal, S. Hagmann, Th. St hlker, et al. Radiative electron capture to thecontinuum and the short-wavelength limit of electron-nucleus bremsstrahlung in90A MeV U88+(1s22s2)+N2collisions. Phys. Rev. Lett.,2007, Vol.99:163201(1)-163201(4)
    [23] M. Nofal. Ph.D. Thesis: Projectile continuum electrons and the short wavelengthlimit of electron-nucleus bremsstrahlung studied in the collision of90MeV/u U88+with a N2target. Frankfurt: Johann-Wolfgang Goethe Universitat Frankfurt,2007
    [24] S. Hagmann, Th. St hlker, J. Ullrich, et al. A forward electron spectrometer forthe ESR. Nucl. Instrum. Methods Phys. Res. B,2003, Vol.205:207-209
    [25] H. T. Schmidt, A. Fardi, R. Schuch, et al. Double-to-Single Target IonizationRatio for Electron Capture in Fast p-He Collisions. Phys. Rev. Lett.,2002, Vol.89:163201(1)-163201(4)
    [26] H. T. Schmidt, J. Jensen, P. Reinhed, et al. Recoil-ion momentum distributions fortransfer ionization in fast proton-He collisions, Phys. Rev. A.,2005, Vol.72:012713(1)-012713(7).
    [27] D. Fischer, M. Gudmundsson, Z. Berényi, et al. Importance of Thomassingle-electron transfer in fast p-He collisions, Phys. Rev. A,2010, Vol.81:012714(1)-012714(4)
    [28] S. Hagmann, Th. St hlker, Ch. Kozhuharov, et. al. Current and future electronspectroscopy experiments in relativistic storage rings, Nucl. Instrum. MethodsPhys. Res. B,2007, Vol.261:218-221
    [29] P. M. Hillenbrand, S. Hagmann, Th. St hlker, et al. Future experiments usingforward electron spectroscopy to study the quantum dynamics of high-Z ions at theESR/CRYRING storage rings, Phys. Scr.,2013, Vol. T156:014087(1)-014087(5)
    [30] S. Hagmann, H.F. Beyer, F. Bosch, et al. Challenges and opportunities for atomicphysics at FAIR: The new GSI accelerator project, Nucl. Instrum. Methods Phys.Res. B,2005, Vol.241:5-8
    [31] D. Flechard, H. Nguyen, E. Wells, et al. Kinematically complete charge exchangeexperiment in the Cs++Rb collision system using a MOT Target, Phys. Rev. Lett.,2001, Vol.87:123203(1)-123203(4).
    [32] J. W. Turkstra, R. Hoekstra, S. Knoop, et al. Recoil momentum spectroscopy ofhighly charged ion collisions on magneto-optically trapped Na, Phys. Rev. Lett.,2001, Vol.87:123202(1)-123202(4).
