茶树次黄嘌呤核苷酸脱氢酶基因克隆及其与咖啡碱含量的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咖啡碱是嘌呤碱中最重要的一种,是茶树中的次级代谢产物,对茶叶的滋味起重要的作用,对于咖啡碱代谢途径的研究有重要的意义。目前,代谢途径中核心途径的关键酶基因已经被克隆,而供体途径中的关键酶次黄嘌呤核苷酸脱氢酶(IMPDH)只有一条cDNA被克隆。因此,获得次黄嘌呤核苷酸脱氢酶的完整基因信息,并分析其与咖啡碱含量的关系,可以为茶树咖啡碱含量的遗传改良打下理论基础。本文的主要研究结果如下:
     1.根据NCBI登录的TIDH (EU106658)基因(编码次黄嘌呤核苷酸脱氢酶)cDNA设计引物,克隆获得了5条基因组DNA的中间片段,然后获得TIDH4全长DNA序列;并克隆了3条新的cDNA,它们之间差异很小,其中一条开放阅读框长1,335bp,编码444个氨基酸,推测分子量为46.7KD,理论等电点值为6.62,进化树分析表明茶树TIDH基因cDNA与葡萄亲缘关系最近。
     将基因组DNA与cDNA进行比对,结果显示TIDH1和TIDH2分别与cDNA2-13和2-15完全匹配,两个基因片段都含有4个外显子和3个内含子,推测TIDH1和TIDH2两个基因片段在茶树中是表达的。
     2.选择TIDH3基因分析核苷酸多样性,在336~1094bp区域共发现48个SNP位点,其中转换28个,包括A-G15个和C-T13个;颠换20个,包括A-C7个、A-T3个、C-G6个和T-G4个。
     总核苷酸多样性指数π和θ分别为0.006和0.012。同义突变多样性πsyn=0.00932大于非同义突变多样性πnonsyn=0.00609,说明TIDH基因的同义突变的遗传变异程度大于非同义突变。Ka/Ks=0.5962<1,认为TIDH基因受到负向选择作用。对TIDH基因作连锁不平衡分析,当显著性值P<0.05时,有20.8%(25个)的位点间存在显著的连锁不平衡。当采用更严格的P<0.001时,则位点间显著连锁不平衡数降低为20个,占总数的16.7%。
     从前期建立的中国茶树资源核心种质中选取咖啡碱含量有代表性的95份资源进行了二个年度、春秋二季的咖啡碱含量HPLC测定结果表明,大部分材料的咖啡碱含量在2.5%~4.5%,,四次重复的平均值为3.5%。变异系数在15%~19%,说明茶叶咖啡碱含量在不同年份与季节都是比较稳定。
     基于候选基因策略的关联分析结果显示,当考虑群体结构时,找到两个SNP位点与咖啡碱含量显著相关,位点效应值为10.43%和6.40%。
Caffeine is one of the most important purine alkaloids and they are secondary metabolites in teaplant, as they play an important role in flavour of tea. It’s of significance to study the metabolicpathway of caffeine. Now, the key enzymes of core pathway have already been cloned, while only onecDNA of IMP dehydrogenase (IMPDH: the key enzyme) was cloned in the provider pathway. Sogetting the full gene information of IMPDH and analysing the gene’s relationship with caffeinecontent will lay a foundation for genetic improvement of caffeine content in tea. The main results areas follow:
     1. The primers were designed based on TIDH (which codes for IMPDH) cDNA (EU106658)published in the NCBI. Five internal fragments of genomic DNA were cloned. After that, the fulllength DNA of TIDH4was cloned.Meanwhile, three new cDNA were cloned. As there is littledifference between the3cDNAs, we select one to analyse its bioinformatic information. It has a1,335bp coding region, encoding444amino acids with the putative molecular weight of46.7KD andtheoretical isoelectric point6.62. The tea plant has much closer relationship with Vitis vinifera in thephylogenetic analysis of the TIDH cDNA.
     When alignment between DNA and cDNA, TIDH1matched with cDNA2-13and TIDH2withcDNA2-15, and both DNA had4exons and3introns. So it is considered that TIDH1and TIDH2areexpressed in tea plant.
