边坡监测的复合光纤装置法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不稳定边坡的危害几乎无处不在。据统计,近五年来我国共发生边坡失稳灾害17万余起,伤亡5000余人,直接经济损失近160亿元,而滑坡等地质灾害的成功预报仅2500多次,其比例为1.4%。分布式、实时、远程获知地质体内部力学信息,及时准确判断灾害前岩土体的异常状态,是有效监测边坡稳定的基本保证。地球物理方法、测斜仪技术、“3S”技术、时域反射技术、光时域反射技术、布里渊光时域反射技术、布里渊光时域分析技术等各有优点,但它们不能同时实现辅材价格低廉、分布式、实时、远程遥测、有较高的初始测量精度、以及判断滑坡运动方向的监测,而使得上述方法在边坡监测的应用受限。因此,为边坡位移监测提供新的监测方法非常重要和迫切。
     本文基于光纤传感原理和光时域反射技术,突破现有方法的局限,新设计了一种可同时实现上述指标的复合光纤装置,并系统研究了基于复合光纤装置的边坡监测方法、建立了复合光纤传感监测体系。取得的主要成果如下:
     ①利用光纤弯曲时光线传输原理探讨了本文单模光纤不同纤芯直径和光透过率对应的曲率半径,建立了可以忽略光纤宏弯损耗临界曲率半径与波长的关系,确定了二次盘纤的最佳盘圈直径不宜小于200mm。
     ②根据钢筋混凝土梁的空间架构理论,通过试验方案和试验结果改进、设计了成本低廉的复合光纤装置,对其进行了抗折、抗剪模型原理分析,并建立了抗折模型在线性和全截面断开阶段、以及单剪模型光纤伸长的理论公式。
     ③开展了裸光纤抗拉、抗剪试验以及锯齿形套管光纤抗剪、光纤绕圆圈和光纤蝴蝶结等光纤装置弯曲损耗测定试验,提出了用蝴蝶结形光纤代替直光纤的设想,并通过以聚氯乙烯(PVC)普通塑料板和膨胀性聚酯乙烯(EPS)泡沫为基材、不同横截面尺寸的复合光纤装置的抗折试验,验证了设有蝴蝶结的复合光纤装置效果更好。
     ④基于PVC塑料板和EPS泡沫基材、不同截面尺寸的复合光纤装置,以不同强度的水泥砂浆和砼为灌浆材料的灌浆体试件进行抗折试验、双剪试验和单剪试验,发现基于EPS基材的装置性能更佳,测得了不同装置的加载点竖向位移与光纤损耗、滑移的关系曲线,提出了试验中最优蝴蝶结宽度尺寸为30-32mm。
     ⑤基于复合光纤装置开展了2次室内和1次现场模拟试验,结果表明该装置对剪切变形具有较高的初始测量精度,一定的测量行程和动态范围,可以判断荷载的运动方向;光纤的行程与模型的滑移量已呈明显的非线性关系,而且损耗具有更高的非线性关系。
     ⑥对选定的工程应用场地按相关规范要求进行了现场直接剪切试验,对现场采集的岩样进行了天然单轴抗压和三轴试验,确定了现场土体的c=18.1kPa、Φ=21.28°,岩样的c=1.83MPa、Φ=37.5°,并结合破坏性监测边坡的实际确定了其综合内摩擦角Φ0=29.5°。
     ⑦钻孔内灌浆材料是联系复合光纤装置与周边岩土体的中间纽带,是影响监测效果的关键要素之一。对特定的边坡,必须先尽可能多地确定岩土体的抗剪强度、摩擦角、压实系数、重度、含水率等参数,再选择匹配的钻孔尺寸、灌浆材料强度、复合光纤装置的基材形式及其尺寸和光纤保护方式,才能有效完成监测任务。
     ⑧建立了可以实现分布式、实时、远程遥测的复合光纤装置法边坡监测体系,提出了该体系的技术指标和适用条件。将该体系运用于选定现场边坡的破坏性监测,结果验证了该体系的可行性,以及本文设计的复合光纤装置具有较高的初始测量精度、较大的运动行程和动态范围,可以判定滑坡运动方向。对选定的长期监测边坡,建立了边坡位移长期监测系统,并用测斜仪进行了对照监测。
The danger of unstable slope is omnipresent. According to statistics of recent five years, over 170 thousand hazards out of slope unstability occurred in mainland China, leading to casualties of more than 5 thousand and direct economic loss of nearly RMB 16 billion yuan; while only over 2,500 of them were forecasted, accounting for only 1.4% of the total. Acquisition of mechanics information inside the geologic body in a distributed, real-time, and remote manner to conclude a prompt and accurate judgment of abnormal conditions of the rock and soil mass before hazards are the basic guarantee for effective landslide monitoring. In spite of their respective advantages, geophysical method, clinometers,“3S”technology, time domain reflectormetry technology (TDR), optic time domain reflectormetry technology (OTDR), Brillouin optical time domain reflectometry technology (BOTDR), and Brillouin optical time domain analysis technology (BOTDA), etc. are limitedly applied in landslide monitoring, for they fail to meet the requirements of low-cost auxiliary materials, distributed, real-time, and remote telemetry, high initial measurement accuracy, and judgment of landslide movement direction at the same time. Therefore, it is of utmost importance and urgency to explore a new method for slope stability monitoring.