    [33] D. Fischer, D. Globig, J. Goullon, et al. Ion-Lithium collision dynamics studiedwith a Laser-Cooled In-Ring Target, Phys. Rev. Lett.,2012, Vol.109:113202(1)-113202(6)
    [34] A. C. LaForge, R Hubele, J Goullon, et al. Initial-state selective study ofionization dynamics in ion-Li collisions, J. Phys. B,2013, Vol.46:031001(1)-031001(5)
    [35] V. Mergel, R. D rner, M. Achler, et al. Intra-atomic electron-electron scattering inp-He collisions (Thomas process) investigated by Cold Target Recoil IonMomentum Spectroscopy, Phys. Rev. Lett.,1997, Vol.79:387-390
    [36] D. Fischer, K. Stochkel, H. Cederquist, et al. Experimental separation of theThomas charge-transfer process in high-velocity p-He collisions, Phys. Rev. A,2006, Vol.73:052713(1)-052713(5)
    [37] A. Hasan B. Tooke, M. Zapukhlyak, et al. Kinematically complete experiment ontransfer excitation in intermediate-energy p+He collisions, Phys. Rev. A,2006, Vol.74:032703(1)-032703(5)
    [38] M. Schulz, T. Vajnai, and J. A. Brand. Differential double capture cross sectionsin p+He collisions, Phys. Rev. A,2007, Vol.75:022717(1)-022717(6)
    [39] P. J. Martin, K. Arnett, D. M. Blankenship, et al. Differential cross sections forelectron capture from helium by25-to100-keV incident protons, Phys. Rev. A,1981, Vol.23:2858-2865
    [40] D evad Belki. State-selective capture cross sections in proton-Hydrogen andproton-Helium collisions at intermediate and high Energies, Phys. Scr.,1989, Vol.T28:106-111
    [41] D. R. Schultz, C. O. Reinhold, R. E. Olson, et al. Differential cross sections forstate-selective electron capture in25–100-keV proton-helium collisions, Phys. Rev.A,1992, Vol.46:275-283
    [42] M. Zapukhayak, T. Kirchner, A. Hasan, et al. Projectile angular-differential crosssections for transfer and transfer excitation in proton collisions with helium, Phys.Rev. A,2008, Vol.77:012720(1)-012720(9)
    [43] M. S. Sch ffler, J. Titze, L. Ph. H. Schmidt, et al. State-selective differential crosssections for single and double electron capture in He+,2+-He and p-He collisions,Phys. Rev. A,2009, Vol.79:064701(1)-064701(4)
    [44] Myroslav Zapukhlyak and Tom Kirchner. Projectile angular-differential crosssections for electron transfer processes in ion-helium collisions: Evidence for theapplicability of the independent electron model, Phys. Rev. A,2009, Vol.80:062705(1)-062705(7)
    [45] D. Belki, R. Gayet, J. Hanssen, et al. Dynamic electron correlations in singlecapture from helium by fast protons, Phys. Rev. A,1997, Vol.56:3675-3681
    [46] R. Samanta and M. Purkait. Single-electron capture from helium by fast protons,Phys. Scr.,2011, Vol.84:065301(1)-065301(7)
    [47] V. Mergel, R. D rner, M. Achler, et al. New Direction in Atomic Physics, editedby Colm T. Whelan, R. M. Dreizler, J. H. Macek, H. R. J. Walters, New York,Springer Science+Business Media New York,1999,239-243.
    [48] V. Mergel, R. D rner, Kh. Khayyat, et al. Strong correlations in the He groundstate momentum wave function observed in the fully differential momentumdistributions for the p+He transfer ionization process, Phys. Rev. Lett.,2001, Vol.86:2257-2260
    [49] M. Schulz, X. Wang, M. Gundmundsson, et al. Strongly enhanced backwardemission of electrons in transfer and ionization, Phys. Rev. Lett.,2012, Vol.108:043202(1)-043202(5)
    [50] M. S. Sch ffler, O. Chuluunbaatar, S. Houamer, et al. Two-dimensionalelectron-momentum distributions for transfer ionization in fast proton-heliumcollisions, Phys. Rev. A,2013, Vol.88:042710(1)-042710(7)
    [51] M. S. Sch ffler, O. Chuluunbaatar, Yu. V. Popov, et al. Transfer ionization and itssensitivity to the ground-state wave function, Phys. Rev. A,2013, Vol.87:032715(1)-032715(6)
    [52] G. Bernardi, P Focke, A D González, et al. Electron emission for transferionization in70keV H+on He, J. Phys. B,1999, Vol.32: L451-L455
    [53] D. Fregenal, J. Fiol, G. Bernardi, et al. Double capture with simultaneousionization in He2+on Ar collisions, Phys. Rev. A,2000, Vol.62:012703(1)-012703(5)
    [54] G. Bernardi, P. Focke, and W. Meckbach. Doubly differential electron emissionfor transfer ionization in100-keV H+on Ar, Phys. Rev. A,1997, Vol.55: R3983-R3986
    [55] L. H. Thomas. On the capture of electrons by swiftly moving electrified particles,Proc. R. Soc. Lond. A,1927, Vol.114:561-576
    [56] R. Shakeshaft. Electron capture by very fast protons from hydrogen atoms: afurther examination of the continuum distorted wave approximation, J. Phys. B,1974, Vol.7:1734-1740
    [57] J. S. Briggs and K. Taulbjerg. Charge transfer by a double-scattering mechanisminvolving target electrons, J. Phys. B,1979, Vol.12:2565-2573
    [58] J. R. Oppenheimer. Physical review,1928, Vol.31:0349-
    [59] I. M. Cheshire, Proceedings of the Physical Society of London,84,89(1964).
