新型金属膦酸、亚磷酸盐开放骨架化合物的水热合成与结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷基酸盐化合物家族成员丰富,包括金属磷酸盐,亚磷酸盐,金属有机膦酸盐及其它一些无机-有机杂化骨架的磷基酸盐化合物。磷基酸盐化合物因其丰富的骨架组成、拓扑学结构的多样性,以及在光、电、磁、半导体、生物传感、医疗诊断、催化、吸附分离等领域的潜在应用,近些年来受到广泛关注。
     使用亚磷酸取代磷酸合成的金属亚磷酸盐化合物是磷基酸盐化合物家族中的一个重要成员。目前文献中已报道了大量涉及过渡,主族和稀土金属的亚磷酸盐化合物。相对于金属磷酸盐化合物,金属亚磷酸盐化合物同时具有金属阳离子配位状态的变化和和阴离子结构变化两方面可导致骨架结构多样性的特点,因此设计合成具有化学组成丰富、骨架结构新颖的金属亚磷酸盐化合物拥有更广阔的发展空间。同时将具有刚性配位构型的草酸引入亚磷酸盐化合物的合成体系,合成出另一类新颖的无机-有机杂化的金属亚磷酸草酸盐微孔化合物,进一步丰富了磷基酸盐化合物家族的组成和结构化学。
     使用有机膦酸取代磷酸合成的金属有机膦酸化合物是磷基酸盐化合物家族中的新成员。这类化合物同时具有无机材料的高热稳定性和有机基团的可修饰性等优点,是一类新型的无机-有机杂化骨架的磷基酸盐化合物。伴随着合成研究的深入发展,其功能性研究也逐步引起人们的关注。定向设计和合成具有新颖结构的金属有机膦酸盐配位化合物并对其有机基团进行功能性修饰,为磷基酸盐化合物的合成带来新的研究热点。
     相对于文献中过渡金属亚磷酸盐化合物的大量合成报道,亚磷酸铟化合物的合成研究较少。本论文基于主族金属铟的亚磷酸盐和亚磷酸草酸盐化合物,过渡金属(Cd.Ni)的有机膦酸盐化合物的水热合成和结构表征为研究对象,主要完成了以下几方面的工作:
     (1)以有机膦酸NTP为配体,Cd为金属源,在水热条件下合成出两个具有三维结构有机膦酸镉微孔化合物Na|Cd2[N(CH2PO3H)(CH2PO3)2(H2O)](JCdP-1)和Na2|Cd5[N(CH2PO3)3]2(H2O)2|(JCdP-2)。不同的酸度条件下,NTP不同程度的去质子化,与Cd2+离子螯合配位产生不同的次级结构单元,进而构筑出完全不同的两种结构。
     JCdP-1是在pH接近7的中性条件下合成出来的,它的结构是由Cd2+阳离子与阴离子骨架的NTP配体通过共价键和氢键作用构筑而成的三维配位骨架结构,Na+离子存在于骨架间隙平衡骨架的负电荷。在化合物JCdP-1的配位骨架中,每个阴离子骨架的配体NTP采用μ7的配位模式,首先与两个镉原子进行螯合配位,形成一个新颖的次级结构单元Cd2(NTP);再通过CP03与相邻的五个镉原子桥连配位,形成JCdP-1的三维配位网络结构。
     JCdP-2是在pH=8的弱碱性条件下合成出来的,它的结构由Cd2+阳离子与阴离子骨架的NTP配体通过共价键和氢键作用构筑而成的三维配位骨架结构。在化合物JCdP-2的配位骨架中,每个阴离子骨架的配体采用μ8的配位模式,与三个镉原子螯合进行配位,构筑成另一个新颖的次级结构单元Cd3(NTP);再通过CPO3与相邻的五个镉原子桥连配位,形成JCdP-2的骨架结构。在z轴方向存在一维孔道,Na+离子存在于骨架间隙来平衡骨架的负电荷。
     (2)以有机膦酸N-膦酰甲基-(L)-脯胺酸为配体,在水热条件下合成一个层状结构的有机膦酸镍化合物|H2O|[Ni3(O3PCH2-NC4H7-CO2)2(H2O)4](JNiP-3)。JNiP-3的结构是由Ni06,Ni05(N)和CP03通过共边或共顶点交替连接构筑成的二维层状结构,配体结构中的五员环(环戊基)指向层与层之间,沿c轴方向存在十二员环孔道。磁性研究结果表明,该化合物表现出顺磁性。
     (3)将草酸引入亚磷酸铟化合物的合成体系,在In(NO3)3-H3PO3-H2C2O4-organic amine的水热体系中成功合成出两个拓扑学结构不同的无机-有机杂化的亚磷酸草酸铟开放骨架化合物|C6H14N2|[In2(HPO3)3(C2O4)](JInP-4)和|C4H12N2|[In2(HPO3)3(C2O4)](JInP-5)
     JInP-4是以dabco为模板剂在水热条件下合成出来的,是由In06八面体、HP03假四面体、C204基团通过共顶点交替连接构筑成的具有三维开放骨架结构的化合物。在两个方向上同时存在穿插孔道,质子化的dabco分子存在于孔道中,与主体骨架之间存在着氢键相互作用。在JInP-4的结构中,C204仅仅参与了杂化层的构成并改变了杂化层的结构,正是由于C204的配位作用,使得In06的刚性配位结构发生扭曲,结构中沿c轴方向出现一对左右手对称的螺旋链。
     JInP-5是在水热条件下以哌嗪为模板剂合成出来的,它的三维骨架结构也是由InO6八面体,HP03假四面体和C204基团通过共顶点交替连接构筑而成的。首先是InO6和HP03共顶点交替连接构筑成四、八员环的网层,C204充当桥连配体,将其进一步连接成三维结构。结构中具有八、八、十二员环的多维穿插孔道,客体分子pip存在于孔道中。对在不同温度下处理的JInP-5的样品进行粉末XRD表征,研究结果表明化合物JInP-5的开放骨架结构随温度变化出现转晶。(4)在水热条件下,以铟为金属源,亚磷酸为反应原料,成功合成出两个具有三维开放骨架结构的亚磷酸铟|(C4H12N2)0.5(H3O)|[In4(H2O)3(HPO3)7] (JInP-6), |(C10H10N2)1.5(H3O)3|[In18(H2O)12(HPO4)12(HPO3)16(H2PO3)6](JInP-7)和一个层状结构亚磷酸铟|H3O|[In(HPO3)2](JInP-8)。研究结果表明随着有机模板剂尺寸的增大,起到了一定支撑孔道的作用。
     JInP-6是在以pip为模板剂的水热条件下合成的。首先In06或In05(H20)八面体,HPO3假四面体交替连接构形成具有四、六、十二员环窗口的二维层,二维层之间以AB的顺序沿z轴方向堆积排列,再通过In(2)O6八面体的柱支撑进一步连接成化合物JInP-6的开放骨架结构,在[100]和[010]方向上分别具有十二员环孔道,质子化的哌嗪和水分子等客体分子填充在孔道中。
     JInP-7是在以4,4'-bipy为模板剂的水热条件下合成的。具有与JInP-6结构中相同的二维层,另外,两个In(2)O6八面体与三个HP(4)03假四面体共顶点交替连接形成一个五聚体的柱,将上述的以AA方式堆积的层状结构沿z轴方向支撑起来形成化合物JInP-7的三维骨架结构,在[110]和[010]方向上分别具有十六员环孔道,质子化4,4'-bipy和水等客体分子填充在孔道中。
     JInP-8是在氟离子存在的水热条件下以pip为模板剂的合成出来的。首先,In06八面体和HP03假四面体共顶点交替连接形成6*1的次级结构单元,次级结构单元之间再通过共边连接的方式形成JInP-8结构中的层,质子化水分子位于层间。该化合物是具有(3,6)-双节点的kagome dual (kgd)拓扑网络结构,顶点符号为(43)2(46)。
The family of metal phosphorus-based microporous compounds has a rich composition, including metal phosphates and phosphites, metal organophosphonates and other inorganic-organic hybrid compounds. In recent years, metal phosphorus-based frameworks have been extensively researched due to their rich chemical composition, novel structural topology and potential application in the fields of optics, electricity, magnetism, bio-sensing, medical diagnostics, catalysis, adsorption and separation.
     Novel metal phosphites, an important family member of the metal phosphorus-based acid framework, have been synthesized by using phosphite as a substitute to phosphate. Recent literature reports metal phosphites synthesized from transition, main group and rare earth metal. As compared to metal phosphates, metal phosphites possess two characteristics which lead to a high level of structural diversity, the coordination mode of metal cations is varied and the structure of phosphate anion is changed. The rich chemical composition, novel topology and structure of metal phosphites, makes the design and synthesis of these materials a promising research area. Oxalate exhibits a rigid coordination geometry, it has been incorporated into the synthesis of metal phosphates, thus allowing the formation of novel inorganic-organic hybrid metal phosphite-oxalate frameworks. The successful synthesis of metal phosphite-oxalate has enriched the structural chemistry of metal phosphorus-based acid frameworks.
     Novel metal organophosphonates were hydrothermally prepared by using organic phosphonic acid as a substitute for phosphate. Inorganic-organic hybrid frameworks of metal organophosphonates are a new member of the metal phosphorus-based microporous family of compounds. This new class of materials possesses the following two advantages:high thermal stability and ease of structural modification through modification of organic moieties. The development of synthesis of organophosphates has been well studied and greater emphasis is now placed on rational design as well as studying and improving the functionality of these materials.
     There is limited literature on indium phosphite compounds as compared to the large number of reports of transition metal phosphite. This work is focuses on the synthesis and structure characterization of novel indium phosphite, indium phosphite-oxalate as well as metal organophosphonates involving cadmium and nickel. The primary research results are listed as follows:
     (1) Reactions of NTP with Cd(oac)2 under hydro thermal conditions afforded two novel 3D cadmium organophosphonate compounds Na|Cd2 [N(CH2PO3H)(CH2PO3)2(H2O)](JCdP-1) and Na2|Cd5[N(CH2PO3)3]2(H2O)2| (JCdP-2). NTP was gradually deprotonated under different acidity conditions and chelated with Cd2+ to produce different secondary building units (SBU), these SBUs combined and constructed the novel structures of JCdP-1 and JCdP-2.
