金属—吡啶基咪唑羧酸化合物的合成、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料、信息和能源是当代高科技产业的三大主要支柱,材料的开发与应用在人类社会的发展过程中极为重要,也是信息与能源技术发展的基础和前提。金属-有机骨架化合物(MOFs)是近二十年来兴起的一种新型孔材料,它们具有超大的比表面积和可控的孔道结构,通常在脱除客体分子后能够保持骨架结构的稳定性,与其它多孔材料如活性炭和沸石分子筛等相比,在气体储存、气体选择性吸附、手性催化、药物储存和传输等领域具有更广泛的应用前景。因而,MOFs材料从诞生之日起就备受国内外专家学者的高度关注,并迅速发展成为材料研究领域的热点之一。然而,目前还没有建立起完善成熟的理论体系,对目标产物的设计合成还难以完全掌控,常出现预想之外的结果,甚至对于最简单的有机配体和金属离子的组装,要准确预测其结构都非常困难。因此,不断积累实验数据,摸索合成规律,进一步探究合成与结构之间的黑匣子,最终实现对金属-有机骨架化合物的定向设计合成。
     鉴于对金属-有机骨架化合物的最新动态研究,我们从金属-吡啶基咪唑羧酸化合物的结构设计出发,对4,5-咪唑二羧酸进行了修饰,在咪唑环的2-位引入了吡啶基团,得到了两个具有T-型配位模式的吡啶基-4,5-咪唑二羧酸配体。由于吡啶基团的引入,增加了一个新的N原子配位点,同时改变了4,5-咪唑二羧酸配体上的电荷分布,产生了一定的空间效应,能够得到一些结构新颖的金属-有机骨架化合物。本文中,我们分别以两种不同的吡啶基-4,5-咪唑二羧酸与过渡/稀土金属离子组装得到以下三个方面的成果:
     1.在溶剂热体系下,利用对位吡啶基-4,5-咪唑二羧酸与金属铜离子自组装获得了两个分别具有手性bmn和lcy-a拓扑结构的化合物|(1,3-DAP)(DMF)0.5(H2O)2| [Cu11HPyImDC]1和(;MPL)o.5(H20)8|[CuII2CuI(HPyImDC)2(H2PyImDC)]2o化合物1中的铜离子是正二价的,而化合物2中存在CuⅡ和CuⅠ两种混合价态,它们的比例是2:1。有机配体在两个化合物中的配位方式也不尽相同:化合物1中的H3PyImDC采取T-型配位方式,而在化合物2中,H3PyImDC采取T-型和直线型两种配位方式。相似的是,两个化合物中都存在两种完全相反的手性螺旋孔道,它们分别由螺旋链交叉缠绕而成。从金属源、溶剂、模板剂和手性诱导剂等不同方面对两个化合物的合成体系进行了系统考察,结果证明这些合成条件的改变对手性骨架的生成没有影响。结合对化合物结构分析发现,吡啶基团上的N原子参与配位后产生了一定的T-型扭曲效应,这种扭曲效应发生了传递,使吡啶基与咪唑环形成了一定的二面角,从而促使两个手性结构的生成。从能量的角度来看,这种T-型扭曲产生的传递效应降低了体系的活化能,从而满足了体系能量最小化的要求。对两个化合物的性质研究发现它们可以成功地进行客体分子交换,荧光光谱研究表明两个化合物均表现出一定的荧光性质,这为进一步研究它们的应用奠定了基础。
     2.在溶剂热体系下,采用分子构筑块的方法,基于沸石分子筛四面体拓扑结构与分子构筑块之间的匹配关系,从沸石分子筛拓扑结构连接方式出发,选择对位呲啶基-4,5-咪唑二羧酸与过渡金属中心组装,通过调控合成条件,获得由过渡金属中心与对位吡啶基-4,5-咪唑二羧酸形成的分子构筑块,它们按一定方式连接形成了具有bbm、dft和gis拓扑结构的化合物3-5b,其中dft和gis为类沸石分子筛拓扑结构,并对3-5b合成条件进行了总结。化合物中的过渡金属离子均以八面体MN303构型出现,通过有机配体与其它四个金属中心连接形成4-连接的四面体次级结构单元(一个金属原子占据四面体的中心位置,其它相邻四个金属原子各占据四面体的四个顶点位置),这种次级结构单元是设计合成类沸石分子筛MOFs的前提条件,而过渡金属离子的八面体配位方式是设计合成4-连接的四面体次级结构单元的重要条件。对位吡啶基-4,5-咪唑二羧酸配体均以T-型配位方式出现,分别提供三个N原子和羧酸基团上的两个O原子与金属中心配位,这种配位方式有效地利用了有机配体上的配位点,且配位后的三个金属中心在一个平面上,更有利于生成四面体次级结构单元,这为类沸石分子筛MOFs的合成创造了条件。化合物的孔道结构对比分析发现这类化合物具有超大的比表面积和空旷的孔道结构,为它们在气体吸附和储存方面的潜在应用提供了基础。化合物的荧光和磁学性质研究表明化合物3和4在室温下一定波长的激发光照射下显示出很强的荧光,化合物5a在10000e下存在反铁磁性质。
     3.在水热/溶剂热体系下,利用两种不同吡啶基-4,5-咪唑二羧酸与稀土和过渡金属中心组装,通过π-π和氢键等分子间相互作用构筑了一系列结构新颖的三维超分子化合物6a-6d和9;并得到了具有矿物ant拓扑结构和四方锥sqp拓扑结构的稀土系列化合物7a-7d和8a-8d。对比两种有机配体的配位模式发现,当它们与金属配位不充分时就形成了一维链状结构,当充分配位时倾向于生成三维网络结构,随着配位点的增多化合物的维数出现不断增高的趋势。同时预测了两种不同有机配体与金属中心组装将会产生更多类型的分子构筑块,它们相互组装将会产生更多新颖结构。对化合物6-9分别进行了荧光和磁学性质研究,研究发现由于化合物结构的不同导致其荧光性质差异很大,通过实验找出了性质差异的主要原,为这类材料的应用提供了一定的实验数据和理论基础。磁学性质研究表明化合物6和7具有明显的反铁磁性质。
     本文在对金属-吡啶基咪唑羧酸化合物的合成条件和方法、拓扑结构研究的基础之上,总结了产物结构与合成之间的一般规律,丰富了金属-有机骨架化合物合成化学和结构化学,为金属-有机骨架化合物的定向合成和性质开发积累了有价值的方法和数据。
Materials science, information technology and energy are widely recognized as three of the main pillars of modern high-tech industries. The sustainable development and application of functional materials is therefore extremely important for the development of human society. Metal-organic frameworks (MOFs) have recently emerged as a novel class of porous materials that are highly modular, highly crystalline and amenable to design, and exhibit controllable pore structure. Many MOFs have been shown to exhibit permanent porosity with large surface areas whereby the framework maintains the stability after the removal of guest molecules. The unique characteristics of MOFs render them more suitable in a more diverse range of applications as compared to other porous materials such as activated carbon and zeolites. Such applications include gas storage, gas selective adsorption, and drug storage or delivery. Accordingly, MOFs have attracted great attention, from both academics and industry, and have been developed into one of the hottest topics in materials research. Rational control over the design and synthesis of targeted structures often leads to predisgned structures. However, unprecedented or unexpected results are frequently obtained even for the assembly of the simplest molecular building blocks. It therefore remains an ongoing challenge to absolutely predict the outcome each time. It is therefore critical at this stage to accumulate a large database of synthetic data in order to explore the diverse synthetic conditions that yield specific structures and learn more about the synergy between the synthesis and structure. This will ultimately aid us to better direct the rational design and controllable synthesis of functional MOFs and will have a far-reaching significance.