     2. TIDH3was selected to analyse nucleotide diversity,48SNPs were found in336~1094bpregion, including28transitions (15A-G and13C-T),20transversions(7A-C,3A-T,6C-G and4T-G).
     The nucleotide diversityπ=0.006and θ=0.012, respectively. The diversity at synonymous sites,πsyn=0.00932, was larger than diversity at non-synonymous sites, πnonsyn=0.00609, that indicated thegenetic variation level of synonymous mutation is larger than that of non-synonymous mutation.Ka/Ks=0.5962was less than one, indicating the action of purifying selection. The linkagedisequilibrium of SNPs was detected, when the significance value was lower than0.05, there were20.8%sites being significantly linkage disequilibrium; when the significance value was lower than0.001, the number of that dropped to16.7%.
     A set of95accession tea genetic resources which are typical in caffeine content was selectedfrom core collection of Chinese tea germplasm established before. The caffeine content of twoseasons of spring and autumn in two years was tested by HPLC method. The result showed: thecaffeine content of most germplasms was2.5%~4.5%, the average content of four duplicates was3.5%. The CV is15%~19%, which means the caffeine content in tea is stable in differerent years andreasons.
     The results of association analysis based on candidate genes showed that, when the result ofpopulation structure was considered, two SNPs were found to be significantly correlated with caffeine content by association analysis, their effect value were10.43%and6.40%respectively.
引文
1.陈亮,杨亚军,虞富莲.茶树种质资源描述规范和数据标准[M].北京:中国农业出版社,2005.
    2.冯艳飞,梁月荣.茶树S-腺苷甲硫氨酸合成酶基因的克隆和序列分析[J].茶叶科学,2001,21(1):21-25.
    3.李叶云,芦原坦.茶树咖啡碱生物合成相关酶基因表达研究[J].中国茶叶,2009,31(6):20-21.
    4.刘希华.欧洲黑杨幼苗氮高效基因型及SNPs标记筛选研究[博士学位论文]南京:南京林业大学,2010.
    5.乔婷婷.茶树资源遗传多样性及其表型性状关联EST-SSR位点的初步鉴定[硕士学位论文]北京:中国农业科学院,2010.
    6.宛晓春.茶叶生物化学[M].北京:中国农业出版社,2003:80.
    7.王荣焕,王天宇,黎裕.关联分析在作物种质资源分子评价中的应用[J].植物遗传资源学报,2007,8(3):366-372.
    8.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展[J].作物学报,2007,(04):523-530.
    9.叶创兴,林永成,苏建业,宋晓虹,张宏达.苦茶的嘌呤生物碱[J].中山大学学报:自然科学版,1999,38(5):82-86.
    10.余有本.茶树中咖啡碱合成酶基因的抑制及在其它生物体中的表达[博士学位论文].安徽:安徽农业大学,2004.
    11.张广辉,梁月荣,陆建良,董俊杰.茶树咖啡因合成酶基因RNA干涉表达载体构建[J].茶叶科学,2006,26(4):243-248.
    12.张宏达,叶创兴,张润梅,马应丹,曾沛.中国发现新的茶叶资源一一可可茶[J].中山大学学报:自然科学版,1988(3):131-133.
    13. Anaya AL, Cruz-Ortega R, Waller GR. Metabolism and ecology of purine alkaloids [J]. Frontiersin Bioscience,2006,11:2354-2370.
    14. Ashihara H, Crozier A. Biosynthesis and metabolism of caffeine and related purine alkaloids inplants [J]. Advances in Botanical Research,1999,30:118-205.
    15. Ashihara H, Crozier A. Caffeine: a well known but little mentioned compound in plant science [J].Trends in Plant Science,2001,6(9):407-413.
    16. Ashihara H, Gillies FM, Crozier A. Metabolism of caffeine and related purine alkaloids in leavesof tea (Camellia sinensis L.)[J]. Plant Cell Physiology,1997,38(4):413-419.
    17. Ashihara H, Kato M, Ye C-X. Biosynthesis and metabolism of purine alkaloids in leaves of Cocoatea (Camellia ptilophylla)[J]. Journal of Plant Research,1998,111:599-604.