     JCdP-1 was synthesized under neutral condition with a pH value close to 7. Its framework is constructed from cadmium cations and NTP anionic ligands connected through covalent and hydrogen bonds. Sodium cations are in the free volume to balance the negative charges from the framework. In the coordinated network of JCdP-1, each anionic NTP adopts aμ7 coordinated model, chelating with two cadmium cations to form a new secondary building units SBU-1, formulated as Cd2(NTP) and bridging with other five cadmium cations through CPO3, resulting in the 3D coordinated network structure of JCdP-1.
     JCdP-2 was synthesized under weak condition with a pH value close to 8. Its framework is constructed from cadmium cations and NTP anionic ligands connected through covalent and hydrogen bonds. In the coordinated network of JCdP-2, each anionic NTP adopts aμ8 coordinated model, chelating with three cadmium cations to form another new secondary building units SBU-2, formulated as Cd3(NTP). SBU-2 is bridged with five other cadmium cations through CPO3, resulting in the 3D coordinated network structure of JCdP-2. There exists a one-dimensional channel along z axis and sodium cations are in the channels to balance the negative charges from the framework.
     (2) A novel 2D layer structure of|H2O|[Ni3(O3PCH2-NC4H7-CO2)2(H2O)4](JNiP-3) was hydrothermally prepared by using A/-(phosphonomethyl)proline (H3L) as a ligand. The structure of JNiP-3 is constructed from alternating vertex-sharing or edge-sharing NiO6 (or NiO5N) octahedra and O3PC tetrahedral. The cyclopentyl moiety of H3L is grafted onto the layer through coordination of CPO3, CO2 and (CH2)2NCH2 with central nickel atoms and directed into the interlayer spaces. There exists a one-dimensional rhombohedra 12-MRs channel in the [001] direction, water guest molecules are located in the channels. Magnetic studies show that JNiP-3 exhibits a paramagnetic behavior.
     (3) Oxalate was incorporated into the synthesis system of indium phosphite and two novel indium phosphite-oxalate compounds |C4H12N2|[In2(HPO3)3(C2O4)] (JInP-4) and|C6H14N2|[In2(HPO3)3(C2O4)] (JInP-5) were prepared in the hydrothermal system of In(NO3)3·4H2O-H3PO3-H2C2O4-organic amine. The two hybrid frameworks obtained possess different framework topologies.
     JInP-4 was hydrothermally synthesized using dabco as an organic templating agent. Its 3D open-framework structure is constructed from vertex-sharing InO6 octahedra, HPO3 pseudo-pyramidal and C2O4 groups. The assembly of these building units generates intersecting channels along two different directions. Contained within the channels are protonated dabco molecules, which interact with the host framework through hydrogen bonding. In the structure of JInP-4, the oxalate groups are incorporated into the indium phosphite layer thus changing the structure of the hybrid layer. The chelating coordination of the oxalate with indium, InO6 has distorted octahedral geometry. Another structural feature of JInP-4 is the presence of left-handed and right-handed helical chains.
     In the presence of piperazine as an organic template agent, JInP-5 was prepared under hydrothermal conditions. Its 3D open-framework structure is constructed from alternating vertex-sharing InO6 octahedra, HPO3 pseudo-pyramidal and C2O4 groups. Firstly, InO6 octahedra and HPO3 pseudo-pyramidal are linked alternatively to form a 4,8-ring 2D layer. These 2D layers stacked in an AB sequence with oxalate groups acting as a bridging ligand thus forming the novel 3D hybrid framework. There existed 8,8, and 12-ring multi-dimensional intersecting channels, which contain protonated piperazine molecule. The phase transformation of JInP-5 was also investigated.
     (4) In the presence of different organic amine as template, two novel 3D open-framework structure of indium phosphite|(C4H12N2)0.5(H3O) [In4(H2O)3(HPO3)7](JInP-6),|(C10H10N2)1.5(H30)3|[In18(H2(HPO3)16 (H2PO3)6](JInP-7) and a novel layered structure of indium phosphate |H3O|[In(HPO3)2](JInP-8) were successfully synthesized under hydro thermal conditions. The investigations revealed that:an increase in the size of the organic template resulted in compounds featuring large channels.
     JInP-6 was hydrothermally synthesized by using piperizine as a template. Its structure can be described as follows:Firstly, InO6 (or InO5H2O)) octahedra, HPO3 pseudo-pyramidal linked alternatively to form a layer structure with 4,6, and 12-ring windows. These layers are stacked in an AB sequence along the z axis and further connected by InO6 octahedra forming the 3D structure of JInP-6. There are 12-ring intersecting channels along [100] and [010] direction, which contain protonated piperazine and water molecules.
     Using 4,4'-bipy as an organic templating agent, JInP-7 was prepared under hydrothermal conditions. JInP-7 has the same layer structure as in the structure of JInP-6, two InO6 octahedra and three HPO3 pseudo-pyramidal shared their vertex to from a pentamer, which acts as a pillar connecting these layers into the novel 3D structure of JInP-7. Present are intersecting 16-ring channels along [110] and [010] direction, in which protonated 4,4'-bipy and water molecules were located.
     In the presence of fluoride ions, JInP-8 was synthesized under hydrothermal conditions. Its 2D layer structure can be described as follows:InO6 octahedra and HPO3 pseudo-pyramidal linked alternatively into a novel secondary building unit (SBU),6*1, these SBUs are further connected through edge-sharing into the layer structure of JInP-8, protonated water molecules are located in the interlayer spaces. From a topological perspective, JInP-8 exhibits a (3,6)-connected layer structure with kgd (kagome dual) topology with a vertex symbol (43)2(46).
引文
[1]徐如人,庞文琴,于吉红,霍启升,陈接胜编著.《分子筛与多孔材料化学》,北京:科学出版社,2004.
    [2]徐如人,庞文琴.《无机合成与制备化学》,高等教育出版社,2001.
    [3]Davis M E, Saldarriaga C, Montes C, et al. A molecular sieve with eighteen-Membered rings [J]. Nature,1988,331:698-699.
    [4]Estermann M, McCusker L B, Baerlocher C, et al. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening [J]. Nature,1991,352:320-323.
    [5]Huo Q, Xu R, Li S, et al. Synthesis and characterization of a novel extra larger ring of aluminophosphate JDF-20 [J]. Chemical Communication,1992,12:875-876.
    [6](a) Sassoye C, Loiseau T, Taulelle F, et al., A new open-framework fluorinated gallium phosphate with large 18-ring channels (MIL-31) [J]. Chemical Communication,2000, 943-944; (b) Loiseau T, Walton R I, O'Hare D, et al. New insights into the role of the hydrothermal conditions for the synthesis of open-framework fluorinated gallium phosphates [J]. Abstracts of Papers of the American Chemical Society,2011,221:225-225; (c) Walton R L, Millange F, Loiseau T, et al. Crystallization of a Large-Pore Three-Dimensional Gallium Fluorophosphate under Mild Conditions [J]. Angewandte Chemie International Edition,2000,39:4552-4555.
    [7]Yang Y, Wang S. Intrinsic Yellow Light Phosphor:An Organic-Inorganic Hybrid Gallium Oxalatophosphate with Hexameric Octahedral Ga6(OH)4O26 Cluster [J]. Journal of the American Chemical Society,2008,130:1146-1147.
    [8]Yang G, Sevov S C. Zinc Phosphate with Gigantic Pores of 24 Tetrahedra [J]. Journal of the American Chemical Sociey,1999,121:8389-8390.
    [9](a) Guillou N, Gao Q, Nogues M, et al. Zeolitic and magnetic properties of a 24-membered ring porous nickel (Ⅱ) phosphate, VSB-1, C. R. Acad. Sci. Paris, SerieⅡc,1999,2: 387-392; (b) Guillou N, Gao Q, Forster P M, et al. Nickel(Ⅱ) Phosphate VSB-5:A Magnetic Nanoporous Hydrogenation Catalyst with 24-Ring Tunnels [J]. Angewandte Chemie International Edition,2001,40:2831-2834. And reference therein.
    [10](a) Huang H, Wang S. An extraordinary boron-mediated 16R-channel-containing trivalent vanadium phosphite with unique solid state redox properties [J]. Chemical Communication, 2010,46:6141-6143; (b) Lai Y, Lii K, Wang S.26-Ring-Channel Structure Constructed from Bimetal Phosphite Helical Chains [J]. Journal of the American Chemical Society, 2007,129:5350-5351.
    [11](a)梁静.空旷骨架结构的亚磷酸锌/磷酸锌化合物的水热合成与表征,吉林大学博士论文,2006;(b)李莉.新型金属亚磷酸盐、磷酸盐化合物的合成、结构与性能研究,吉林大学博士论文,2010;(c)赵朗.生物分子氨基酸/无机金属(亚)磷酸盐的合成、结构与性质研究,吉林大学博士论文,2008.
    [12](a) Christensen K E, Shi L, Conradsson T, et al. Design of Open-Framework Germanates by Combining Different Building Units [J]. Journal of the American Chemical Society, 2006,128:14238-14239; (b) Christensen K E, Bonneau C, Gustafsson M, et al. An Open-Framework Silicogermanate with 26-Ring Channels Built from Seven-Coordinated (Ge, Si),0(O,OH)28 Clusters [J]. Journal of the American Chemical Society,2008,130: 3758-3759.
    [13]Corma A, Diaz-Cabanas M J, Jiang J. Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four-and double three-rings [J]. Proceedings of the National Academy of Sciences,2010,107:13997-14002. And reference therein.
    [14]Jiang J, Yu J, Corma A. Extra-Large-Pore Zeolites:Bridging the Gap between Micro and Mesoporous Structures [J]. Angewandte Chemie International Edition,2010,49, 3120-3145. And reference therein.
    [15]宋晓伟.杂原子取代磷酸铝分子筛的合成与表征,吉林大学博士论文,2009.
    [16](a)王宇,具有手性结构特征的金属磷酸盐的合成与表征,吉林大学博十论文,2004;(b)杜宇.钻胺配合物为模板的金属氟化物与金属磷酸盐的合成,结构及性质研究,吉林大学博士论文,2007.
    [17]Gier T, Bu X, Feng P, et al. Synthesis and Organization of Zeolite-like Materials with Three-Dimensional Helical Pores [J]. Nature,1998,395:154-157.
    [18]Lin C, Wang S. Chiral Metal Gallophosphates Templated by Achiral Triamine:Syntheses and Characterization of A[Mn(H2O)2Ga(PO4)2]3 and A[Zn3Ga(PO4)4]·H2O (A=H3DETA) [J]. Chemistry of Materials,2002,14:96-102.