     With these principles in mind, we modified an organic linker, i.e. 4,5-imidazoledicarboxylate ligand (HalmDC), by appending a pyridyl moiety at the 2-position of the imidazole ring. The resultant ligand, pyridine-4,5-imidazole dicarboxylic acid (H3PylmDC), permits control of the N atom positions on the pyridyl group and carboxylate atoms on the imidazole ring to yield a ligand capable of T-shape coordination modes. Because of the introduction of pyridine groups, a new coordination point N atom has been added, and the charge distribution of organic ligand also changed, resulting in a certain space effect, which will be favorable for constructing a number of novel MOFs. Therefore, reacting two types of H3PyImDC ligand with transition or lanthanide metal ions,respectively, we get the following three aspects results.
     1. The assembly of H3PyImDC and copper ions yields two chiral MOFs with bmn and lcy-a topology 1 and 2.The copper ion in compound 1 is divalent; whereas,it exists in two mixed valence states in compound 2,i.e. CuII and CuI, with a ratio of 2:1. The coordination modes of the ligand are not the same in compounds 1 and 2; that is, the former assumes a T-shape coordination mode while the latter exhibits two coordination modes of both T-shape and linear. Two independent and opposite ehiral helical channels also exist and are formed by the cross-winding spiral chains. The source of the metal ion, solvent, template, and chiral induction agent used in the synthesis for 1 and 2 were systematically investigated. It was determined that the synthesis conditions had indeed no effect on the generation of the chiral frameworks. Structural analysis reveals that the N atom on the pyridyl ring coordinates with the metal ions in a flexible manner and therefore it permits a certain amount of distortion in the T-shape coordination mode. This feature facilities the formation of two chiral structures. In the view of energy, the T-shape distortion effect reduces the activation energy of the system so as to meet the minimum of energy requirements. Two compounds can successfully exchange with guest molecules, and they also have fluorescence properties, which will provide a foundation for their applications for further research.
     2. The molecular building blocks (MBBs) approach was employed in this study to further establish a relationship between targeted MBBs in MOFs and the topologies observed in traditional inorganic zeolites. Accordingly, we chose to react H3PyImDC with transition metal ions, through the fine regulation of the synthesis conditions, to obtain rigid tetrahedral MBBs, whose self-assembly yielded a class of MOFs 3-5b, with 3D netswork bbm, and zeolite-like dft and gis topology, respectively. Each transition metal ion assumes an octahedral MN3O3 coordination mode and connects to four independent metal centers through the organic ligands to form a 4-connected MBB which translates into a tetrahedral (a metal atom occupies the center of the tetrahedron, the other four metal atoms occupy four vertices of tetrahedral) secondary building units (SBUs). The deprotonated HpylmDC2- ligand coordinates to the metal ions in a T-shape mode, with three N atoms and two O atoms of the carboxylic acid groups chelating to the metal centers. Accordingly, this coordination mode fully utilizes coordinating atoms, and makes the three metal ions in a plane, which is more conducive to generate tetrahedral SBUs;and is more convenient for constructing the zeolite-like MOFs as well. Comparison of the pore structure of compounds 3-5b by analyzing the structures in Materials Studio software, found that they all have large surface area and open pore structure, providing a basis for the potential application in gas adsorption and storage. The fluorescent and magnetic experiments conducted on these materials reveal that compounds 3 and 4 exhibit a strong excitation effect at room temperature, while compound 5a has an anti-ferromagnetic property in the 1000Oe field.
     3. The assembly of two different H3PylmDC ligand with rare earth and transition metal centers, through theπ-πand intermolecular hydrogen bonds interactions to yield a series of novel three-dimensional (3D) supramolecular compounds 6a-6d and 9, and a mineral-like ant and a four cones sqp topology structure MOFs 7a-7d and 8a-8d. Comparison of the coordination modes of two organic ligands show that when not fully coordinated with the metal ions, it is more likely to form ID chain structures; when fully coordinated, it is tending to generate 3D network structures. Therefore, the structures often develop from OD to 3D with the increasing coordination atoms. We also predict that the assembly of two different organic ligands with metal center will produce more types of MBBs, and when they are assembled with metal centers, more new structures will generated. The magnetic and fluorescent properties study on compounds 6-9 were carried out by which we found that the different structures lead to the different fluorescence phenomenon, and the reason for the difference, which provide a certain amount of experimental data and theoretical basis for the potential applications of such materials. Magnetic measurements performed on compounds 6 and 7 reveal they display obvious anti-ferromagnetic properties.
     The results described herein summarize the synthesis, topological analysis and fluorescence properties of an assortment of MOFs constructed using metal-KbPylmDC as organic linkers. A general relationship between the product and synthesis method has been established and we hope that this accumulation of experimental data will be valuable for the continuous development of functional MOFs.
引文
[1]Champness, N. Schroder, M. Extended networks formed by coordination polymers in the solid state [J]. Current Opinion in Solid State & Materials Science,1998,3: 419-421.
    [2]Ockwig, N. Delgado-Friederichs, O. O'Keeffe, M. Yaghi, O. Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks [J].Ace. Chem. Res.,2005,38:176-182.
    [3]Wang, Z. Chen, G. Ding, K. Self-supported catalysts [J]. Chem. Rev.,2009,109: 322-359.
    [4]McEnaney, B. Alain, E. Yin, Y. Mays, T. Porous carbons for gas storage and separation:characterisation and performance [J]. NATO Sci. Ser., Ser.2001, E374: 295-318.
    [5]Morris, R. Wheatley, P. Gas storage in nanoporous materials Angew. Chem. Int., 2008,47:4966-4981.
    [6]Horcajada, P. Surble, S. Serre, C. Hong, D. Seo, Y. Chang, J. Greneche, J. Margiolakid,1. and Ferey, G.. Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores [J]. Chem. Commun.,2007,2820-2822.
    [7]Kuppler, R. Timmons, D. Fang, Q. Li, J. Makal, T. Young, M. Yuan, D. Zhao,1). Zhuang, W. Zhou, H. Potential applications of metal-organic frameworks [J]. Coord. Chem. Rev.,2009,253:3042-3066.
    [8]林之恩,杨国昱,多孔材料化学:从无机微孔化合物到金属有机多孔骨架[J],结构化学,2004,23(12):1388-1398.
    [9]魏文英,方键,孔海宁,韩金玉,常贺英,金属有机骨架材料的合成及应用[J],化学进展,2005,17(6):1110-1115.
    [10]贾超,原鲜霞,马紫峰,金属有机骨架化合物(MOFs)作为储氢材料的研究进展[J],化学进展,2009,21(9):1954-1962.
    [11]郑倩,徐绘,崔元靖,钱国栋,金属-有机框架物(MOFs)储氢材料研究进展[J],材料导报,2008,22(11):106-110.
    [12]Liao, T. Ling, Y. Chen, Z. Zhou, Y. and Weng, L.A rutile-type porous zinc(II)-phosphonocarboxylate framework:local proton transfer and size-selected catalysis [J].Chem.Commun.,2010,46:1100-1102.