     Based on optical fiber sensing theory and OTDR technology, and rid of constraints of existing methods, the author presents a combined optical fiber sensor simultaneously meeting the above requirements, conducts systematic researches on slope monitoring method based on the sensor, and establishes a combined optical fiber sensing & monitoring system. The main results are as follows:
     a. Curvature radiuses corresponding to different core diameter and transmissivity of the single mode fiber (SMF) are discussed based on the theory of ray transmission when the optical fiber is bended, a relation between the critical curvature radius and the wave length, of which the optical fiber microbending loss can be ignored, is established, and the optimal diameter for the optical fiber second coiling is determined to be not less than 200mm.
     b. Based on the spatial architecture theory of reinforced concrete beam, and according to the test program and results, the low-cost combined optical fiber sensor is improved and designed, whose bending and shearing resistance model principle analysis is conducted, finally contributing to the establishment of theoretical formulas of the bending resistance model at the linear and total cross-section disconnection phases as well as optical fiber stretching of the simple shear model.
     c. Pulling and shearing resistance tests of bare optical fibers, as well as determination tests on shearing resistance of indented cased optical fiber and bending losses of circle-type and optical fiber sensors with bowknot, are conducted, an assumption of replacing straight optical fiber with optical fiber with bowknot is promoted, and the better effect of the sensor is verified through bending test of the combined optical fiber sensors of different cross sectional dimensions with the base materials of ordinary polyvinyl chloride (PVC) plastic plate and expansile polyester ethylene (EPS) cystosepiment.
     d. Through bending, shearing, and simple shear tests on the combined optical fiber sensor of different cross sectional dimensions with the base materials of ordinary PVC plastic plate and EPS cystosepiment, where grout with cement plaster and concrete of different strength as the agents are employed, it is found that the sensor with EPS as the base material shows better performance; the vertical load point displacement, as well as relation curve between optical fiber loss and slide of different sensors, are measured, and the optimal bowknot width in the test is provided to be 30-32mm.
     e. Two indoor and one in-situ simulation tests are conducted targeting the combined optical fiber sensors. The results show that the sensor is of high initial measurement accuracy, maximum sliding distance and dynamic range on the shearing deformation, as well as judgment of the load movement direction; the optical fiber sliding distance and the model movment show significant nonlinear relation, and the loss shows more significant one.
     f. In-situ direct shear test of the selected project site is conducted as per requirements in relevant codes, accompanied by natural homotaxial compression resistance and triaxial test of the rock sample collected in-situ, whereby c andΦvalues of the in-situ soil mass and rock sample are determined, that is c=18.1kPa,Φ=21.28°representative the soil mass and c=1.83MPa,Φ=37.5°representative the rock sample. The comprehensive internal friction angle is also determined according to the actual condition of the field destructiveness monitoring slope, and its value isΦ0=29.5°.
     g. Grouting material inside the boreholes is the link between the combined optical fiber sensor and the surrounding rock or soil mass and is one of the key factors influencing the monitoring effect. For effective monitoring of specific slope, the parameters, including the shear strength, friction angle, compacting factor, unit weight, and moisture content, etc. of the rock and soil mass shall be determined first as much as possible, then followed by the selection of matched borehole size, grouting material strength, type and size of base material of the combined optical fiber sensor, and the protection mode of optical fiber.
     h. A landslide sensing & monitoring system based on the combined optical fiber sensor is established for distributed, real-time, and remote telemetry. The Specification and suitable condition were also introduced. The system was utilized to the field destructive slope monitoring. Results showed that the system is feasible, and the sensor is of high initial measurement accuracy, maximum sliding distance and dynamic range, as well as judgment of the load movement direction. A long-term slope stability field monitoring system based on the combined optical fiber sensor is established for the selected in-situ slope, where the clinometer is employed for contrast monitoring.