    [19]Tang L, Shi L, Bonneau C, et al. A zeolite family with chiral and achiral structures built from the same building layer [J]. Nature Materials,2008,7:381-385.
    [20]Pan Q, Li J, Christensen K E, et al. A germanate built from a 68126 cavity cotemplated by an (H2O)16 cluster and 2-methylpiperazine, Angewandte Chemie International Edition [J]. 2008,47:7868-7871.
    [21]Corma A, Rey F, Rius J, et al. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites, Nature [J].2004,431:287-290.
    [22]Maesen T L M, Kouwenhoven H W, Bekkum H van, et al. Template removal from molecular sieves by low-temperature plasma calcination [J]. Journal of the Chemical Society, Dalton Transactions,1990,86:3967-3970.
    [23]Jones C W, Tsuji K, Davis M E. Organic-functionalized molecular sieves as shape-selective catalysts [J]. Nature,1998,393:52-54.
    [24]Keene M T J, Denoyel R, Llewellyn P L. Ozone treatment for the removal of surfactant to form MCM-41 type materials [J]. Chemical Communication,1998,2203-2204.
    [25]Karl W, Landry C C. Rapid Calcination of Nanostructured Silicate Composites by Microwave Irradiation [J]. Advanced Materials,2001,13:23-26.
    [26]Tian B, Liu X, Yu C, et al. Microwave Assisted Template Removal of Siliceous Porous Materials [J]. Chemical Communication,2002,1186-1187.
    [27]He J, Yang X, Evans D G, et al. New methods to remove organic templates from porous materials [J]. Materials Chemistry and Physics,2002,77:270-275.
    [28]肖丽萍.多孔化合物脱模板剂研究,浙江大学博士论文,2005.
    [29]Rabenau A. the Role of Hydrothermal Synthesis in Preparative Chemistry [J]. Angewandte Chemie International Edition,1985,24:1026-1040.
    [30]Bibby D M, Dale M P. Synthesis of silica-sodalite from non-aqueous systems [J]. Nature, 1985,317:157-158.
    [31]Flanigen E M, Patton R L. US Patent, Nm.4073865,1978.
    [32]Goor G van de, Behrens P, Felsche J. (C3H6O2)2, (Si6O12)2, a new silica sodalite synthesized, using 1,3-dioxolane as template [J]. Microporous and Mesoporous Materials, 1994,2:501-514.
    [33]Huo Q, Xu R. A new route for the synthesis of molecular sieves crystallization of AIPO4-5 at high temperature, Chemical Communication [J].1992,168:875-876.
    [34](a)周群,庞文琴,裘式纶,贾明君.导向剂法合成BETA沸石[P].CN93117593.3.吉林大学,1994;(b)李国文,庞文琴.导向剂法合成硼硅分子筛[P].CN87107009.X.吉林大学,1989.
    [35]Coker E N, Jansen J C, Martens J A, et al. The synthesis of zeolites under micro-gravity conditions:a review [J]. Microporous and Mesoporous Materials,1998,23:119-136.
    [36]Yu J, Xu R. Rich Structure Chemistry in the Aluminophosphate Family [J]. Accounts of Chemical Research,2003,36:481-490.
    [37]Yu J, Xu R. Insight into the construction of open-framework aluminophosphates [J]. Chemical Society Reviews,2006,35:593-604.
    [38]Li Y, Yu J, Xu R. http://mezeopor.jlu.edu.cn/alpo, and references therein.
    [39]Lewis D W, Catlow C R A, Thomas J M. Influence of organic templates on the structure and on the concentration of framework metal ions in microporous aluminophosphate catalysts [J]. Chemistry of Materials,1996,8:1112-1118.
    [40]Rajic N. Open-Framework Aluminophosphates:Synthesis, Characterization and Transition Metal Modifications [J]. Journal of the Serbian Chemical Society,2005,70:371-391.
    [41](a) Parise J B. Preparation and structural characterization of two metal lophosphate frameworks clathrating diprotonated ethylenediamine:AIPO4-12(en) and GaPO4-12(en) [J]. Inorganic Chemistry,1985,24:4312-4316; (b) Parise J B. Some gallium phosphate frameworks related to the aluminium phosphate molecular sieves:X-ray structural characterization of{(Pr1H3)[Ga4(PO4)4·OH]}·H2O [J]. Chemical Communication,1985, 606-607; (c) Parise J B. Preparation and structure of a gallium phosphate framework with clathrated isopropylamine [J]. Acta Crystallographica Section C,1986,42:144-147.
    [42](a) Yang G, Feng S, Xu R. Crystal structure of the gallophosphate framework:X-ray characterization of Ga9P9O36OH·HNEt3 [J]. Chemical Communication,1987,1254-1255; (b) Wang T, Yang G, Feng S, et al.A novel mixed octahedral-tetrahedral framework: X-ray characterization of a microporous gallophosphate, Ga2P2O8(OH)H2O·NH4·H2O·0.16PrOH (GaPO4-C7) [J]. Chemical Communication,1989, 948-949; (c) Xu R, Chen J, Feng S. New Families of M(Ⅲ)X(Ⅴ)O4-Type Microporous Crystals and Inclusion Compounds [J]. Studies in Surface Science and Catalysis,1991,60: 63-72; (d) Feng S, Xu X, Yang G, et al. Hydrothermal synthesis and crystal structure of the microporous gallophosphate [NH4]4[Ga8P8O32(OH)4(H2O)4]-4H2O·0.64PrOH with an octahedral-tetrahedral framework [J]. Dalton Transactions,1995,2147-2149.
    [43]Chen J, Li L, Yang G, et al. Preparation and structural characterization of a novel galloarsenate using a dimethylamine template [J]. Chemical Communication,1989, 1217-1218.
    [44]霍启升.醇体系中无机微孔晶体及包合物的合成与结构,吉林大学博士论文,1992.
    [45](a) Reinert P, Patarin J, Reinert P, et al. Synthesis and characterization of the new microporous fluorogallophosphate Mu-2 with a novel framework topology [J]. Chemical Communication,1998,1769-1770; (b) Vidal L, Marichal C, Gramlich V, et al. Mu-7, a New Layered Aluminophosphate [CF3NH3]3[Al3P4O16] with a 4×8 Network: Characterization, Structure, and Possible Crystallization Mechanism [J]. Chemistry of Materials,1999,11:2728-2736.
    [46](a) Chippindale A M, Walton R I, Turner C. Synthesis and structure of a novel open-framework gallium phosphate [Me2NH(CH2)2NHMe2]2+[Ga4P502oH]2-.H20 [J]. Chemical Communication,1995,1261-1262; (b) Chippindale A M, Peacock K J, Cowley A R. Synthesis and Characterization of a Large-Pore, Open-Framework Gallium Phosphate, [NH3(CH2)4NH3]2[Ga4(HPO4)2(PO4)3(OH)3]-yH2O (y=5.4), and Its Vanadium-Gallium Phosphate Analogue, [NH3(CH2)4NH3]2[Ga4-xV_x(HPO4)2(PO4)3 (OH)3]-yH2O (x=0.4, y=6) [J]. Journal of Solid State Chemistry,1999,145:379-386.
    [47](a)杨玉林.稀反应体系下开放骨架结构的磷酸镓(亚磷酸镓)微孔晶体的水热合成研究,吉林大学博士论文,2004;(b)杨磊.具有开放骨架结构磷酸镓(亚磷酸镓)微孔晶体的水热合成与研究,吉林大学博士论文,2005.
    [48]Yu J, Chen J, Xu R. Formation of single-crystal cobalt-substituted gallophosphate LTA from an alcoholic system [J]. Microporous and Mesoporous Materials,1996,5:333-336.
    [49](a) Chippinale A M, Bond A D, Cowley A R, et al. MnGaPO-2:Synthesis and Characterization of [MnGa(PO3OH)2(PO4)][C6N2H14], a New Microporous Manganese-Gallium Phosphate [J]. Chemistry of Materials,1997,9:2830-2835; (b) Lin C, Wang S. Chiral Metal Gallophosphates Templated by Achiral Triamine:Syntheses and Characterizations of A[Mn(H2O)2Ga(PO4)2]3 and A[Zn3Ga(PO4)4]-H2O (A=H3DETA) [J]. Chemistry of Materials,2002,14:96-102.
    [50]Dhingra S S, Haushalter R C. Hydrothermal Synthesis and Crystal Structure of |H3NCH2CH2NH3|[In2(HPO4)4], A Novel Octahedral-Tetrahedral Framework Indium Phosphate with Occluded Organic Cations [J]. Chemical Communication,1993, 1665-1667.
    [51]Chippindale A M, Brech S J, Cowley A R. Novel Pillared Layer Structure of the Organically Templated Indium Phosphate [In8(HPO4)14(H2O)6](H2O)5(H3O)(C3N2H5)3 [J]. Chemistry of Materials,1996,8:2259-2264.
    [52]Lii K, Huang Y. Synthesis and Structures of [In4(4,4'-bipy)3(HPO4)4(H2PO4)4]·4H2O andIn4(4,4'-bipy)3(HPO4)4(H2PO4)4, Indium Phosphates with a Pillared Layer Structure [J]. Inorganic Chemistry,1999,38:1348-1350.
    [53]Thirumurugan A, Natarajan S. Synthesis and structure of a new three-dimensional indium phosphate with 16-membered one-dimensional channels [J]. Dalton Transactions,2003,17: 3387-3391.
    [54](a) Lii K. RbIn(OH)PO4:an indium (Ⅲ) phosphate containing spirals of corner-sharing InO6 octahedra [J]. Dalton Transactions,1996,6:815-818; (b) Mao S, Li M, Huang Y, et al. Hydrothermal Synthesis and Crystal Structure of the First Ammonium Indium(III) Phosphate NH4In(OH)PO4 with Spiral Chains of InO4(OH)2 [J]. Journal of Solid State Chemistry,2002,165:209-213.
    [55]杜红宾.新型无机微孔晶体的合成与表征,吉林大学博士论文,1997.
    [56]陈超.具有开放骨架结构的磷酸铟,磷酸钛微孔晶体的水热合成研究,吉林大学博士论文,2006.
    [57]伊卓.新型磷酸铟(亚磷酸铟)微孔晶体的水热合成研究,吉林大学硕士论文,2005.