    [13]Hao, H. Liu, W. Tan, W. Lin, Z. and Tong, M.Enantiopure and racemic sandwich-like networks with dehydration,readsorption, and selective guest-exchange phase transformations [J].Cryst. Growth & Des.,2009,9:457-465.
    [14]Andruh, M. Costes, J.Diaz, C. and Gao, S.3d-4f Combined chemistry:synthetic strategies and magnetic properties [J]. Inorg. Chem.,2009,48:3342-3359
    [15]Biondi, C. Bonamico, M. Torelli L. and Vaciago, A. On the structure and water content of copper(II) tricyanomethanide [J]. Chem. Commun.,1965,191-192.
    [16]Wells, A. Three dimensional nets and polyhedra, New York,1977.
    [17]Wells, A. Structural inorganic chemistry,5th ed., Oxford Univ. Press,1983.
    [18]Hoskins, B. Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments [J]. J. Am. Chem. Soc.,1989,111:5962-5964.
    [19]Hoskins, B. Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuⅠZnⅡ(CN)4] and CuⅠ[TMPC]BF4·xC6H5NO2 [J]. J. Am. Chem. Soc.,1990,112:1546-1554.
    [20]Yaghi, O. Li, G. Li, M. Selective binding and removal of guests in a microporous metal-organic framework [J]. Nature,1995,378:703-706.
    [21]Yaghi, O. Li, H. and Groy, T. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-Benzenetricarboxylic acid [J]. J. Am. Chem. Soc,1996,118:9096-9101.
    [22]Yaghi, O. Davis, C. Li, G. and Li, H. Selective guest binding by tailored channels in a 3-D porous zinc(Ⅱ)-benzenetricarboxylate network [J]. J. Am. Chem. Soc.,1997, 119:2861-2868.
    [23]Li, H. Davis, C. Groy, T. Kelley, D. and Yaghi, O. Coordinatively unsaturated metal centers in the extended porous framework of Zn3(BDC)3-6CH3OH(BDC= 1,4-Benzenedicarboxylate) [J]. J. Am. Chem. Soc.,1998,120:2186-2187.
    [24]Li, H. Eddaoudi, M. Groy, T. and Yaghi, O. Establishing microporosity in open metal-organic frameworks:gas sorption isotherms for Zn(BDC) (BDC= 1,4-Benzenedicarboxylate) [J]. J. Am. Chem. Soc.,1998,120:8571-8572.
    [25]Reineke, T. Eddaoudi, M. Fehr, M. Kelley, D. and Yaghi, O. From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites [J]. J. Am. Chem. Soc.,1999,121:1651-1657.
    [26]Li, H. Eddaoudi, M.O'Keeffe, M. Yaghi, O. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature,1999,402: 276-279.
    [27]Yaghi,O.O'Keeffe, M. Ockwig, N.Chae, H. Eddaoudi, M. Kim, J. Reticular synthesis and the design of new materials [J]. Nature,2003,423:705-714.
    [28]Eddaoudi, M. Kim, J. Rosi, N. Vodak, D. Wachter, J. O'Keeffe, M. Yaghi, O. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science,2002,295:469-472.
    [29]Nathaniel, L. Rosi, Eckert, J. Eddaoudi, M. Vodak, D. Kim, T. O'Keeffe, M. Yaghi, O. Hydrogen storage in microporous metal-organic frameworks [J]. Science,2003,300: 1127-1129.
    [30]Deng, H. Doonan, C. Furukawa, H. Ferreira, R. Towne, J. Knobler, C. Wang, B. and Yaghi, O. Multiple functional groups of varying ratios in metal-organic frameworks [J]. Science,2010,327:846-850.
    [31]Chui, S. Lo, S. Charmant, J. Orpen, A. Williams, I. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J]. Science,1999,283:1148-1150.
    [32]Ferey, G. Mellot-Draznieks, C. Serre, C. et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area [J]. Science,2005,309: 2040-2042.
    [33]Latrochc, M. Surbl, S. Serre, C. Mellot-Draznieks, C. Llewellyn, P. Lee, J. Chang, J. Jhung, S. and Ferey, G. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101 [J]. Angew. Chem. Int. Ed.,2006,45:8227-8231.
    [34]Llewellyn, C. Bourrelly, S. Serre, C. Vimont, A. Daturi, M. Hamon, L. Weireld, G. D. e tal., High uptakes of CO2 and CH4 in mesoporous metals-organic frameworks MIL-100 and MIL-101 [J]. Langmuir,2008,24:7245-7250.
    [35]Evans O. and Lin, W. Crystal engineering of NLO materials based on metal-organic coordination networks [J]. Acc. Chem. Res.,2002,35:511-522
    [36]Ma, L. Jin, A. Xie, Z. and Lin, W. Freeze Drying Significantly Increases Permanent Porosity and Hydrogen uptake in 4,4-connected metal-organic frameworks [J]. Angew. Chem. Int.,2009,48:9905-9908.
    [37]Kesanli, B. Lin W. Chiral porous coordination networks:rational design and applications in enantioselective processes [J]. Coord. Chem. Rev.,2003,246:305-326.
    [38]Lee S. J. and Lin, W.A chiral molecular square with metallo-corners for enantioselective sensing [J]. J. Am. Chem. Soc.,2002,124:4554-4555.
    [39]Lee S. Hu, A. and Lin, W. The first chiral organometallic triangle for asymmetric catalysis [J]. J. Am. Chem. Soc.,2002,124:12948-12949.
    [40]Ma L. and Lin, W. Chirality-controlled and solvent-templated catenation isomerism in metal-organic frameworks [J]. J. Am. Chem. Soc.,2008,130: 13834-13835.
    [41]Sun, D. Ma, S. Ke, Y. Collins, D. and Zhou, H. An interweaving MOF with high hydrogen uptake [J]. J. Am. Chem. Soc.,2006,128:3896-3897.
    [42]Ma, S. and Zhou, H. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity [J]. J. Am. Chem. Soc.,2006,128: 11734-11735.
    [43]Yuan, D. Zhao, D. Sun, D. Zhou, H. An isoreticular series of metal-organic frameworks with dendritic hexa-carboxylate ligands and exceptionally high gas uptake capacity [J]. Angew. Chem. Int.,2010,49:5357-5361.
    [44]Ma, S. Eckert, J. Forstcr, P. Yoon, J. Hwang, Y. Chang, J. Collier, C. Parise, J. Zhou, H. Further investigation of the effect of framework catenation on hydrogen uptake in metal-organic frameworks [J]. J. Am. Chem. Soc.,2008,130:15896-15902.
    [45]Ma, S. Sun, D.; Ambrogio, M. Fillinger, J. A. Parkin, S. Zhou, H. Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake [J]. J. Am. Chem. Soc.,2007,129:1858-1859.
    [46]Britt, D. Tranchemontagne, D. and Yaghi, O. Metal-organic frameworks with high capacity and selectivity for harmful gases [J]. PNAS,2008,105(33):11623-11627.
    [47]Demessence, A. D'Alessandro, D. Foo, M. and Long, J. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine [J]. J. Am. Chem. Soc.,2009,131:8784-8786.