    18. Ashihara H, Kubota H. Patterns of adenine metabolism and caffeine biosynthesis in different partsof tea seedlings [J]. Physiologia Plantarum,1986,68(2):275-281.
    19. Ashihara H, Monteiro AM, Gillies FM, Crozier A. Biosynthesis of caffeine in leaves of coffee [J].Plant Physiology,1996a,111(3):747-753.
    20. Ashihara H, Monteiro AM, Moritz T, Gillies FM, Crozier A. Catabolism of caffeine and relatedpurine alkaloids in leaves of Coffea arabica L.[J]. Planta,1996b,198(3):334-339.
    21. Ashihara H, Suzuki T. Distribution and biosynthesis of caffeine in plants [J]. Frontiers inBioscience,2004,9:1864-1876.
    22. Ashihara H. Metabolism of alkaloids in coffee plants [J]. Brazilian Journal of Plant Physiology,2006,18(1):1-8.
    23. Ashihara H. Purine metabolism and the biosynthesis of caffeine in maté leaves [J]. Phytochemistry,1993,33(6):1427-1430.
    24. Athayde ML, Coelho GC, Schenkel EP. Caffeine and theobromine in epicuticular wax of Ilexparaguariensis A. St.-Hil [J]. Phytochemistry,2000,55(7):853-857.
    25. Bailey BA, Bae H, Strem MD, Antúnez de Mayolo G, Guiltinan MJ, Verica JA, Maximova SN,Bowers JH. Developmental expression of stress response genes in Theobroma cacao leaves andtheir response to Nep1treatment and a compatible infection by Phytophthora megakarya [J].Plant Physiology and Biochemistry,2005,43(6):611-622.
    26. Baumann TW, Schulthess BH, K H nni Guaraná (Paullinia cupana) rewards seed disperserswithout intoxicating them by caffeine [J]. Phytochemistry,1995,39(5):1063-1070.
    27. Baumann TW, Wanner H. The1,3,7,9-tetramethyluric acid content of cupu (Theobroma.grandiflorum)[J]. Acta Amazonica,1980,10:425.
    28. Facchin PJ. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, andmetabolic engineering applications [J]. Annual Review of Plant Physiology and Plant MolecularBiology,2001,52:29-66.
    29. Flint-Garcia SA, Thuillet AC, Yu JM, Pressoir G, Romero SM, Mitchell SE, Doebley J, KresovichS, Goodman MM, Buckler ES. Maize association population: a high-resolution platform forquantitative trait locus dissection [J]. The Plant Journal,2005,44(6):1054-1064.
    30. Fujimori N, Ashihara H. Adenine metabolism and the synthesis of purine alkaloids in flowers ofCamellia [J]. Phytochemistry,1990,29(11):3513-3516.
    31. Fujimori N, Ashihara H. Biosynthesis of theobromine and caffeine in developing leaves of CoffeaArabica [J]. Phytochemistry,1994,36(6):1359-1361.
    32. Guillet-Claude C, Birolleau-Touchard C, et al. Genetic diversity associated with variation in silagecorn digestibility for three O-methyltransferase genes involved in lignin biosynthesis. TAGTheoretical and Applied Genetics,2004,110(1):126-135.
    33. Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants:Present status and future prospects[J]. Plant Molecular Biology,2005,57:461-485.
    34. Hammerstone Jr JF, Romanczyk Jr LJ, Aitkent WM: Purine alkaloid distribution with Herraniaand Theorbroma [J]. Phytochemistry,1994,35(5):1237-1240.
    35. Hill W, Robertson A. Linkage disequilibrium in finite populations. TAG Theoretical and AppliedGenetics,1968,38(6):226-231.
    36. Kato M, Kanehara T, Shimizu H, Suzuki T, Gillies FM, Crozier A, Ashihara H. Caffeinebiosynthesis in young leaves of Camellia sinensis: in vitro studies on N-methyltransferaseactivity involved in the conversion of xanthosine to caffeine [J]. Physiologia Plantarum,1996,98(3):629-636.