    [58](a) Ortiz-Avila C Y, Squattrito P J, Shieh M, et al. Synthesis and characterization of a new series of zinc phosphites [J]. Inorganic Chemistry,1989,28:2608-2615; (b) Shieh M, Martin K J, Squatrito P J, et al. New low-dimensional zinc compounds containing zinc-oxygen-phosphorus frameworks:two-layered inorganic phosphites and a polymeric organic phosphinate [J]. Inorganic Chemistry,1990,29:958-963; (c) Zhang Y, Hu H, Clearfield A. The crystal structures of two lanthanide phosphites and the geometry of metal phosphite complexes [J]. Inorganica Chimica Acta,1992,193:35-42; (d) Poojary D M, Zhang Y, Cox D E, et al. Synthesis and crystal structures of aluminum and iron phosphites [J]. Journal of Chemical Crystallography,1994,24:155-163.
    [59]Bonavia G, DeBord J, Haushalter R C, et al. Hydrothermal Synthesis and Characterization of Two-and Three-Dimensional Solids of the Oxovanadium(IV)-Phosphite System, The Structures of (C6H16N2) [(VO)4(OH)2(HPO3)4], (C4H12N2)[(VO)3(HPO3)4(H2O)2] and [VO(HPO3)(H2O)] [J]. Chemistry of Materials,1995,7:1995-1998.
    [60]Rodgers J A, Harrison W T A. Ethylenediamine zinc hydrogen phosphite, [H2N(CH2)2NH2]o.5-ZnHP03, containing two independent, interpenetrating, mixed inorganic/organic networks [J]. Chemical Communication,2000,2385-2386.
    [61]Gordon L E, Harrison W T A. β-[H2N(CH2)2NH2]0.5[ZnHPO3], a second modification of ethylenediamine zinc hydrogen phosphite [J]. Acta Crystallographica Section C,2004, C60: m637-639.
    [62]Zhao L, Li J, Chen P, et al. (C6H,oN302)Zn2(HP04)(P04)-H20:An inorganic network with biofunctional amino acid DL-histidine molecules [J]. Crystal Engineering Communications, 2008,10:497-501.
    [63]Dong Z, Zhao L, Liang Z, et al. [Zn(HPO3)(C11N2O2H,2)] and [Zn3(H2O)(PO4)(HPO4)(C6H9N3O2)2(C6H8N3O2)]:homochiral zinc phosphite/phosphate networks with biofunctional amino acids [J]. Dalton Transactions,2010,39:5439-5445
    [64]Gordon L E, Harrison W T A. Amino Acid Templating of Inorganic Networks:Synthesis and Structure of L-Asparagine Zinc Phosphite, C4N2O3H8·ZnHPO3 [J]. Inorganic Chemistry,2004,43:1808-1809.
    [65]Liang J, Wang Y, Yu J, et al. Synthesis and Structure of a New Layered Zinc Phosphite (C5H6N2)Zn(HPO3) Containing Helical Chains [J]. Chemical Communication,2003, 882-883.
    [66]Liu L, Zhang L, Wang X, et al. Syntheses and structures of two chiral zincophosphite compounds:[Zn(C8H8N2)(HPO3)] and (C6H13N2)[Zn3(C6H12N2)(HPO3)3(H2PO3)] [J]. Dalton Transactions,2008,2009-2014.
    [67]Qao J, Zhang L, Liu L, et al. Solvothermal synthesis and structure of a novel 3D zincophosphite Co(en)3[Zn4(HPO3)5(H2PO3)] containing helical chains [J]. Journal of Solid State Chemistry,2008,181:2908-2913.
    [68]Li J, Li L, Liang J, et al. Template-designed syntheses of open-framework zinc phosphates with extra-large 24-ring channels [J]. Crystal Growth & Design,2008,8:2318-2323.
    [69]Feng J, Shao K, Tang S, et al. Ionothermal synthesis of a new open-framework zinc phosphite NIS-3 with low framework density [J]. Crystal Engineering Communications, 2010,12:1401-1403.
    [70]Huang H L, Wang S L. An extraordinary boron-mediated 16R-channel-containing trivalent vanadium phosphite with unique solid state redox properties [J]. Chemical Communication, 2010,46:6141-6143.
    [71]Jing X, Zhang L, Gong S, et al. Hydrothermal synthesis and characterization of two novel three-dimensional vanadium phosphites:|(C10H10N2)|[VⅣ2O2(HPO3)2(H2PO3)2] and |(C4H16N3)|[VⅣ2VⅢO2F2(HPO3)4] [J]. Microporous and Mesoporous Materials,2008,116: 101-107.
    [72]Xing H, Yang W, Su T, et al. Ionothermal Synthesis of Extra-Large-Pore Open-Framework Nickel Phosphite 5H3O·[Nig(HPO3)9Cl3]·1.5H2O:Magnetic Anisotropy of the Antiferromagnetism [J]. Angewandte Chemie International Edition,2010,49: 2328-2331.
    [73]Liu X, Xing Y, Wang X, et al. Chirality and magnetism of an open-framework cobalt phosphite containing helical channels from achiral materials [J]. Chemical Communication, 2010,46:2614-2616.
    [74]Ramaswamy P, Mandal S, Hegde N N, et al. Synthesis, Structure, and Magnetic Properties of Amine-Templated Transition-Metal Phosphites [J]. European Journal of Inorganic Chemistry,2010,1829-1838.
    [75]Rojo T, Mesa J L, Lago J, et al. Organically templated open-framework phosphites [J]. Journal of Materials Chemistry,2009,19:3793-3818.
    [76]Fu W, Wang L, Shi Z, et al. The First Organically Templated Beryllium Phosphite [NH3(CH2)3NH3]·Be3(HPO3)4:Hydrothermal Synthesis and X-ray Crystal Structure [J]. Crystal Growth & Design,2004,4:297-300; (b) Ma Y, Li N, Xiang S, et al. IR and Raman Investigation of One-Dimensional and Three-Dimensional Aluminophosphite [J]. The Journal of Physical Chemistry C,2007,111:18361-18366; (c) Lu A, Song H, Li N, et al. Novel Large Aluminophosphite Cage Unit as the Building Blocks To Form a Framework Structure Containing Multidimensional 12-Ring Channels [J]. Chemistry of Materials, 2007,19:4142-4147.
    [77]Zakharova B S, Ilyukhin A B. The Crystal Structure of Aluminium, Iron (Ⅲ), and Gallium Acid Phosphites [J]. Crystallography Reports,2010,55:15-18.
    [78]Huang L, Song T, Zhang L, et al. Synthesis, crystal structure and characterization of a new layered gallium phosphite Ga(HPO3)F3·(trans-C6N2H16) with left-and right-handed helical chains [J]. Crystal Engineering Communications,2010,12:2198-2202.
    [79](a)伊卓.新型磷酸铟(亚磷酸铟)微孔晶体的水热合成研究,吉林大学硕士论文,2005;(b)王丽.新型金属亚磷酸盐微孔化合物的合成与表征,吉林大学博士论文,2006;(c)刘成站.微孔亚磷酸铟和磷酸铟晶体的水热合成研究,吉林大学博士论文,2007.
    [80]Huang L, Song T, Fan Y, et al. Hydrothermal syntheses, characterizations of novel three-dimensional indium phosphite and indium phosphite-phosphate with intersecting 8-membered ring channels:[In3(H2PO3)3(HP03)4]·(trans-C6N2H16) and [In6(HPO3)8(H2PO3)5(H2PO4)]·(C3N2Hi2)2 [J]. Microporous and Mesoporous Materials, 2010,132:409-413.
    [81](a) Mandal S, Green M A, Pati S K, et al. Synthesis, structure and magnetic properties of an inorganic-organic hybrid Compound [J]. Journal of Materials Chemistry,2007,17: 980-985; (b) Ferey G. Some suggested perspectives for multifunctional hybrid porous solids [J]. Dalton Transactions,2009,4400-4415; (c) Ferey G. Hybrid porous solids:past, present [J]. future, Chemical Society Reviews,2008,37:191-214; (d) Maspoch D, Ruiz-Molina D, Veciana J. Old materials with new tricks:multifunctional open-framework materials [J]. Chemical Society Reviews,2007,36:770-818.
    [82]Chesnut D J, Hagrman D, Zapf P J, et al. Organic/inorganic composite materials:the roles of organoamine ligands in the design of inorganic solids [J]. Coordination Chemistry Reviews,1999,737:190-192.
    [83](a) Cheetham A K, Ferey G, Loiseau T. Open-Framework Inorganic Materials [J]. Angewandte Chemie International Edition,1999,38:3268-3292; (b) Ferey G. Microporous Solids:From Organically Templated Inorganic Skeletons to Hybrid Frameworks...Ecumenism in Chemistry [J]. Chemistry of Materials,2001,13; 3084-3098; (c) Natarajan S, Mandal S. Open-Framework Structures of Transition-Metal Compounds [J]. Angewandte Chemie International Edition,2008,47:4798-4828; (c) Rojo T, Mesa J L, Lago J, et al. Organically templated open-framework phosphites [J]. Journal of Materials Chemistry,2009,19:3793-3818.
    [84](a) Chang W, Chiang R, Jiang Y, et al. Metamagnetism in Cobalt Phosphates with Pillared Layer Structures:[Co3(pyz)(HPO4)2F2] and [Co3(4,4'-bipy)(HPO4)2F2]-xH2O [J]. Inorganic Chemistry,2004,43:2564-2568; (b) Chen C, Lo F R, Kao H M, et al. [Ga4(C10H9N2)2(PO4)(Ho.5PO4)2(HPO4)2(H2PO4)2(H20)2]·H2O:a novel one-dimensional chain structure containing four different types of monophosphate [J]. Chemical Communication,2000,1061-1062; (c) Huang C, Huang L, Lii K. Synthesis and Structure of (4,4'-H2bipy)[V2(HPO4)4(4,4'-bipy)2], a Novel Two-Dimensional Network Compound [J]. Inorganic Chemistry,2001,40:2625-2627.