    [48]Gorden, A. Xu, J. and Raymond, K. Rational design of sequestering agents for plutonium and other actinides [J]. Chem. Rev.,2003,103:4207-4282.
    [49]Ferey, G. Hybrid porous solids:past, present, future [J].Chem. SocRev.,2008,37: 191-214.
    [50]Seo, J. Whang, D. Lee, H. Jun, S. Oh, J. Jeon, Y. Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis [J].Nature, 2000,404:982-986.
    [51]Ghosh,S.Bureekaew, S.and Kitagawa, S.A dynamic,isocyanurate-functionalized porous coordination polymer [J].Angew.Chem.Int.,2008,47:3403-3406.
    [52]Zhang, J.and Kitagawa, S.Supramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(I)/Cu(I) 3,3'5,5'-tetramety1-4,4'-bipyrazolate [J].J.Am.Chem. Soc.,2008,130:907-917.
    [53]Kawano,M.Haneda, T. Hashizume, D.Izumi,F.and Fujita, M.A selective instant synthesis of a coordination network and its ab initio powder structure determination [J]. Angew. Chem.Int.,2008,47:1269-1271.
    [54]Lo,S.Chui,S.Shek, L.Lin,Z.Zhang, X.Wen, G. and Williams.I.Solvothermal synthesis of a stable coordination polymer with copper-I-copper-II dimer units: [Cu4{l,4-C6H4(COO)2}3(4,4'-bipy)2]n [J]. J.Am.Chem. Soc.,2000,122:6293-6294.
    [55]Xu, G.Zhang, X.Guo, P.Pan, C.Zhang H.and Wang, C, MnⅡ-based MIL-53 analogues:synthesis using neutral bridging μ2-ligands and application in liquid-phase adsorption and separation of C6-C8 aromatics [J].J.Am.Chem.Soc,2010,132: 3656-3657.
    [56]Wang, X. Wang, L. Wang, Z. and Gao, S. Solvent-tuned azido-bridged Co2+ layers:square, honeycomb, and kagome [J]. J. Am. Chem. Soc,2006,128(3):674-675.
    [57]游效曾,《配位化合物的结构与性质》,科学出版社,1992,修订版,2010.
    [58]张献明,系列含氮氧配体的功能配合物的水热和成、结构、性质和机理研究[D];中山大学;2002.
    [59]赵斌,d-f混合金属配位聚合物的合成和性质研究[D];天津:南开大学;2005.
    [60]齐艳娟,过渡金属配位聚合物超分子晶体结构的设计与组装[D];东北师范大学;2004.
    [61]方千荣,多孔及手性金属-有机骨架化合物的合成、结构与性能研究[D];吉林大学;2007.
    [62]Long, J. and Yaghi, O. The pervasive chemistry of metal-organic frameworks [J]. Chem. Soc Rev.,2009,38:1213-1214.
    [63]Spokoyny, A. Kim, D. Sumrein, A. and Mirkin, C. Infinite coordination polymer nano-and microparticle structures [J]. Chem. Soc. Rev.,2009,38:1218-1227.
    [64]Zacher, D. Shekhah, O. Woll, C. and Fischer, R. A. Thin films of metal-organic frameworks [J]. Chem. Soc. Rev.,2009,38:1418-1429.
    [65]Han, S. Mendoza-Cortes, J. and Goddard III, W. Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks [J]. Chem. Soc Rev.,2009,38:1460-1476.
    [66]Tranchemontagne, D. Mendoza-Cortes, J. O'Keeffe, M. and Yaghi, O.Secondary building units, nets and bonding in the chemistry of metal-organic frameworks [J]. Chem. Soc. Rev.,2009,38:1257-1283.
    [67]Duren, T. Bae, Y. and Snurr, R. Using molecular simulation to characterize metal-organic frameworks for adsorption applications [J].Chem.Soc.Rev.,2009,38: 1237-1247.
    [68]Ferey,G.and Serre, C. Large breathing effects in three-dimensional porous hybrid matter:facts, analyses, rules and consequences [J].Chem.Soc.Rev.,2009,38: 1380-1399.
    [69]O'Keeffe, M. Design of MOFs and intellectual content in reticular chemistry:a personal view [J]. Chem. Soc. Rev.,2009,38:1215-1237.
    [70]Perry IV, J. Perman, J. and Zaworotko, M. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks [J]. Chem. Soc. Rev.,2009,38:1400-1417.
    [71]Murray, L. Dinca, M. and Long, J. Hydrogen storage in metal-organic frameworks [J]. Chem. Soc. Rev.,2009,38:1294-1314.
    [72]Lee, J. Farha, O. Roberts, J. Scheidt, K. Nguyen, S. and Hupp, J. Metal-organic framework materials as catalysts [J]. Chem.Soc.Rev.,2009,38:1450-1459.
    [73]Ma, L.Abney,C.and Lin, W. Enantioselective catalysis with homochiral metal-organic frameworks [J]. Chem.Soc.Rev.,2009,38:1477-1504.
    [74]Allendorf, M.Bauer, C.Bhakta,R.and Houk, R.Luminescent metal-organic frameworks[J].Chem. Soc.Rev.,2009,38:1330-1352.
    [75]Kurmoo,M.Magnetic metal-organic frameworks [J].Chem.Soc. Rev.,2009,38: 1453-1379.
    [76]Liu,Y.Kravtsov,V. Beauchamp, D.Eubank, J.and Eddaoudi,M.4-connected metal-organic assemblies mediated via heterochelation and bridging of single metal Ions:kagome lattice and the M6L12 octahedron [J].J.Am. Chem.Soc.,2005,127: 7266-7267.
    [77]Liu, Y.Eubank, J.Cairns, A.Eckert, J.Kravtsov, V.Luebke, R. and Eddaoudi,M. Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks:a porous MOF with soc topology and high hydrogen storage [J].Angew. Chem. Int.,2007,46:3278-3283.
    [78]Chen, B.Wang, L. Xiao, Y. Fronczek, F. Xue, M. Cui, Y. and Qian, G. A luminescent metal-organic framework with lewis basic pyridyl sites for the sensing of metal ions [J]. Angew. Chem. Int.,2009,48:500-503.
    [79]Weng, Z.Liu, D. Chen, Z.Zou, H. Qin, S. and Liang, F. Two types of lanthanide coordination polymers of (2,3-f)-pyrazino(1,10)phenanthroline-2,3-dicarboxylic acid: syntheses, structures, and properties [J]. Cryst. Growth & Des.,2009,9:4163-4170.
    [80]Qin, C. Wang, X. Wang, E. and Su, Z. A series of three-dimensional lanthanide coordination polymers with rutile and unprecedented rutile-related topologies [J]. Inorg. Chem.,2005,44:7122-7129.
    [81]Kim, J. Norquist, A. and O'Hare, D. [(Th2F5)(NC7H5O4)2(H2O)][NO3]:an actinide-organic open framework [J].J.Am. Chem. Soc.,2003,125:12688-12689.
    [82]Gu, X. and Xue, D.3D coordination framework [Ln4(μ3-OH)2Cu6I5(IN)8(OAc)3] (IN=isonicotinate):employing 2D layers of lanthanide wheel clusters and ID chains of copper halide clusters [J].Inorg.Chem.,2007,46:5349-5353.