    [60] D. S. F. Crothers and J. F. McCann. Ionisation of atoms by ion impact, J. Phys. B,1983, Vol.16:3229-3242
    [61] J. M. Maidagan and R. D. Rivarola. A symmetric eikonal-type approximation forelectron capture in ion-atom collisions, J. Phys. B,1984, Vol.17:2477-2487
    [62] D evad Belki, Ivan Man ev, and Jocelyn Hanssen. Four-body methods forhigh-energy ion-atom collisions, Rev. Mod. Phys.,2008, Vol.80:249-314
    [63] L. Liu, J. G. Wang,1and R. K. Janev. Dynamics of He2++H(1s) ionization withscreened Coulomb interactions, Phys. Rev. A,2008, Vol.77:042712(1)-042712(9)
    [64] C. H. Liu, J. G. Wang, and R. K. Janev. Electron capture and excitation in slowH+-He(21,3L) collisions, Phys. Rev. A,2012, Vol.85:042719(1)-042719(13)
    [65] B. H. Bransden and M. R. C. Mcdowell. Charge Exchange and the Theory ofIon-Atom Collisions. Oxdord: Clarendon,1997
    [66] A. L. Godunov, C. T. Whelan, and H. R. J. Walters. Fully differential crosssections for transfer ionization—a sensitive probe of high level correlation effectsin atoms, J. Phys. B,2004, Vol.37: L201-L208
    [67] A. L. Godunov, C. T. Whelan, H. R. J. Walters, et al. Transfer ionization processp+He→H0+He2++e with the ejected electron detected in the plane perpendicularto the incident beam direction, Phys. Rev. A,2005, Vol.71:052712(1)-052712(4)
    [68] M. S. Sch ffler, O. Chuluunbaatar, Yu. V. Popov, et al. Transfer ionization and itssensitivity to the ground-state wave function, Phys. Rev. A,2013, Vol.87:032715(1)-032715(6).
    [69] M. S. Sch ffler, O. Chuluunbaatar, S. Houamer, et al. Two-dimensionalelectron-momentum distributions for transfer ionization in fast proton-heliumcollisions, Phys. Rev. A,2013, Vol.88,042710(1)-042710(7).
    [70] A. B. Voitkiv, B. Najjari, and J. Ullrich. Mechanism for electron transfer in fastion-atomic collisions, Phys. Rev. Lett.,2008, Vol.101:223201(1)-223201(4)
    [71] A. B. Voitkiv, and X. Ma. Dynamics of transfer ionization in fast ion-atomcollisions, Phys. Rev. A,2012, Vol.86:012709(1)-012709(7).
    [72] A. B. Voitkiv. Electron–electron interaction and transfer ionization in fastion–atom collisions, J. Phys. B,2008, Vol.41:195201(1)-195201(9).