    [85](a) Song J, Zhao H, Dunbar K, et al. New Types of Layered and Pillared Layered Metal Carboxylate-Phosphonates Based on the 4,4'-Bipyridine Ligand [J]. Chemistry of Materials,2004,16:1884-1889; (b) Yang B, Mao J. New Types of Metal Squarato-phosphonates:Condensation of Aminodiphosphonate with Squaric Acid under Hydrothermal Conditions [J]. Inorganic Chemistry,2005,44:566-571; (c) Yang B, Prosvirin A V, Zhao H, et al. Syntheses and crystal structures of a series of new divalent metal phosphonates with imino-bis(methylphosphonic acid) [J]. Journal of Solid State Chemistry,2006,179:175-185; (d) Song J, Prosvirin A V, Zhao H, et al. Syntheses and Crystal Structures of Two Cobalt Carboxylate-Phosphonates with 4,4'-Bipyridine as a Secondary Metal Linker [J]. European Journal of Inorganic Chemistry,2004,3706-3711.
    [86](a) Ouellette W, Golub V, O'Connor C J, et al. Solid State Coordination Chemistry of Metal Oxides:Structural Consequences of Fluoride Incorporation into the Oxovanadium-Copper-bisterpy-{03P(CH2)nPO3}4- System, n=1-5, (bisterpy= 2,2':4',4":2",2'"-quaterpyridyl-6',6"-di-2-pyridine) [J]. Dalton Transactions,2005,2: 291-309; (b) Ouellette W, Koo B K, Burkholder E, et al. Solid state coordination chemistry: structural consequences of variations in tether length in the oxovanadium-copper-bisterpy-{03P(CH2)PO3}4-system, n=1-6, (bisterpy 2,2':4',4":2",2'"-quarterpyridyl-6',6"-di-2-pyridine) [J]. Dalton Transactions,2004,10: 1527-1538; (c) Yucesan G, Yu M, Ouellette W, et al. Secondary metal-ligand cationic subunits{ML}n+ as structural determinants in the oxovanadium/phenylphosphonate/{ML}n+system, where{ML} is a Cu2+/organonitrogen moiety [J]. Crystal Engineering Communications,2005,7:480-490.
    [87](a) Choudhury A, Natarajan S. Inorganic hybrid open-framework structures:synthesis and structure of a cobalt phosphate-oxalate, [C4N2H12]0.5[Co2(HPO4)(C204)1.5] [J]. Solid State Sciences,2000,2:365-372; (b) Neeraj S, Natarajan S, Rao C N R. A zinc phosphate oxalate with phosphate layers pillared by the oxalate units [J]. Dalton Transactions,2001, 289-291.
    [88]Yang Y C, Wang S L. Intrinsic Yellow Light Phosphor:An Organic-Inorganic Hybrid Gallium Oxalatophosphate with Hexameric Octahedral Ga6(OH)4O26 Cluster [J]. Journal of the American Chemical Society,2008,130:1146-1147.
    [89]Tang M F, Lii K H. Synthesis and structural characterization of (H4APPIP)[V3(C2O4)2(HPO4)3(PO4)(H2O)]-6H2O(APPIP=1,4-bis(3-aminopropyl)piperazin e), a layered vanadium oxalatophosphate containing double 6-ring units [J]. Journal of Solid State Chemistry,2004,177:1912-1918.
    [90](a) Mandal S, Green M A, Natarajan S. Inorganic-organic hybrid structure:Synthesis, structure and magneticproperties of a cobalt phosphite-oxalate, [C4N2H12][Co4(HPO3)2(C2O4)3] [J]. Journal of Solid State Chemistry,2005,178: 2376-2382; (b) Mandal S, Green M A, Pati S K, et al. Synthesis, structure and magnetic properties of an inorganic-organic hybrid compound [J]. Journal of Materials Chemistry, 2007,17:980-985; (c) Mandal S, Pati S K, Green M A, et al. Inorganic-Organic Hybrid Compounds:Synthesis, Structure, and Magnetic Properties of the First Organically Templated Iron Oxalate-Phosphite, [C4N2H12][FeⅡ4(HPO3)2(C2O4)3], Possessing Infinite Fe-O-Fe Chains [J]. Chemistry of Materials,2005,17:2912-2917; (d) Mandal S, Natarajan S. Inorganic-Organic Hybrid Structures:Open-Framework Iron Phosphite-Oxalates of Varying Dimensionality [J]. Chemistry A European Journal,2007,13:968-977; (e) Ramaswamy P, Hegde N N, Prabhu R, et al. Synthesis, Structure, and Transformation Studies in a Family of Inorganic-Organic Hybrid Framework Structures Based on Indium [J]. Inorganic Chemistry,2009,48:11697-11711.
    [91]Wang C M, Wu Y Y, Chang Y W, et al. Luminescent Lanthanide Oxalatophosphites with a 3D Framework Structure:[Ln(H20)(C204)0.5(HPO3)]·H20 (Ln=Pr, Nd, and Sm-Lu) [J]. Chemistry of Materials,2008,20:2857-2859.
    [92]Zhou G, Yang Y, Fan R, et al.The first organically templated gallium phosphite-oxalates: Synthesis, structures, and characterization [J]. Solid State Sciences,2010,12:873-881.
    [93](a) Mao J. Structures and luminescent properties of lanthanide phosphonates [J]. Coordination Chemistry Reviews,2007,251:1493-1520; (b) Clearfield A. Coordination chemistry of phosphonic acids with special relevance to rare earths [J]. Journal of Alloys and Compounds,2006,418:128-138; (c) Clearfield A. Metal phosphonate chemistry, In Progress in Inorganic Chemistry; Karlin, K. D., Ed.; John Wiley & Sons:New York,1998, 47:371-510; (d) Vermculen L, Thompson M E. Stable Photoinduced Charge Separation In Layered Viologen Compounds [J]. Nature,1992,358:656-658; (e) Muller C D, Falcou A, Reckefuss N, et al. Multi-colour organic light-emitting displays by solution processing [J]. Nature,2003,421:829-833; (f) Bunzli J C G, Piguet C. Taking advantage of luminescent lanthanide ions [J]. Chemical Society Reviews,2005,34:1048-1077.
    [94](a) Vivani R, Cosnatino F, Costantino U, et al. New Architectures for Zirconium Polyphosphonates with a Tailor-Made Open-Framework Structure [J]. Inorganic Chemistry,2006,45:2388-2390; (b) Lohse D L, Sevov S C. Co2(O3P-CH2-PO3)·H2O:A Novel Microporous Diphosphonate with an Inorganic Framework and Hydrocarbon-Lined Hydrophobic Channels [J]. Angewandte Chemie International Edition,1997,36: 1619-1621.
    [95](a) Ettis H, Naili H, Mhiri T. Synthesis and Crystal Structure of a New Potassium-Gadolinium Cyclotetraphosphate [J]. KGdP4O12, Crystal Growth & Design, 2003,3:599-602; (b) Halasyamani P S, Walker S M, O'Hare D. The First Open Framework Actinide Material (C4N2H12)U2O4F6 (MUF-1) [J]. Journal of the American Chemical Society,1999,121:7415-7416.
    [96]Doran M B, Stuart C L, Norquist A J, et al. [N2C6H14]2[(UO2)6(H2O)2F2(PO4)2(HPO4)4]-4H2O:A New Microporous Uranium Phosphate Fluoride [J]. Chemistry of Materials,2004,16:565-566.
    [97](a) Finn R C, Zubieta J. The synthesis and characterization of two new copper phosphonates:the one-dimensional [Cu(terpy)(HO3PCH2CH2PO3H)]-4H2O and the molecular [{Cu(phen)(H2O)}2(O3PCH2CH2PO3)]·9H2O (terpy=2,2′:6′,2″-terpyridine, phen=l,10-phenanthroline) [J]. Inorganica Chimica Acta,2002,332:191-194; (b) Song H, Zheng L, Liu Y, et al. Syntheses, structures and magnetic properties of two copper(Ⅱ) diphosphonates:[NH3(CH2)2NH3]2[Cu2(hedp)2]-H2O and [NH3CH(CH3)CH2NH3]2[Cu2(hedp)2] (hedp=1-hydroxyethylidenediphosphonate) [J]. Dalton Transactions,2001,3274-3278; (c) Fu R, Hu S, Fu Z, et al. Hydrothermal synthesis and crystal structure of two hetero-transition metal polymers: [Co(1,10-phen)2(V2O4)(O3PCH2CH2CH2PO3)]n and [{Co(1,10-phen)2}2(V4010) (O3PCH2CH2CH2CH2PO3)(2H2O)]n[J]. New Journal of Chemistry,2003,27:230-232; (d) Finn R C, Rarig Jr R S, Zubieta J. Organic-Inorganic Hybrid Materials:Hydrothermal Syntheses and Structural Characterization of Bimetallic Organophosphonate Oxides of the Type Mo/Cu/O/RPO32-/Organoimine [J]. Inorganic Chemistry,2002,41:2109-2123.
    [98](a) Yin G, Gao S, Wang Z, et al. Field-Induced Magnetic Transitions in Metal Phosphonates with Ladderlike Chain Structures:(NH3C6H4NH3)M2(hedpH)2-H2O [M=Fe, Co, Mn, Zn; hedp=C(CH3)(OH)(PO3)2] [J]. Inorganic Chemistry,2005,44:2761-2765; (b) Song H, Zheng L, Lin C, et al. Effects of Organic Templates on Directing the Structures of Nickel(Ⅱ)-l-Hydroxyethylidenediphosphonate Compounds:A Structural and Magnetic Study [J]. Chemistry of Materials,1999,11:2382-2388; (c) Song H, Zheng L, Wang Z, et al. Zinc Diphosphonates Templated by Organic Amines:Syntheses and Characterizations of [NH3(CH2)2NH3]Zn(hedpH2)2·2H2O and [NH3(CH2)nNH3]Zn2(hedpH)2·2H2O (n= 4,5,6) (hedp= 1-Hydroxyethylidenediphosphonate) [J]. Inorganic Chemistry,2001,40:5024-5029; (d) Wang P, Duan Y, Zheng L. One-dimensional metal phosphonates based on 6-phosphononicotinic acid:A structural and magnetic study [J]. Science China Chemistry, 2010,53:2112-2117.
    [99]Yang B, Mao J. New Types of Metal Squarato-phosphonates:Condensation of Aminodiphosphonate with Squaric Acid under Hydrothermal Conditions [J]. Inorganic Chemistry,2005,44:566-571.
    [100]Alberti G, Constnatino U, Allulli S, et al. Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R=organic radical):A new class of materials having layered structure of the zirconium phosphate type [J]. Journal of Inorganic and Nuclear Chemistry,1978,40: 1113-1117.