    [83]Wang, Y. Song, Y. Pan, Z. Shen, Y.Hu,Z.Guo, Z.and Zheng, H.Unprecedented NaⅠ-CuⅡ-LnⅢ heterometallic coordination polymers based on 3,5-pyrazole dicarboxylate with both infinite cationic and anionic chains [J]. Dalton Trans.,2008, 5588-5592.
    [84]Li, C. Lin, Z. Peng, M. Leng, J. Yang, M. and Tong, M. Novel three-dimensional 3d-4f microporous magnets exhibiting selective gas adsorption behaviorw [J]. Chem. Commun.,2008,6348-6350.
    [85]Zhang, W. Xue, W. and Chen, X. Flexible mixed-spin kagome coordination polymers with reversible magnetism triggered by dehydration and rehydration [J].Jnorg. Chem.,2011,50(1):309-316.
    [86]Yue, Y. Liang, J. Gao, E. Fang, C. Yan, Z. and Yan, C. Supramolecular engineering of a 2D kagome lattice:synthesis, structures, and magnetic properties [J]. Inorg. Chem.,2008,47,14:6115-6117.
    [87]Zou, R. Sakurai, H. Xu, Q. Preparation, adsorption properties, and catalytic activity of 3D porous metal-organic frameworks composed of cubic building blocks and alkali-metal ions [J]. Angew. Chem. Int.,2006,45:2542-2546.
    [88]Zhong, R. Zou, R. Xu, Q. Microporous metal-organic framework zinc(II) imidazole-4,5-dicarboxylate:four-fold helical structure and strong fluorescent emission [J]. Micro. Meso. Mater.,2007,102:122-127.
    [89]Xu, Q. Zou, R. Zhong, R. Kachi-Terajima, C. and Takamizawa, S. Cubic metal-organic polyhedrons of nickel(II) imidazoledicarboxylate depositing protons or alkali metal ions [J]. Cryst. Growth & Des.,2008,8:2458-2463.
    [90]Zhong, R. Zou, R. Du, M. Takeichi N. and Xu, Q. Observation of helical water chains reversibly inlayed in magnesium imidazole-4,5-dicarboxylate [J]. Cryst. Eng. Comm.,2008,10:1175-1179.
    [91]Liu, Y. Kravtsov, V. Larsena R. and Eddaoudi, M. Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities [J]. Chem. Commun.,2006,1488-1490.
    [92]Liu, Y. Kravtsov, V. Walsh, R. Poddar, P.Srikanthc, H. and Eddaoudi, M. Directed assembly of metal-organic cubes from deliberately predesigned molecular building blocks [J]. Chem. Commun.,2004,2806-2807.
    [93]Liu, Y. Kravtsov, V. and Eddaoud, M. Template-directed assembly of zeolite-like metal-organic frameworks (ZMOFs):a usf-ZMOF with an unprecedented zeolite topology [J]. Angew. Chem. Int.,2008,47:8446-8449.
    [94]Alkordi, M. H. Liu, Y. Larsen, R. Eubank, J. and Eddaoudi, M. Zeolite-like metal-organic frameworks as platforms for applications:on metalloporphyrin-based catalysts [J]. J. Am. Chem. Soc.,2008,130:12639-12641.
    [95]Sava, D. Kravtsov, V. Eckert, J. Eubank, J. Nouar, F. and Eddaoudi, M. Exceptional stability and high hydrogen uptake in hydrogen-bonded metal-organic cubes possessing ACO and AST zeolite-like topologies [J]. J. Am. Chem. Soc.,2009, 131,30:10394-10396.
    [96]Nouar, F. Eckert, J. Eubank, J. Forster, P. and Eddaoudi, M. Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform:lithium and magnesium ion-exchange and H2-(rho-ZMOF) interaction studies [J]. J. Am. Chem. Soc,2009,131:2864-2870.
    [97]Alkordi, M. Brant, J. Wojtas, A. Kravtsov, V. Cairns, A. and Eddaoudi, M. Zeolite-like metal-organic frameworks (ZMOFs) based on the directed assembly of finite metal-organic cubes (MOCs) [J]. J. Am. Chem. Soc.,2009,131:17753-17755.
    [98]Lu, W. Su, C. Lu, T. Jiang, L. Chen, J. Two stable 3D metal-organic frameworks constructed by nanoscale cages via sharing the single-layer walls [J]. J. Am. Chem. Soc,2006,128:34-35.
    [99]Lu, W. Jiang, L. Feng, X. and Lu, T. Three-dimensional lanthanide anionic metal-organic frameworks with tunable luminescent properties induced by cation exchange [J]. Inorg. Chem.,2009,48:6997-6999.
    [100]Lu, W. Jiang, L.Feng, X.and Lu,T. Three 3D coordination polymers constructed by Cd(II) and Zn(II) with imidazole-4,5-dicarboxylate and 4,4'-ipyridyl building blocks [J]. Cryst. Growth & Des.,6(2):2006,564-571.
    [101]Gu, J. Lu, W. Jiang, L. Zhou, H. and Lu, T.3D porous metal-organic framework exhibiting selective adsorption of water over organic solvents [J]. Inorg. Chem.,2007, 46:5835-5837.
    [102]Lu, W. Gu, J. Jiang, L. Tan, M. and Lu, T. Achiral and chiral coordination polymers containing helical chains:the chirality transfer between helical chains [J]. Cryst. Growth & Des.,2008,8:192-199.
    [103]Lu, W. Jiang, L. Feng, X. and Lu, T. Four 3D porous metal-organic frameworks with various layered and pillared motifs[J]. Cryst. Growth & Des.,2008,3:986-994.
    [104]Sun, Y. Zhang, J. Chen, Y. and Yang, G. Porous lanthanide-organic open frameworks with helical tubes constructed from interweaving triple-helical and double-helical chains [J]. Angew. Chem. Int.,2005,44:5814-5817.
    [105]Sun, Y. Zhang, J. and Yang, G. A series of luminescent lanthanide-cadmium-organic frameworks with helical channels and tubes [J]. Chem. Commun.,2006,4700-4702.
    [106]Sun, Y. and Yang, G. Organic-inorganic hybrid materials constructed from inorganic lanthanide sulfate skeletons and organic 4,5-imidazoledicarboxylic acid [J]. Dalton Trans.,2007,3771-3781.
    [107]Maji, T. Mostafa, K. Chang, G. and Kitagawa, S. Porous lanthanide-organic framework with zeolite-like topology [J]. Chem. Commun.,2005,2436-2438.
    [108]Wang, S. Zhang, L. Li, G. Huo, Q. and Liu, Y. Assembly of two 3-D metal-organic frameworks from Cd(Ⅱ) and 4,5-imidazoledicarboxylic acid or 2-ethyl-4,5-imidazoledicarboxylicacid [J]. CrystEngComm.,2008,10:1662-1666.
    [109]Wang, S. Zhao, T. Li, G. Wojtas, L. Huo, Q. Eddaoudi, M. and Liu, Y. From metal-organic squares to porous zeolite-like supramolecular assemblies [J].J.Am. Chem.Soc.,2010,132:18038-18041.
    [110]Zhang, F.Li,Z.Ge, T. Yao,H.Li,G.Lu, H.and Zhu, Y.Four novel frameworks built by imidazole-based dicarboxylate ligands:hydro(Solvo)thermal synthesis,crystal structures,and properties [J].Inorg.Chem.,2010,49:3776-3788.