    [73] M B Shah and H B Gilbody. Crossed-beam coincidence studies of ionisation andelectron capture in collisions of multiply charged ions with hydrogen atoms, J.Phys. B,1983, Vol.16:4395-4403
    [74] J. L. Shinpaugh, J. M. Sanders, J. M. Hall, et al. Electron capture and targetionization in collisions of bare projectile ions incident on helium, Phys. Rev. A,1992, Vol.45:2922-2928
    [75] E. Horsdal-Pedersen, C. L. Cocke, and M. Stockli. Experimentalobservation of the Thomas peak in high-velocity electron capture by protonsfrom He, Phys. Rev. Lett.,1983, Vol.50:1910-1913
    [76] H. Vogt, R Schuch, E Justiniano, M Schulz, et al. Experimental Test ofHigher-Order Electron-Captnre Processes in Collisions of Fast Protons withAtomic HydrogenPhys. Rev. Lett.,1986, Vol.57:2256-2259
    [77] J. Pálinkás, R. Schuch, H. Cederquist, et al. Observation of Electron-ElectronScattering in Electron Capture by Fast Protons from He, Phys. Rev. Lett.,1989,Vol.63:2464-2467
    [78] L. Ph. H. Schmidt, M. S. Sch ffler, K. E. Stiebing, et al. Imaging of continuumstates of the He22+quasimolecule, Phys. Rev. A,2007,76:012703(1)-012703(9).
    [79] R. D rner, H. Khemliche, M. H. Prior, et al. Imaging of Saddle Point ElectronEmission in Slow p-He Collisions, Phys. Rev. Lett.,1996, Vol.77:4520-4523.
    [80] Yu. V. Popov, V. L. Shablov, K. A. Kouzakov, et al. Comment on “Dynamics oftransfer ionization in fast ion-atom collisions”, Phys. Rev. A,2014, Vol.89:036701(1)036701(5)
    [81] A. B. Voitkiv, X. Ma. Reply to “Comment on ‘Dynamics of transfer ionization infast ion-atom collisions’”, Phys. Rev. A,2014, Vol.89,036702(1)-036702(3)
    [82] E. Haug and W. Nakel. The elementary Process of Bremsstrahlung.北京大学出版社,2012
    [83] W. Nakel. Koinzidenzexperimente am elementarprozess der bremsstrahlung-serzeugung, Phys. Lett.,1966, Vol.22:614-615
    [84] W. Nakel and E. Pankau. Electron-electron bremsstrahlung at300ke V from akinematically overdetermined measurement, Phys. Lett. A,1972, Vol.38:307-308
    [85] E. Haug and W. Nakel, The elementary Process of Bremsstrahlung, WorldScientifc Lecture Notes in Physics Vol.73, World Scientific Pub Co Inc,2004
    [86]马新文,朱小龙,刘惠萍,李斌,张少锋,曹士娉,冯文天,许慎跃.离子与原子碰撞多体动力学过程成像研究中国科学,2008, Vol.38:1-11
    [87] X. Ma, R. T. Zhang, S. F. Zhang, et al. Electron emission from single-electroncapture with simultaneous single-ionization reactions in30-keV/u He2+-on-argoncollisions, Phys. Rev. A,2011, Vol.83:052707(1)-052707(9)
    [88] D. L. Guo, X. Ma, S. F. Zhang, et al. Angular-and state-selective differentialcross sections for single-electron capture in p-He collisions at intermediateenergiesPhys. Rev. A,2012, Vol.86:052707(1)-052707(7)
    [89]许慎跃,马新文,闫顺成,朱小龙,刘惠萍,张少锋,冯文天,李斌,孟令杰.基于微通道版的多击响应位置灵敏探测器,核电子学与探测技术,2009,Vol.29:96-100
    [90] W. Wiley and I. McLaren, Time-of Flight mass spectrometer with improvedresolution, Rev. Sci. Instr.,1955, Vol.26:1150-1157.