    [101](a) Yang B, Mao J, Sun Y, et al. Syntheses, Characterizations, and Crystal Structures of Three New Metal Phosphonocarboxylates with a Layered and a Microporous Structure [J]. European Journal of Inorganic Chemistry,2003,4211-4217; (b) Wang P, Cao D, Bao S, et al. Co3(2-OOCC6H4PO3)2(H2O)3-H2O:A layered metal phosphonate showing reversible dehydration-rehydration behavior and ferrimagnetism [J]. Dalton Transactions,2011,40, 1307-1312.
    [102]Drumel S, Janvier P, Bujoli-Doeuff M, et al. Synthesis and Crystal Structure of Two Members of a New Type of Layered Compound:Copper(Ⅱ) Hydroxyphosphonates [J]. Inorganic Chemistry,1996,35:5786-5790.
    [103](a) Bideau J L, Payen C, Palvadeau P, et al. Preparation, Structure, and Magnetic Properties of Copper(Ⅱ) Phosphonates β-Cu11(CH3PO3), an Original Three-Dimensional Structure with a Channel-Type Arrangement [J]. Inorganic Chemistry,1994,33: 4885-4890; (b) Drumel S, Janvier P, Deniaud D, et al. Synthesis and crystal structure of Zn(O3PC2H4NH2), the first functionalized zeolite-like phosphonate [J]. Chemical Communication,1995,1051-1052.
    [104](a) Maniam P, Nather C, Stock N. Systematic Hydrothermal Investigation of Metal Phosphonatobenzenesulfonates by High-Throughput Methods, Eur. J. Inorg. Chem.2010, 3866-3874; (b) Feyand M, Nather C, Rothkirch A, et al. Systematic and In Situ Energy Dispersive X-ray Diffraction Investigations on the Formation of Lanthanide Phosphonatobutanesulfonates:Ln(O3P-C4Hg-SO3)(H2O) (Ln=La-Gd), Inorg. Chem.2010, 49,11158-11163.
    [105]Gao Q, Guillou N, Nogues M, et al. Structure and Magnetism of VSB-2,-3, and-4 or Ni4(O3P-(CH2)-PO3)2·(H2O)n(n=3,2,0), the First Ferromagnetic Nickel(Ⅱ) Diphosphonates:Increase of Dimensionality and Multiple Coordination Changes during a Quasi Topotactic Dehydration [J]. Chemistry of Materials,1999,11:2937-2947.
    [106](a) Shi X, Zhu G, Qiu S, et al. Zn2[(S)-O3PCH2NHC4H7CO2]2:A Homochiral 3D Zinc Phosphonate with Helical Channels [J]. Angewandte Chemie International Edition,2004, 43:6482-6485; (b) Groves J A, Wright P A, Lightfoot P. Two Closely Related Lanthanum Phosphonate Frameworks Formed by Anion-Directed Linking of Inorganic Chains [J]. Inorganic Chemistry,2005,44:1736-1739; (c) Miller S R, Pearce G M, Wright P A, et al. Structural Transformations and Adsorption of Fuel-Related Gases of a Structurally Responsive Nickel Phosphonate Metal-Organic Framework, Ni-STA-12, Ni2L-8H2O, L=O3PCH2NC4H8NCH2PO3 [J]. Journal of the American Chemical Society,2008,130, 15967-15981; (d) Wharmby M T, Mowat J P S, Thompson S P, et al. Extending the Pore Size of Crystalline Metal Phosphonates toward the Mesoporous Regime by Isoreticular Synthesis [J]. Journal of the American Chemical Society,2011,133,1266-1269.
    [107]Vivani R, Cosnattino F, Costnatino U, et al. New Architectures for Zirconium Polyphosphonates with a Tailor-Made Open-Framework Structure [J]. Inorganic Chemistry,2006,45:2388-2390.
    [108](a) Evans O R, Manke D R, Lin W. Homochiral Metal-Organic Frameworks Based on Transition Metal Bisphosphonates [J]. Chemistry of Materials,2002,14:3866-3874; (b) Ngo H L, Lin W. Chiral Crown Ether Pillared Lamellar Lanthanide Phosphonates [J]. Journal of the American Chemical Society,2002,124:14298-14299; (c) Evans O R, Ngo H L, Lin W. Chiral Porous Solids Based on Lamellar Lanthanide Phosphonates [J]. Journal of the American Chemical Society,2001,123:10395-10396.
    [109](a) Fredoueil F, Evain M, Massiot D, et al. Enantiomerically pure zinc phosphonates based on mixed phosphonic acid-phosphine oxide chiral building blocks [J]. Journal of Materials Chemistry,2001,11:1106-1110; (b) Dalko P I, Moisan L. In the Golden Age of Organocatalysis [J]. Angewandte Chemie International Edition,2004,43:5138-5175; (c) Begevig A, Juh K, Kumaragurubaran N, et al. Direct Organo-Catalytic Asymmetric a-Amination of Aldehydes-A Simple Approach to Optically Active a-Amino Aldehydes, a-Amino Alcohols, and a-Amino Acids [J]. Angewandte Chemie International Edition, 2002,41:1790-1793.
    [110]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359:710-712.
    [111]Qiu L, Xu T, Li Z, et al. Hierarchically Micro-and Mesoporous Metal-Organic Frameworks with Tunable Porosity [J]. Angewandte Chemie International Edition,2008, 47:9487-9491.
    [112](a) Soler-Illia G J A A, Azzaroni O. Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks [J]. Chemical Society Reviews, 2011,40; 1107-1150; (b) Yang Z L, Lu Y F, Yang Z Z. Mesoporous materials:tunable structure, morphology and composition [J]. Chemical Communications,2009,2270-2277.
    [113](a) Sayari A, Karra V R, Reddy J S, et al. Synthesis of mesostructured lamellar aluminophosphates [J]. Chemical Communication,1996,411-412; (b) Attard G S, Goltner C G, Corker J M, et al. Liquid-Crystal Templates for Nanostructured Metals [J]. Angewandte Chemie International Edition,1997,36:1315-1317; (c) Braun P V, Osenar P, Stupp S I. Semiconducting superlattices templated by molecular assemblies [J]. Nature, 1996,380:325-328; (d) Ryoo R, Joo S H, Kruk M, et al. Ordered Mesoporous Carbons [J]. Advanced Materials,2001,13:677-681.
    [114]宋艳,李永红,介孔分子筛的应用研究新进展,化学进展,2007,19:659-664.
    [115]王浩,赵大方,李效东,金东杓,郑春满,有序大孔材料的研究进展,硅酸盐学报,2005,34:107-113.
    [116]Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases [J]. Nature,1997,385:420-423.
    [117]Velev O D, Jede T A, Lobo R F, et al. Microstructured Porous Silica Obtained via Colloidal Crystal Templates [J]. Chemistry of Materials,1998,10:3597-3602.
    [118]Imhof A, Pine D J. Ordered macroporous materials by emulsion templating [J]. Nature, 1997,389:948-951.
    [119]李艳华,曾冬铭,黄可龙.有序大孔材料的制备及其应用,化学进展,2008,20:245.252.
    [120]Eddaoudi M, Moler D B, Li H, et al. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Accounts of Chemical Research,2001,34:319-330.
    [121]Matsuda R, Kitaura R, Kitagawa S, et al. Highly controlled acetylene accommodation in a metal-organic microporous material [J]. Nature,2005,436:238-241.
    [122]Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis [J]. Nature,2000,404:982-986.
    [123]Chui S S Y, Lo S M F, Charmant J P H, et al. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science,1999,283:1148-1150.
    [124]Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature,1999,402:276-279.
    [125]Eddaoudi M, Kim J, Rsi N, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage [J]. Science,2002,295: 469-472.
    [126]Chae H K, Siberio-perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature,2004,427:523-527.
    [127]Ferey G, Serre C, Mellot-Draznieks C, et al. A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction [J]. Angewandte Chemie International Edition,2004,43:2-7.
    [128]Ferey G, Mellot-Draznieks C, Serre C, et al. Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area [J]. Science,2005,309:2040-2042.
    [129]2009 Metal-Organic Frameworks issue [J]. Chemical Society Reviews,2009,38: 1213-1504.
    [1]Murugavel R, Choudhury A, Walawalkar M G, et al. Metal Complexes of Organophosphate Esters and Open-Framework Metal Phosphates:Synthesis, Structure, Transformations, and Applications [J]. Chemical Reviews,2008,108:3549-3655.
    [2]Samanamu C R, Zamora E N, Montchamp J L, et al. Synthesis of homo and hetero metal-phosphonate frameworks from bi-functional aminomethylphosphonic acid [J]. Journal of Solid State Chemistry,2008,181:1462-1471.
    [3]Shimizu G K H, Vaidhyanathan R, Taylor J M. Phosphonate and sulfonate metal organic frameworks [J]. Chemical Society Reviews,2009,38:1430-1449.
    [4]Wang M, Ma C, Wen H, et al. Synthesis and characterization of a series of manganese phosphonate complexes with various valences and nuclearity [J]. Dalton Transactions, 2009,994-1003.
    [5]Chandrasekhar V, Senapati T, Dey A, et al. Rational Assembly of Soluble Copper(Ⅱ) Phosphonates:Synthesis, Structure and Magnetism of Molecular Tetranuclear Copper(Ⅱ) Phosphonates [J]. Inorganic Chemistry,2011,50:1420-1428.
    [6]Singleton R, Bye J, Dyson J, et al. Tailoring the photoluminescence properties of transition metal phosphonates [J]. Dalton Transactions,2010,39:6024-6030.
    [7]Feyand M, Nather C, Rothkirch A, et al. Systematic and In Situ Energy Dispersive X-ray Diffraction Investigations on the Formation of Lanthanide Phosphonatobutanesulfonates: Ln(O3P-C4H8-SO3)(H2O) (Ln=La-Gd) [J]. Inorganic Chemistry,2010,49:11158-11163.
    [8]Liu X, Zhou K, Dong J, et al. Homochiral Lanthanide Phosphonates with Brick-Wall-Shaped Layer Structures Showing Chiroptical and Catalytical Properties [J]. Inorganic Chemistry,2009,48:1901-1905.
    [9]Wharmby M T, Mowat J P S, Thompson S P, et al. Extending the Pore Size of Crystalline Metal Phosphonates toward the Mesoporous Regime by Isoreticular Synthesis [J]. Journal of the American Chemical Society,2011,133:1266-1269.