    [111]Wang, W. Niu, X. Gao, Y. Zhu, Y. Li, G. Lu, H. and Tang, M. One chiral and two achiral 3-D coordination polymers constructed by 2-phenyl imidazole dicarboxylate [J]. Cryst. Growth & Des.,2010,10:4050-4059.
    [112]Li, X. Wu, B. Niu, C. Niu, Y. and Zhang, H. Syntheses of metal-2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate networks with topological diversity:gas adsorption, thermal stability and fluorescent emission properties [J]. Cryst. Growth & Des.,2009,9,8:3423-3431.
    [113]Li, X. Wu, B. Wang, R. Zhang, H. Niu, C. Niu, Y. and Hou, H. Hierarchical assembly of extended coordination networks constructed by novel metallacalix[4]arenes building blocks [J]. Inorg. Chem.,2010,49:2600-2613.
    [114]Liu, W. Zhang, G. Li, X. Wu, B. and Zhang, H. Trans-diaquabis[5-carboxy-2-(3-pyridyl)-1H-imidazole-4-carboxylato-K2N3,O4]-iro n(Ⅱ) [J]. Acta Cryst.,2009, E65:m938-m939.
    [115]Chen, L. Trans-Diaquabis[5-carboxy-2-(3-pyridyl)-1H-imidazole-4-carboxylato-K2N3O4]-manganese(II) [J]. Acta Cryst.,2008, E64:m1286-1288.
    [116]Chen, L. Huang, Y. Xiong, R. Hu, H. Synthesis and structures of two novel non-centrosymmetric metal-organic polymers containing 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid ligands [J].J. Mol.Struc.,2010,963:16-21.
    [1]Bradshaw, D. Claridge, J. Cussen, E. Prior, T. and Rosseinsky, M. Design, chirality, and flexibility in nanoporous molecule-based materials [J]. Ace. Chem. Res.,2005,38: 273-282.
    [2]Xiong, R. You, X. Abrahams, B. Xue, Z. and Che, C. Enantioseparation of racemic organic molecules by a zeolite analogue [J]. Angew. Chem. Int.,2001,40:4422-4445.
    [3]王锡森,宋玉梅,叶琼,唐云志,瞿燕,游效曾,熊仁根,手性及非中心对称配位聚合物的组装[J],科学通报,2005,21:2317-2340.
    [4]MacGillivray, L. and Atwood, J. Achiral sphericalmolecular assembly held together by 60 hydrogen bonds [J]. Nature,1997,389:469-472.
    [5]Hou, J. Li, M. Li, Z. Zhan, S. Huang, X. and Li, D. Supramolecular helix-to-helix induction:a 3D anionic framework containing double-helical strands templated by cationic triple-stranded cluster helicates [J].Angew. Chem. Int.,2008,47:1711-1714.
    [6]Evans, O. Manke, D. and Lin, W. Homochiral metal-organic frameworks based on transition metal bisphosphonates [J]. Chem. Mater.,2002,14:3866-3874.
    [7]Li, J. Tao, Y. Yu, Q. Bu, X. Sakamoto, H. and Kitagawa, S. Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material withN-rich chiral open channels [J]. Chem. Eur. J.,2008,14:2771-2776.
    [8]Zhang, J. Chen, S. Valle, H. Wong, M. Austria, C. Cruz, M. Bu, X. Manganese and magnesium homochiral materials:decoration of honeycomb channels with homochiral chains [J].J. Am. Chem. Soc.,2007,129:14168-14169.
    [9]Qu, Z. Zhao, H. Wang, Y. Wang, X. Ye, Q. Li, Y. Xiong, R. Abrahams, B. Liu, Z. Xue, Z. You, X. Synthesis of novel chiral and acentric coordination polymers by the reaction of zinc or cadmium salts with racemic 3-pyridyl-3-aminopropionic acid [J]. Chem. Eur. J.,2004,10:53-60.
    [10]Tian, G. Zhu, G. Yang, X. Fang, Q. Xue, M. Sun, J. Wei, Y. Qiu, S. A chiral layered Co(Ⅱ) coordination polymer with helical chains from achiral materials [J]. Chem. Commun,2005,1396-1398.
    [11]Zhang, J. Bu, X. Absolute helicity induction in three-dimensional homochiral frameworks [J]. Chem. Commun.,2009,206-208.
    [12]Bradshaw, D. Prior, T. Cussen, E. Claridge, J. Rosseinsky, M. Permanent microporosity and enantioselective sorption in a chiral open framework [J]. J. Am. Chem. Soc,2004,126:6106-6114.
    [13]Prior, T. Rosseinsky, M. Chiral direction and interconnection of helical three-connected networks in metal-organic frameworks [J]. Inorg. Chem.,2003,42: 1564-1575.
    [14]Tang, Y. Tang, K. Liu, W. Tan, M. Assembly, crystal structure, and luminescent properties of three-dimensional (10,3)-a netted rare earth coordination polymers [J]. Sci China Ser B-Chem.,2008,51:614-622.
    [15]Ke, Y. Collins, D. Sun, D. Zhou, H. (10,3)-a noninterpenetrated network built from a piedfort ligand pair [J]. Inorg. Chem.,2006,45:1897-1899.
    [16]Jing, X. Zhang, L. Ma, T. Li, G Yu, Y. Huo, Q. Eddaoudi, M. and Liu, Y. Assembly of two metal-organic frameworks with intrinsic chiral topology from achiral materials [J]. Cryst. Growth & Des.,2010,10:492-494.
    [17]Jing, X. Zheng, B. Zhang, L. Zhao, T. Li, G. Huo Q. and Liu, Y. Template-directed assembly of metal-organic frameworks with helicalchannels based on PImDC ligand [C]. ZMPC, Tokyo, Japan:2009.
    [18]Jing, X. Wang, F. Zheng, B. Li, G. Huo, Q. Liu, Y.第五届全国物理无机化学会议论文集[C],汕头:2009.
    [19]Sheldrick, G. SHELXL-97, a Program for Crystal Structure Refinement; University of Gottingen:Gottingen, Germany,1997.
    [20]SQUEEZE程序是PLATON软件一个功能,通过执行该命令,删除单胞中的客体分子得到主体骨架.
    [21]Spec, A. Appl. Crystallogr.2003,36,7-13. PLATON, a multipurpose crystallographic tool, Utrecht University, Utrecht, the Netherlands.
    [22]Blatov, V. Shevchenko, A. Serezhkin, V. Korchagin, D. http://www. topos.ssu.samara.ru.
    [23]3dt&Systre是一种拓扑学画图和分析软件,可以用来确定骨架的拓扑学结构.
    [24]Frisch, M. Trucks, G. and etal., Gaussian 03, revision C.02 Gaussian, Inc., Wallingford, CT,2004 (SN:Pople, PC21390756W-4203N).
    [25]Wang, W. Niu, X. Gao, Y. Zhu, Y. Li, G. Lu, H. and Tang, M. One chiral and two achiral 3-D coordination polymers constructed by 2-phenyl imidazole dicarboxylalc [J]. Cryst. Growth & Des.,2010,10:4050-4059.
    [26]Zhang, F. Li, Z. Ge, T. Yao, H. Li, G. Lu, H. and Zhu, Y. Four novel frameworks built by imidazole-based dicarboxylate ligands:hydro(Solvo)thermal synthesis, crystal structures, and properties [J]. Inorg. Chem.,2010,49:3776-3788.