    37. Kato M, Mizuno K, Crozie A, Fujimura T, Ashihara H. A gene encoding caffeine synthase fromtea leaves [J]. Nature,2000,406(6799):956–957.
    38. Kato M, Mizuno K, Fujimura T, Iwama M, Irie M, Crozier A, Ashihara H. Purification andcharacterization of caffeine synthase from tea leaves [J]. Plant Physiology,1999,120:579-586
    39. Keya CA, Crozier A, Ashihara H. Inhibition of caffeine biosynthesis in tea (Camellia sinensis) andcoffee (Coffea arabica) plants by ribavirin [J]. FEBS Letters,2003,554(3):473-477.
    40. Koshiishi C, Kato A, Yama S, Crozier A, Ashihara H. A new caffeine biosynthetic pathway in tealeaves: utilisation of adenosine released from the S-adenosyl-methionine cycle [J]. FEBS Letters,2001,499(1-2):50-54.
    41. Koyama Y, Tomoda Y, Kato M, Ashihara H. Metabolism of purine bases, nucleosides andalkaloids in theobromine-forming Theobroma cacao leaves[J]. Plant Physiology andBiochemistry,2003,41(11-12):977-984.
    42. Kretschmar JA, Baumann TW. Caffeine in Citrus flowers[J]. Phytochemistry,1999,52(1):19-23.
    43. Mazzafera P, Carvalho A. Breeding for low seed caffeine content of coffee (Coffea L.) byinterspecific hybridization [J]. Euphytica,1992,59:55-60.
    44. Mazzafera P. Caffeine, theobromine and theophylline distribution in Ilex paraguariensis [J].Revista Brasileira de Fisiologia Vegetal,1994,6:149-151.
    45. Mazzafera P. Catabolism of caffeine in plants and microorganisms [J]. Frontiers in Bioscience,2004,9:1348-1359.
    46. McCarthy AA, Biget L, Lin C, Petiard V, Tanksley SD, McCarthy JG.. Cloning, expression,crystallization and preliminary X-ray analysis of the XMT and DXMT N-methyltransferasesfrom Coffea canephora (robusta)[J]. Acta Crystallographica. Section F, Structural Biology andCrystallization Communications,2007,63:304-307.
    47. Meurer-Grimes B, Berkov A, Beck H. Theobromine, theophylline, and caffeine in42samples andproducts of guaraná (Paullinia Cupana, Sapindaceae)[J]. Economic Botany,1998,52(3):293-301.
    48. Mizuno K, Kato M, Irino F, Yoneyama N, Fujimura T, Ashihara H. The first committed stepreaction of caffeine biosynthesis:7-methylxanthosine synthase is closely homologous to caffeinesynthases in coffee (Coffea arabica L.)[J]. FEBS Letters,2003a,547(1-3):56-60.
    49. Mizuno K, Okuda A, Kato M, Yoneyama N, Tanaka H, Ashihara H, Fujimura T. Isolation of anew dual-functional caffeine synthase gene encoding an enzyme for the conversion of7-methylxanthine to caffeine from coffee (Coffea arabica L.)[J]. FEBS Letters,2003b,534(1-3):75-81.
    50. Mizuno K, Tanaka H, Kato M, Ashihara H, Fujimura T.2001. cDNA cloning of caffeine(theobromine) synthase from coffee (Coffea arabica L.) In: International Scientific Colloquiumon Coffee. ASIC, Paris,815–818.
    51. Moisyadi S, Neupane KR, Stiles JI. Cloning and characterization of a cDNA encodingxanthosine-N7-methyltransferase from coffee (Coffea arabica)[J]. Acta Horticulturae,1998,461:367-378.
    52. Nagata T, Sakai S. Differences in caffeine, flavanols and amino acids contents in leaves ofcultivated species of Camellia [J]. Japanese Journal of Breeding,1986,34(4):459-467.
    53. Nagata T, Sakai S. Purine base pattern of Camellia irrawadiensis [J]. Phytochemistry,1985,24(10):2271-2272.
    54. Negishi O, Ozawa T, Imagawa H. N-methylnucleosidase from tea leaves [J]. Agricultural andBiological Chemistry,1988,52:169-175.