    [10]Maniam P, Nather C, Stock N. Systematic Hydro thermal Investigation of Metal Phosphonatobenzenesulfonates by High-Throughput Methods [J]. Eur. J. Inorg. Chem., 2010,3866-3874.
    [11]Wang P, Duan Y, Wang T, et al. Three-dimensional metal phosphonodicarboxylates with GIS-zeolite topology:syntheses, structures and magnetic studies [J]. Dalton Transactions, 2010,39:10631-10636
    [12]Menelaou M, Daskalakis M, Mateescu A, et al. In depth investigation of the synthesis, structural, and spectroscopic characterization of a high pH binary Co(II)-N, N-bis(phosphonomethyl)glycine species. Association with aqueous speciation studies of binary Co(II)-(carboxy)phosphonate systems [J]. Polyhedron,2011,30:427-437.
    [13]Cabeza A, Aranda MAG, Bruque S, New lead triphosphonates:synthesis, properties and crystal structures [J]. Journal of Materials Chemistry,1999,9:571-578.
    [14]Martinez-Tapia H S, Cabeza A, Bruque S, et al. Synthesis and Structure of Na2[(HO3PCH2)3NH]·1.5H2O:The First Alkaline Triphosphonate [J]. Journal of Solid State Chemistry,2000,151:122-129.
    [15]Sharma C V K, Clearfield A, Three-Dimensional Hexagonal Structures from a Novel Self-Complementary Molecular Building Block [J]. Journal of the American Chemical Society,2000,122:4394-4402.
    [16]Sharma C V K, Clearfield A, Cabeza A, et al. Deprotonation of Phosphonic Acids with M2+Cations for the Design of Neutral Isostructural Organic-Inorganic Hybrids [J]. Journal of the American Chemical Society,2001,123:2885-2886.
    [17]Cabeza A, Bruque S, Guagliardi A, et al. Two New Organo-Inorganic Hybrid Compounds: Nitrilophosphonates of Aluminum and Copper [J]. Journal of Solid State Chemistry 2001, 160:278-286.
    [18]Cecconi F, Ghilardi C A, Luis P A L, et al. Complexes of the tripodal nitrilotrimethylenetrisphosphonic (H6L) and P, P(?) P(?)-triphenylnitrilotrimethylenetrisphosphinic (H3Lo) acids with the copper(II) ion. Synthesis and characterization of [Hpy][Cu(H3L)(H2O)] and [Cu(HLo)(py)]2-2Me2CO [J]. Dalton Transactions,2001,211-217.
    [19]Cabeza A, Ouyang X, Sharma C V K, et al. Complexes Formed between Nitrilotris(methylenephosphonic acid) and M2+Transition Metals:Isostructural Organic-Inorganic Hybrids [J]. Inorganic Chemistry 2002,41:2325-2333.
    [20]Mao J, Wang Z, Clearfield A, Hydrothermal synthesis, characterization and crystal structures of two new zinc(II) phosphonates:Zn2[(O3PCH2)2NHCH2CO2] and Zn2[HO3PCH2NH(CH2PO3)2] [J]. New Journal of Chemistry,2002,26:1010-1014.
    [21]Fu R, Hu S, Wu X. Syntheses, structures, thermal stabilities and luminescence of two new 3D zinc phosphonates [J]. Journal of Solid State Chemistry,2011,184:159-163.
    [22]Demadis K D, Mantzaridis C, Lykoudis P. Effects of Structural Differences on Metallic Corrosion Inhibition by Metal-Polyphosphonate Thin Films [J]. Industrial & Engineering Chemistry Research,2006,45:7795-7800.
    [23]Bishop M, Bott S G, Barron A R, A New Mechanism for Cement Hydration Inhibition: Solid-State Chemistry of Calcium Nitrilotris(methylene)triphosphonate [J]. Chemistry of Materials,2003,15:3074-3088.
    [24]Cunha-Silva L, Mafra L, Ananias D, et al. Photoluminescent Lanthanide-Organic 2D Networks:A Combined Synchrotron Powder X-ray Diffraction and Solid-State NMR Study [J]. Chemistry of Materials,2007,19:3527-3538.
    [25]Demadis K D, Katarachia S D, Raptis R G, et al. Alkaline Earth Metal Organotriphosphonates:Inorganic-Organic Polymeric Hybrids from Dication-Dianion Association [J]. Crystal Growth & Design,2006,6:836-838.
    [26]Tong F, Zhu Y, Sun Z, et al. Mixed-solvothermal syntheses, structures and luminescence properties of two new Zn(II) phosphonates with layered and 3D framework structures [J]. Inorganica Chimica Acta,2011,368:200-206.
    [27]Wang P, Cao D, Bao S, et al. Co3(2-OOCC6H4PO3)2(H2O)3·-H2O:A layered metal phosphonate showing reversible dehydration-rehydration behavior and ferrimagnetism [J]. Dalton Transactions,2011,40:1307-1312.
    [28]Wang P, Duan Y, Cao D, et al., Metal carboxylate-phosphonates containing flexible N-donor co-ligands [J]. Dalton Transactions,2010,39,4559-4565
    [29]Wang P, Bao S, Zhang S. et al. Pillared Layered Metal Phosphonates Showing Field-Induced Magnetic Transitions [J]. European Journal of Inorganic Chemistry,2010, 895-901.
    [30]Shankar R, Jain A, Kociok-Kohn G, et al. Diorganotin-Based Coordination Polymers Derived from Sulfonate/Phosphonate/Phosphonocarboxylate Ligands [J]. Inorganic Chemistry,2011,50:1339-1350.
    [31]Fredoueil F, Evain M, Massiot D, et al. Synthesis and characterization of two new cadmium phosphonocarboxylates Cd2(OH)(O3PC2H4CO2) and Cd3(O3PC2H4CO2)2·2H2O [J]. Dalton Transactions,2002,1508-1512.
    [32](a) Yang B, Prosvirin A V, Guo Y, et al. Co[H02C(CH2)3NH(CH2P03H)2]2:A New Canted Antiferromagnet [J]. Inorganic Chemistry,2008,47:1453-1459; (b) Wang P, Duan Y, Cao D, et al. Metal carboxylate-phosphonates containing flexible N-donor co-ligands, Dalton Transactions,2010,39:4559-4565; (c) Cao D, Hou S, Li Y., et al. Lanthanide Carboxyphosphonates Ln(O3PCH2-NC5H9-COO)(H2O)2·xH2O with Open Framework Structures Containing Parallelogram-like Channels [J]. Crystal Growth & Design,2009,9: 4445-4449.
    [33]Shi X, Zhu G, Qiu S, et al. Zn2[(S)-O3PCH2NHC4H7CO2]2:A Homochiral 3D Zinc Phosphonate with Helical Channels [J]. Angewandte Chemie International Edition,2004, 43:6482-6485.
    [34]Yang B, Mao J. Homochiral cobalt(Ⅱ) and strontium(Ⅱ) amino-carboxylate-phosphonate hybrids [J]. Journal of Molecular Structure,2007,830:78-84.
    [35]Yang B, Mao J, Sun Y, et al. Syntheses, Characterizations, and Crystal Structures of Three New Metal Phosphonocarboxylates with a Layered and a Microporous Structure [J]. European Journal of Inorganic Chemistry,2003,4211-4217.
    [36](a)董大朋.2-羟基乙酰基膦酸/M(II)配位聚合物的设计合成、结构表征及性质研究,辽宁师范大学硕士论文,2005;(b)孟蕾.胺基二膦酸类金属膦酸盐配位聚合物的设计合成、结构表征及性质研究,辽宁师范大学硕士论文,2005.
    [37]Sun Z, Cui L, Liu Z, et al. Hydrothermal synthesis and crystal structure of a novel lead(II) phosphonate containing trifunctional phosphonate anions:Pb4O[O3PCH2-NC4H7-CO2]2 [J]. Inorganic Chemistry Communication,2006,9:1121-1124.
    [38]Yue Q, Yang J, Li G, et al. Homochiral Porous Lanthanide Phosphonates with ID Triple-Strand Helical Chains:Synthesis, Photoluminescence, and Adsorption Properties [J]. Inorganic Chemistry,2006,45:4431-4439.
    [39]Sheldrick G M. SHELXTL-NT, Version 5.1, Bruker AXS Inc. Madison, WI,1997.
    [1]Murugavel R, Choudhury A, Walawalkar M G, et al. Metal Complexes of Organophosphate Esters and Open-Framework Metal Phosphates:Synthesis, Structure, Transformations, and Applications [J]. Chemical Reviews,2008,108:3549-3655.
    [2]Clearfield A. Unconventional metal organic frameworks:porous cross-linked phosphonates [J]. Dalton Transactions,2008,6089-6102.
    [3]Ferey G. Some suggested perspectives for multifunctional hybrid porous solids [J]. Dalton Transactions,2009,4400-4415.
    [4]Natarajan S, Mandal S. Open-Framework Structures of Transition-Metal Compounds [J]. Angewandte Chemie International Edition,2008,47,4798-4828.
    [5](a) Yu J, Xu R. Rich Structure Chemistry in the Aluminophosphate Family [J]. Acc. Chem. Res.,2003,36:481-490, and references therein; (b) Yu J, Xu R. Insight into the construction of open-framework aluminophosphates [J]. Chemical Society Reviews,2006, 35:593-604, and references therein.
    [6]Chippindale A M, Brech S J, Cowley A R. Novel Pillared Layer Structure of the Organically Templated Indium Phosphate [In8(HPO4)14(H2O)6](H2O)5(H3O)(C3N2H5)3 [J]. Chemistry of Materials,1996,8:2259-2264.
    [7]Thirumurugan A, Natarajan S. Synthesis and structure of a new three-dimensional indium phosphate with 16-membered one-dimensional channels [J]. Dalton Transactions,2003,17: 3387-3391.
    [8]Williams I D, Yu J, Du H, et al. A Metal-Rich Fluorinated Indium Phosphate, 4[NH3(CH2)3NH3]·3[H3O]·[In9(PO4)6(HPO4)2F16]·3H2O, with 14-Membered Ring Channels [J]. Chemistry of Materials,1998,10:773-776.
    [9]Lii K, Huang Y. Synthesis and Structures of [In4(4,4'-bipy)3(HPO4)4(H2PO4)4]-4H2O and In4(4,4'-bipy)3(HPO4)4(H2PO4)4, Indium Phosphates with a Pillared Layer Structure [J]. Inorganic Chemistry,1999,38:1348-1350.