    [27]Wright, C. Walton, R. Thompsett, D. Fisher, J. Investigation of hydrothermal routes to mixed-metal cerium titanium oxides and metal oxidation state assignment using XANES [J]. Inorg. Chem.,2004,43:2189-2196.
    [1]Kitagawa,S.Kondo,M.Functional micropore chemistry of crystalline metal complex-assembled compounds [J]. Bull.Chem.Soc.Jpn.,1998,71:1739-1753.
    [2]Tian,Y.Zhao, Y. Chen, Z. Zhang, G. Weng, L. and Zhao, D. Design and generation of extended zeolitic metal-organic frameworks (ZMOFs):synthesis and crystal structures of zinc(Ⅱ) imidazolate polymers with zeolitic topologies [J].Chem. Eur. J., 2007,13:4146-4154.
    [3]Tian, Y.Cai, C.Ji, Y. You, X. Peng, S. and Lee, G. [Co5(im)102MB]:A metal-organic open-framework with zeolite-Like topology [J].Angew. Chem. Int.,2002,41: 1384-1386.
    [4]Tian, Y. Cai, C. Ren, X. Duan, C. Xu, Y. Gao, S. and You, X. The silica-like extended polymorphism of cobalt(Ⅱ) imidazolate three-dimensional frameworks:X-ray single-crystal structures and magnetic properties [J]. Chem. Eur. J.,2003,9:5673-5685.
    [5]Huang, X. Lin, Y Zhang, J. Chen, X. Ligand-directed strategy for zeolite-type metal-organic frameworks:zinc(Ⅱ) imidazolates with unusual zeolitic topologies [J]. Angew. Chem. Int. Ed.,2006,45:1557-1559.
    [6]Phan, A. Doonan, C. Uribe-romo, F. Kanbler, C. O'Keeffe, M. and Yaghi, O. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks [J]. Ace. Chem. Res.,2010,43:58-67.
    [7]Park, K. Ni, Z. Cote, A. P. Choi, J. Y. Huang, R. Uribe-Romo, F. Chae, H. O'Keeffe, M. and Yaghi, O. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. PNAS,2006,103:10186-10191.
    [8]Banerjee, R. Phan, A. Wang, B. Knobler, C. Furukawa, H. O'Keeffe, M. Yaghi, O. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J]. Science,2008,319:939-943.
    [9]Wang, B. Cote, A. Furukawa, H. O'Keeffe, M. Yaghi, O. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs [J]. Nature,2008,453: 207-212.
    [10]Fang, Q. Zhu, G Xue, M. Sun, J. Wei, Y. Qiu, S. and Xu, R. A metal-organic framework with the zeolite MTN topology containing large cages of volume 2.5nm3 [J]. Angew. Chem.Int. Ed.,2005,44:3845-3848.
    [11]Fang, Q. Zhu, G. Xue, M. Sun, J. and Qiu, S. Porous coordination polymers with zeolite topologies constructed from4-connected building units [J]. Dalton Trans.,2006, 2399-2402.
    [12]Liu, Y. Kravtsov, V. Larsena, R. and Eddaoudi, M. Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities [J]. Chem. Commun.,2006,1488-1490.
    [13]Liu, Y. Kravtsov, V. Walsh, R.Poddar, P. Srikanthc,H.and Eddaoudi,M.Directed assembly of metal-organic cubes from deliberately predesigned molecular building blocks[J].Chem.Commun.,2004,2806-2807.
    [14]Liu,Y. Kravtsov, V. and Eddaoud,M.Template-directed assembly of zeolite-like metal-organic frameworks (ZMOFs):a usf-ZMOF with an unprecedented zeolite topology [J].Angew. Chem.Int. Ed.,2008,47:8446-8449.
    [15]Alkordi, M.Brant, J.Wojtas,A.Kravtsov, V. Cairns, A.and Eddaoudi,M. Zeolite-like metal-organic frameworks (ZMOFs) based on the directed assembly of finite metal-organic cubes (MOCs) [J].J.Am.Chem.Soc.,2009,131:17753-17755.
    [16]Jing, X.Meng, H.Li,G.Yu, Y.Huo, Q.Eddaoudi,M.and Liu,Y.Construction of three metal-organic frameworks based on multifunctional T-shaped tripodal ligands, H3PyImDC [J].Cryst. Growth & Des.,2010,10:3489-3495.
    [17]Jing, X. Wang, F. Zheng, B.Li,G. Huo, Q. Liu, Y.第五届全国物理无机化学会议论文集[C],汕头:2009.
    [18]Jing, X. Zhang, L. Zheng, B. Huo, Q. Liu, Y.中国化学会第27届学术年会论文集[C],厦门:2010.
    [19]Sheldrick, G. SHELXL-97, a Program for Crystal Structure Refinements, University of Gottingen:Gottingen, Germany,1997.
    [20]Bu, X. Feng, P. Gier, T. Stucky, G. Two ethylenediamine-templated zeolite-type structures in zinc srsenate and cobalt phosphate systems [J]. J.Solid State Chem.,1998, 210-215.
    [21]Drumel, S. Janvier, P. Barboux, P. Bujoli-Doeuff, M. Bujoli, B. Synthesis and characterization of Co3(O2CCH2CH2PO3)2·-6H2O, a metal carboxylate-phosphonate with a framework structure [J]. Inorg. Chem.,1995,34:148-156.
    [22]Shi, X. Zhu, G. Qiu, S. Huang, K. Yu, J. Xu, R. Zn2[(S)-O3PCH2NHC4H7CO2]2:a homochiral 3D zinc phosphonate with Helical Channels [J]. Angew. Chem., Int. Ed., 2004,43:6482-6485.
    [23]Chen, J. Jones, R. Natarajan, S. Hursthouse, M. Thmas, Jones, R. H. and Hursthouse, M. B. J. A Novel Open-Framework Cobalt Phosphate Containing a Tetrahedrally Coordinated Cobalt(Ⅱ) Center:CoPO4·0.5C2H10N2 [J]. Angew. Chem. Int., 1994,33:639-640.
    [24]Wright, C. Walton, R. Thompsett, D. Fisher, J. Investigation of Hydrothermal Routes to Mixed-Metal Cerium Titanium Oxides and Metal Oxidation State Assignment Using XANES [J]. Inorg. Chem.,2004,43:2189-2196.
    [25]Park, K. Ni, Z. Cote, A. Choi, J. Huang, R. Uribe-Romo, F. Chae, H. O'Keeffe, M. Yaghi, O. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proc. Nat. Acad.Sci., USA.2006,103:10186-10191.
    [26]Spec, A. Acta. Cryst. A46, C34. PLATON multipurpose crystallographic software, Utrecht University, Utrecht.
    [27]MS Modeling V4.0, multipurpose software, Accelrys Software Inc. All rights reserved.
    [28]Jing, X. Zhang, L.; Ma, T. Li, G. Yu, Y. Huo, Q. Eddaoudi, M. Liu, Y. Construction of Three Metal-Organic Frameworks Based on Multifunctional T-Shaped Tripodal Ligands, H3PyImDC [J]. Cryst. Growth&Des.,2010,10:492-494.