    55. Negishi O, Ozawa T, Imagawa H. Methylation of xanthosine by tea-leaf extracts and caffeinebiosynthesis [J]. Agricultural and Biological Chemistry,1985,49(3):887-890.
    56. Ogawa M, Herai Y, Koizumi N, Kusano T, Sano H.7-Methylxanthine methyltransferase of coffeeplants [J]. The Journal of Biological Chemistry,2001,276(11):8213-8218.
    57. Ogita S, Uefuji H, Morimoto M, Sano H. Application of RNAi to confirm theobromine as themajor intermediate for caffeine biosynthesis in coffee plants with potential for construction ofdecaffeinated varieties[J]. Plant Molecular Biology,2004,54:931-941.
    58. Petermann JB, Baumann TW. Metabolic relations between methylxanthines and methyluric acidsin Coffea L.[J]. Plant Physiology.1983,73(4):961–964.
    59. Rakotomalala JJ, Cros E, Clifford MN, Charrier A. Caffeine and theobromine in green beans fromMascarocoffea [J]. Phytochemistry,1992,31(4):1271-1272.
    60. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S,Goodman MM, Buckler ES4th. Structure of linkage disequilibrium and phenotypic associationsin the maize genome[J]. Proceedings of the National Academy of Sciences of the United Statesof America,2001,98(20):11479-11484.
    61. Senanayake UM, Wijesekera OB. Theobromine and caffeine content of the cocoa bean during itsgrowth [J]. Journal of the Science of Food and Agriculture,1971,22(5):262-263.
    62. Stasolla C, Katahira R, Thorpe TA, Ashihara H. Purine and pyrimidine nucleotide metabolism inhigher plants[J]. Plant Physiology,2003,160(11):1271-1295.
    63. Suzuki T, Ashihara H, Waller GR. Purine and purine alkaloid metabolism in Camellia and Coffeaplants [J]. Phytochemistry,1992,31(8):2575-2584.
    64. Suzuki T, Takahashi E. Biosynthesis of caffeine by tea-leaf extracts. Enzymic formation oftheobromine from7-methylxanthine and of caffeine from theobromine [J]. Biochemistry Journal,1975,146(1):87-96.
    65. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES4th. Dwarf8polymorphisms associate with variation in flowering time[J]. Nature Genetics,2001,28(3):286-289.
    66. Uefuji H, Ogita S, Yamaguchi Y, Koizumi N, Sano H. Molecular cloning and functionalcharacterization of three distinct N-methyltransferases involved in the caffeine biosyntheticpathway in coffee plants [J]. Plant Physiology,2003,132:372-380.
    67. Wang X, Chen L, Yang Y. Establishment of core collection for Chinese tea germplasm based oncultivated region grouping and phenotypic data. Frontiers of Agriculture in China,2011,5(3):344-350.
    68. Weckerle CS, Stutz MA, Baumann TW. Purine alkaloids in Paullinia [J]. Phytochemistry,2003,64(3):735-742.
    69. Yoneyama N, Morimoto H, Ye CX, Ashihara H, Mizuno K, Kato M. Substrate specificity ofN-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acidresidue of the enzyme [J]. Molecular Genetics and Genomics,2006,275(2):125-135.
    70. Zheng XQ, Ashihara H. Distribution, biosynthesis and function of purine and pyridine alkaloids inCoffea arabica seedlings [J]. Plant Science,2004,166(3):807-813.
    71. Zheng XQ, Koyama Y, Nagai C, Ashihara H. Biosynthesis, accumulation and degradation oftheobromine in developing Theobroma cacao fruits [J]. Journal of Plant Physiology,2004,161(4):363-369.
    72. Zheng XQ, Ye CX, Kato M, Crozier A, Ashihara H. Theacrine (1,3,7,9-tetramethyluric acid)synthesis in leaves of a Chinese tea, kucha (Camellia assamica var. kucha)[J]. Phytochemistry,2002,60(2):129-134.
    73. Zrenner R, Stitt M, Sonnewald U, Boldt R.Pyrimidine and purine biosynthesis and degradation inplants[J]. Annual Review of Plant Biology,2006,57:805-836.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700