    [91] R. T. Zhang, X. Ma, S. F. Zhang, et al. Picturing electron capture to thecontinuum in the transfer ionization of intermediate-energy He2+collisions withargon, Phys. Rev. A,2013, Vol.87,012701(1)-012701(5)
    [92] D. Miller, in: G. Scoles and D. Bassi and U. Buck and D. laine (Eds.)"Atomicand Molecular Beam Methods", New York, Oxford University Press, Vol.14,1988
    [93] Atomic Data for Controlled Fusion Research, edited by C. F. Barnett, J. A. Ray, E.Ricci, M. I. Wilker, E. W. McDaniel, E. W. Thomas, and H. B. Gilbody (NationalLaboratory, Oak Ridge, TN,1990), Vol.1; http://www-cfadc.phy.ornl.gov/redbooks/one/1.html
    [94] A. N. Perumal, R Moshammer, M Schulz, et al. Dynamics of He doubleionization in the non-perturbative regime: the reduction to an effectivethree-particle problem, J. Phys. B,2002, Vol.35:2133-2147
    [95] M. S. Sch ffler, O. Chuluunbaatar, Yu. V. Popov, et al.2D momentum distributionof electron in transfer ionization of helium atom by fast proton. Poster for ICPEAC2013
    [96] M. Rudd, Y.–K. Kim, and D. H. Madison. Electron production in protoncollisions with atoms and molecules: energy distributions, Rev. Mod. Phys.,1992,Vol.64:441-490
    [97] N. Stolterfoht, R. D. Dubois, and R. D. Rivarola. Electron Emission in HeavyIon-atom Collisions. Berlin: Springer,1997
    [98] V. D. Rodriguez, Y. D. Wang, and C. D. Lin, Theory of longitudinal recoil-ionmomentum distribution in ion-atom ionization, Phys. Rev. A,1992, Vol.52:R09-R12
    [99] M. Schulz and D. H. Madison. Studies of the few-body problem in atomicbreak-up processes, Int. J. Mod. Phys. A,2006, Vol.21,3649-3654.
    [100] J. Colgan, M. S. Pindzola, F. Robicheaux, et al. Fully differential cross sectionsfor the single ionization of He by C6+ions, J. Phys. B,2011, Vol.44:175205(1)-175205(7)
    [101] G. B. Crooks, and M. E. Rudd. Experimental Evidence for the Mechanism ofCharge Transfer into Continuum States, Phys. Rev. Lett,1970, Vol.25:1599-1601
    [102] M. E. Rudd and J. H. macek, Case Studies in Atomic Collision Physics, Vol3,ed M. R. C. McDowell and E. W. McDaniel, North Holland: Amsterdam,1972
    [103] A. Salin. New light on old problems, Nucl. Instr. Meth B,1994, Vol.86:1-11
    [104] L. Sarkadi, J. Palinkas, A. Kover, et al. Observation of Electron Capture intoContinuum States of Neutral Atoms, Phys. Rev. Lett.,1989, Vol.62:527-530
    [105] L. Vikor, P. Zavodszky, L. Sarkadi, et al. Contribution of transfer ionization tocusp electron production in proton on argon collisions, J. Phys. B,1995, Vol.28:3915-3925
    [106] A. Kover, L. Sarkadi, J. Palinkas, et al. The contribution of the ECC to theforward electron cusp in50-150keV amu-1He+-He, Ar Collisions, J. Phys. B,1989, Vol.22:1595-1602
    [107] P. Zavodszky, et al. Projectile energy dependence of the contributions ofdifferent mechanisms to cusp electron production in He+→Ar collisions, Nucl.Instr. Meth B,1993, Vol.79:67-70
    [108] L. Szoter. Comment on "Observation of Electron Capture into Continuum Statesof Neutral Atoms", Phys. Rev. Lett.,1989, Vol.64:2835-2835
    [109] R. T. Zhang, X. Ma, S. F. Zhang, et al. Electron emission in double-electroncapture with simultaneous single ionization in30-keV/u4He2+-Ar collisions, Phys.Rev. A,2014,89:032708(1)-032708(5)
    [110] M. E. Rudd, D, H. Madison. Comparison of experimental and theoreticalelectron ejection cross sections in helium by proton impact from5to100keV,Phys. Rev. A,1976,14:128-136
    [111] M. B. Shah, P. McCallion, and H. B. Gilbody. Electron capture and ionisation incollisions of slow H+and He2+ions with helium, J. Phys. B,1989, Vol.22:3037-3045

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700