    [29]Li, X. Wu, B. Niu, C. Niu, Y. and Zhang, H. Syntheses of metal-2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate networks with topological diversity:gas adsorption, thermal stability and fluorescent emission properties [J]. Cryst. Growth & Des.,2009,9(8):3423-3431.
    [30]Chen, L. Huang, Y. Xiong, R. Hu, H. Synthesis and structures of two novel non-centrosymmetric metal-organic polymers containing 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid ligands [J]. J. Mol. Struc.,2010,963:16-21.
    [31]Li, X. Wu, B. Wang, R. Zhang, H. Niu, C. Niu, Y. and Hou, H. Hierarchical assembly of extended coordination networks constructed by novel Metallacalix[4]arenes building blocks [J]. Inorg. Chem.,2010,49:2600-2613.
    [1]Hoskins, B. Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnⅡ(CN)4] and CuI[TMPC]BF4-xC6H5NO2 [J].J.Am.Chem.Soc,1990,112:1546-1554.
    [2]Sun, J.Weng, L. Zhou, Y. Chen, J. Chen, Z. Liu, Z. Zhao, D. QMOF-1 and QMOF-2:three-dimensional metal-organic open frameworks with a quartzlike topology [J]. Angew. Chem.,2002,41:4471-4473.
    [3]Barnett, S. Blake, A. Champness, N. Wilson, C. Structural isomerism in CuSCN coordination polymers [J]. Chem.Commun.,2002,1640-1641.
    [4]Mosein, H. Jaggernauth, H. Alleyne, B. Hall, L. White, A. Williams, D. First-row transition-metal complexes of the l-methoxycyclobutenedionate(1-)ion [J]. Inorg. Chem.,1999,38:3716-3720.
    [5]Batten, S. Hoskins, B. Moubaraki, B. Murray, K. Robson, R. Crystal structures and magnetic properties of the interpenetrating rutile-related compounds M(tcm)2[M octahedral, divalent metal; tcm--tricyanomethanide, C(CN)3-] and the sheet structures of [M(tcm)2(Et0H)2] (M-Co or Ni) [J]. J. Chem. Soc. Dallon Trans.,1999, 2977-2986.
    [6]Chae, H. Kim, J. Friedrichs, O. O'Keefe, M. Yaghi, O. Design of frameworks with mixed triangular and octahedral building blocks exemplified by the structure of [Zn4O(TCA)2] having the pyrite topology [J]. Angew. Chem, Int.,2003,42,3907-3909.
    [7]Chen, B. Eddaoudi, M. Hyde, S. O'Keeffe, M. Yaghi, O. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores [J]. Science,2001,291: 1021-1023.
    [8]Chui, S. Lo, S. Charmant, J. Orpen, A. Williams, I. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J]. Science,1999,283:1148-1150.
    [9]Kim, J., Chen, B. Reineke, T. Li, H. Eddaoudi, M. O'Keeffe, M. Yaghi, O. Assembly of metal-organic frameworks from large organic and inorganic secondary building units:new examples and simplifying principles for complex structures[J]. J. Am. Chem. Soc.,2001,123:8239-8247.
    [10]Wang, C. Yang, C. Lee. G. Synthesis and structural characterization of [Na2M(C5O5)2(H2O)2]-4H2O (M= NiⅡ,CuⅡ) [J]. Inorg.Chem.,2002,41,1015-1018.
    [11]Chun, H. Kim, D. Dybtsev, D. Kim, K. Metal-organic replica of fluorite built with an eight-connecting tetranuclear cadmium cluster and a tetrahedral four-connecting ligand [J]. Angew. Chem. Int.,2004,43:971-971.
    [12]Jing, X. Meng, H. Li, G. Yu, Y. Huo, Q. Eddaoudi M. and Liu, Y. Construction of three metal-organic frameworks based on multifunctional T-shaped tripodal ligands, H3PyImDC [J]. Cryst. Growth & Des.,2010,10(8):3489-3495.
    [13]Jing, X. Zhao, T. Zheng, B. Peng, Y. Yan, Y. Huo, Q. and Liu, Y. Construction of a cadmium supermolecular compound from 2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid [J].Inorg.Chem.Commun., 2011,14:22-25.
    [14]Jing, X.Zhao, T. Zhu,B. Huo, Q. Liu, Y第十一届全国固体化学与无机合成会议论文集[C],上海:2010.
    [15]Sheldrick, G. SHELXL-97, a Program for Crystal Structure Refinement, University of Gottingen:Gottingen, Germany,1997.
    [16]Blatov, V. Shevchenko, A. Serezhkin, V. Korchagin, D. http://www.topos.ssu.samara.ru.
    [17]Goodgame, D.Grachvogel, D.Williams, D.A new type of metal-organic large-pore zeotype [J].Angew. Chem.Int.,1999,43:153-156.
    [18]Fernandez, S.Mesa, J.Pizarro,J.Lezama, L. Arriortua, M.Rojo,T. Two new three-dimensional vanadium(Ⅲ)and iron(Ⅲ) phosphites templated by ethylenediamine: (C2HioN2)o.5[M(HP03)2] ab initio structure determination, spectroscopic, and magnetic properties [J].Chem.Mater.2002,14:2300-2307.
    [19]Lin, W. Chapman, M. Wang, Z. Yee, G. Three-dimensional manganese(II) coordination polymers based on meta-pyridinecarboxylates:synthesis,X-ray structures, and magnetic Properties [J].Inorg. Chem.,2000,39:4169-4173.
    [20]Mercier, N.Riou, A.An organic-inorganic hybrid perovskite containing copper paddle-wheel clusters linking perovskite layers:[Cu(O2C-(CH2)3-NH3)2]PbBr4 [J]. Chem.Common.,2004,844-845.
    [21]Schlueter, J. Manson, J. Geiser, U. Structural and magnetic diversity in tetraalkylammonium salts of anionic M[N(CN)2]3-(M=Mn and Ni)three-dimensional coordination polymers [J].Inorg. Chem.,2005,44:3194-3202.
    [22]Cui,C. Dai,J.Du, W. Fu, Z.Hu, S.Wu, L. Wu, X.Synthesis, structure and fluorescence of a 3-D polymer{(Mo4O12)(4,4'-bipy)2}n [J]. Polyhedron,2002,21: 175-179.
    [23]Wasson, A. LaDuca, R. Hydrothermal synthesis, crystal structures, and properties of two 3-D network nickel nicotinate coordination polymers:[Ni(μ-H2O)2 (nicotinate)8·2H2O] and [Ni2(H2O)2(nicotinate)4(4,4'-bpy)] [J]. Polyhedron,2007,26: 1001-1011.
    [24]Yan, B. Xu, Y. Goh, N. Chia, L. Hydrothermal synthesis and crystal structures of two novel hybrid open-frameworks and a two-imensional network based on tungsten(VI) oxides [J]. Chem. Commun.,2000,2169-2170.
    [25]Chen, L. Trans-diaquabis [5 carboxy 2 (3-pyridyl)-lH-imidazole -4-carboxylato-K2N3,04]-inanganese(Ⅱ) [J]. Acta Cryst.,2008, E64:ml286-1288.
    [26]Liu, W. Zhang, G. Li, X. Wu, B. Zhang, H. Trans-diaquabis[5-carboxy-2-(3-pyridyl)-lH-imidazole-4-carboxylato-K2N3,O4]-iron(Ⅱ) [J]. Acta Cryst.,2009, E65,m938-m939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700