    [10](a)陈超.具有开放骨架结构的磷酸铟、磷酸钛微孔晶体的水热合成研究,吉林大学博士论文,2006;(b)杜红宾.新型无机微孔晶体的合成与表征,吉林大学博士论文,1997.
    [11]伊卓.新型磷酸铟(亚磷酸铟)微孔晶体的水热合成研究,吉林大学硕士论文,2005.
    [12]王丽.新型金属亚磷酸盐微孔化合物的合成与表征,吉林大学博士论文,2006.
    [13]刘成站.微孔亚磷酸铟和磷酸铟晶体的水热合成研究,吉林大学博士论文,2007.
    [14]Huang L, Song T, Fan Y, et al. Hydrothermal syntheses, characterizations of novel three-dimensional indium phosphite and indium phosphite-phosphate with intersecting 8-membered ring channels:[In3(H2PO3)3(HPO3)4]-(trans-C6N2H16) and [In6(HPO3)8(H2PO3)5(H2PO4)]·(C3N2Hi2)2 [J]. Microporous and Mesoporous Materials, 2010,132:409-413.
    [15]Huang L, Kao H, Lii K. Novel Vanadium(V) Compounds with a Layer Structure: Synthesis, Crystal Structures, and Solid State NMR Spectroscopy of [(V02)2(4,4'-bpy)0.5(4,4'-Hbpy)(X04)]·H2O(X=P and As) [J]. Inorganic Chemistry,2002, 41:2936-2940.
    [16]Yang Y, Wang S. Intrinsic Yellow Light Phosphor:An Organic-Inorganic Hybrid Gallium Oxalatophosphate with Hexameric Octahedral Ga6(OH)4O26 Cluster [J]. Journal of the American Chemical Society,2008,130:1146-1147.
    [17]Liao Y, Liao F, Chang W, et al. A Zeolitic Organo-Metallophosphate Hybrid Material with Bimodal Porosity [J]. Journal of the American Chemical Society,2004,126:1320-1321.
    [18]Rao CNR, Natarajan S, Vaidhyanathan R. Metal Carboxylates with Open Architectures [J]. Angewandte Chemie International Edition,2004,43:1466-1496.
    [19]Song J, Mao J. New Types of Blue, Red or Near IR Luminescent Phosphonate-Decorated Lanthanide Oxalates [J]. Chemistry A European Journal,2005,11:1417-1424.
    [20]Wang C, Wu Y, Hou C, et al. Synthesis, Characterization, and Properties of Organically Templated Lanthanide Oxalatophosphates with a Three-Dimensional Honeycomb Structure: (H4APPIP)[Ln3(C2O4)5.5(H2PO4)2]·5H2O (Ln=Er-Lu, APPIP=1,4-Bis(3-aminopropyl) piperazine) [J]. Inorganic Chemistry,2009,48:1519-1523.
    [21]Mandal S, Natarajan S. Inorganic-organic hybrid structure:Synthesis, structure and magneticproperties of a cobalt phosphite-oxalate, [C4N2H12] [Co4(HPO3)2(C2O4)3] [J]. Journal of Solid State Chemistry,2005,178:2376-2382.
    [22](a) Mandal S, Pati S K, Green M A, et al. Inorganic-Organic Hybrid Compounds: Synthesis, Structure, and Magnetic Properties of the First Organically Templated Iron Oxalate-Phosphite, [C4N2H)2][Fe411(HPO3)2(C2O4)3], Possessing Infinite Fe-O-Fe Chains [J]. Chemistry of Materials,2005,17:2912-2917; (b) Mandal S, Natarajan S. Inorganic-Organic Hybrid Structures:Open-Framework Iron Phosphite-Oxalates of Varying Dimensionality [J]. Chemistry A European Journal,2007,13:968-977.
    [23]Wang C, Wu Y, Chang Y, et al. Luminescent Lanthanide Oxalatophosphites with a 3D Framework Structure:[Ln(H20)(C204)0.5(HP03)]-H20 (Ln=Pr, Nd, and Sm-Lu) [J]. Chemistry of Materials,2008,20:2857-2859.
    [24](a) Mandal S, Green M A, Pati S K, et al. Synthesis, structure and magnetic properties of an inorganic-organic hybrid compound [J]. Journal of Materials Chemistry,2007,17: 980-985; (b) Ramaswamy P, Mandal S, Natarajan S. Synthesis, structure and magnetic behavior of a new three-dimensional Manganese phosphite-oxalate: [C2N2H10][Mn211(OH2)2(HP03)2(C204)] [J]. Journal of Solid State Chemistry,2009,182: 2491-2496; (c) Lin Z, Nayek H P, Dehnen S. Flux synthesis of three-dimensional open-framework zinc phosphite and manganese phosphite-oxalate with 12-ring channels [J]. Microporous and Mesoporous Materials,2009,126:95-100.
    [25]Zhou G, Yang Y, Fan R, et al. The first organically templated gallium phosphite-oxalates: Synthesis, structures, and characterization [J]. Solid State Science,2010,12:873-881.
    [26]Ramaswamy P, Hegde N N, Prabhu R, et al. Synthesis, Structure, and Transformation Studies in a Family of Inorganic-Organic Hybrid Framework Structures Based on Indium [J]. Inorganic Chemistry,2009,48:11697-11711.
    [27]Li H, Zhang L, Liu L, et al. Organic template-directed indium phosphite-oxalate hybrid material:Synthesis and characterization of a novel 3D|C6H14N2|[In2(HPO3)3(C2O4)] compound with intersecting channels [J]. Inorganic Chemistry Communication,2009,12: 1020-1023.
    [28]Sheldrick G M. SHELXTL-NT, Version 5.1, Bruker AXS Inc. Madison, WI,1997.
    [29]Baerlocher Ch, McCusker L B. Database of Zeolite Structures: http://www. iza-structure. org/databases/
    [1]Christensen K E, Shi L, Conradsson T, et al. Design of Open-Framework Germanates by Combining Different Building Units [J]. Journal of the American Chemical Society,2006, 128:14238-14239. And reference therein
    [2]Corma A, Diaz-Cabanas M J, Jiang J. Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four-and double three-rings [J]. Proceedings of the National Academy of Sciences,2010,107:13997-14002. And reference therein.
    [3]Jiang J, Yu J, Corma A. Extra-Large-Pore Zeolites:Bridging the Gap between Micro and Mesoporous Structures [J]. Angewandte Chemie International Edition,2010,49, 3120-3145. And reference therein.
    [4]Lin Z, Zhang J, Zhao J, et al. An Germanate Framework Containing 24-Ring Channels, Ni-Ge Bonds, and Chiral [Ni@Ge14O24(OH)3] Cluster Motifs Transferred from Chiral Metal Complexes [J]. Angewandte Chemie International Edition,2005,44:6881-6884.
    [5]Walton R I, Millange F, Loiseau T, et al. Crystallization of a Large-Pore Three-Dimensional Gallium Fluorophosphate under Mild Conditions [J]. Angewandte Chemie International Edition,2000,39:4552-4555. And reference therein.
    [6]Guillou N, Gao Q, Forster P M, et al. Nickel(Ⅱ) Phosphate VSB-5:A Magnetic Nanoporous Hydrogenation Catalyst with 24-Ring Tunnels [J]. Angewandte Chemie International Edition,2001,40:2831-2834. And reference therein.
    [7]Lin C, Wang S, Lii K. A Novel Porous Gallium Phosphate Containing 24-Ring Channels [J]. Journal of the American Chemical Sociey,2001,123:4649-4650.
    [8]Yang Y, Wang S. Intrinsic Yellow Light Phosphor:An Organic-Inorganic Hybrid Gallium Oxalatophosphate with Hexameric Octahedral Ga6(OH)4O26 Cluster [J]. Journal of the American Chemical Sociey,2008,130:1146-1147.
    [9]Lai Y, Lii K, Wang S.26-Ring-Channel Structure Constructed from Bimetal Phosphite Helical Chains [J]. Journal of the American Chemical Sociey,2007,129:5350-5351.
    [10]Huang H, Wang S. An extraordinary boron-mediated 16R-channel-containing trivalent vanadium phosphite with unique solid state redox properties [J]. Chemical Communication, 2010,46:6141-6143.
    [11]梁静.空旷骨架结构的亚磷酸锌/磷酸锌化合物的水热合成与表征,吉林大学博士论文,2006.
    [12]李莉.新型金属亚磷酸盐、磷酸盐化合物的合成、结构与性能研究,吉林大学博士论文,2010.
    [13]Xing H, Yang W, Su T, et al. Ionothermal Synthesis of Extra-Large-Pore Open-Framework Nickel Phosphite 5H3O·[Ni8(HPO3)9Cl3]·1.5H2O:Magnetic Anisotropy of the Antiferromagnetism [J]. Angewandte Chemie International Edition,2010,49: 2328-2331.
    [14]Yang Y, Li N, Song H, et al. Metal Phosphite Containing 24-Ring Channels with 10-Ring Windows [J]. Chemistry of Materials,2007,19:1889-1891.
    [15](a)杜红宾.新型无机微孔晶体的合成与表征,吉林大学博士论文,1997;(b) Williams I D, Yu J, Du H, et al. A Metal-Rich Fluorinated Indium Phosphate, 4[NH3(CH2)3NH3]·3[H3O]·[In9(PO4)6(HPO4)2F16]·3H2O, with 14-Membered Ring Channels [J]. Chemistry of Materials,1998,10:773-776.
    [16]陈超.具有开放骨架结构的磷酸铟,磷酸钛微孔晶体的水热合成研究,吉林大学博士论文,2006.
    [17]伊卓.新型磷酸铟(亚磷酸铟)微孔晶体的水热合成研究,吉林大学硕士论文,2005.
    [18]Chippindale A M, Brech S J, Cowley A R. Novel Pillared Layer Structure of the Organically Templated Indium Phosphate [In8(HPO4)14(H2O)6](H2O)5(H3O)(C3N2H5)3[J]. Chemistry of Materials,1996,8:2259-2264.
    [19]Thirumurugan A, Natarajan S. Synthesis and structure of a new three-dimensional indium phosphate with 16-membered one-dimensional channels [J]. Dalton Transactions,2003,17: 3387-3391.
    [20]Sheldrick G M. SHELXTL-NT, Version 5.1, Bruker AXS Inc. Madison, WI,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700