引文
[1]黄求顺,张四平,胡岱文.边坡工程[M].重庆:重庆大学出版社,2003. 7.
    [2]张永兴.边坡工程学[M].北京:中国建筑工业出版社.2008,8.
    [3]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007.26(3):433-454.
    [4]孙广忠.中国典型滑坡[M].北京:科学出版社,1998,7.
    [5]中国地质环境监测院地质灾害调查与监测室.地质灾害调查与监测案例[EB/OL].中国地质环境信息网. 2007-9-24.2007-1-31.2008-1-25.2009-5-21.2010-2-2[2010-2-11] http://www.cigem.gov.cn/ReadNews.asp?NewsID=12562、?NewsID=9829、?NewsID=13869、?NewsID=18216、?NewsID=21902.
    [6]朱正伟,刘东燕,袁侨英,董倩.光电技术在边坡稳定监测中的应用[J].压电与声光,2009, 31(1):112-114.
    [7]叶树林,孙占学,骆良胜.滑坡勘查中的放射性测量方法和异常解释[J].华东地质学院学报,2003,26(3):201-207.
    [8]张慧锋,丁德馨.氡示踪方法在土坡滑坡预报中的应用前景展望[J].南华大学学报(自然科学版),2004,18(4):14-17.
    [9]王卫,吴勇,刘华军等.测氡在滑坡研究中的应用[J].工程地质学报,2003,11(3):307-311.
    [10]邓荣贵.地震物探在高速路堑边坡岩体结构研究中的应用[J].辽宁工程技术大学学报(自然科学版),2001,20(4):463-465.
    [11]冯希杰,李忠生,宋立胜,耿大玉,魏青坷,E.Bruckl, W.Chwatal, M.Parotidis.宝鸡簸箕山滑坡地震勘探[J].水文地质工程地质,2003,30(4):55-58.
    [12]王延涛,谌文武,刘高.瞬态瑞利波法在秦峪滑坡勘查中的应用[J].兰州大学学报:自然科学版,2007,43(2):25-28.
    [13]姜卫方,万明浩,赵永辉等.地质雷达在滑坡面调查中的应用及效果分析[J].物探与化探,2000,24(3):230-233.
    [14]杜军,黄宏伟,谢雄耀,等.介电常数对探地雷达检测隧道壁注浆效果研究[J].地下空间与工程学报,2006,2(3): 420-424.
    [15]薛桂玉,刘道明,余志雄,谭敏.地质雷达检测技术及应用[J],人民长江,2008,39(5):84-85,88.
    [16]杨云芳,张作宏,傅军.边坡滑动范围和深度的探地雷达勘定[J].浙江理工大学学报,2009,26(3):395-398.
    [17] Inoue Hiroshi, Okuyama Daitaro, Sugawara Akira, et al. A data transmission system by FM signal for the measurement of undeground water level in snow season[A]. IEEE InternationalSymposium on Electromagnetic Compatibility. International Symposium on Electromagnetic Compatibility - EMC'89[C]. Sep 8-10 1989. Symposium Record, pt 2, 1989: 889-894.
    [18]韩绪山,张景考.声波扫描成像在灾害防治与环境保护中的应用[J].中国煤田地质,2003,15(2):59-62.
    [19]尹贤刚,李庶林.声发射技术在岩土工程中的应用[J].采矿技术,2002,2(4):39-42.
    [20]李金河,玉国进.永久船闸边坡稳定性声发射监测[J].岩土力学,2001,22(4):478-480.
    [21]易武,孟召平.岩质边坡声发射特征及失稳预报判据研究[J].岩土力学,2007,28(12):2529-2533,2538.
    [22]陈新球,彭绪洲.特殊条件下的物探检测及其应用效果[J].地球物理学进展,2004,19(4):880-882.
    [23]李张明,练继建,刘润泽.物探技术在三峡工程高边坡岩体研究中的应用[J].人民长江,2004, 34(1):28-29,51.
    [24]李兵.物探技术在岩土参数测试中的应用[J].路基工程,2005,3:28-30.
    [25] Clive S Fraser.Kenneth L Edmundson.Design and implementation of a computational processing system for off-line digital close-range photogrammetry [J]. Journal of Photogrammetry and Remote Sensing,2000,55(5):94-104.
    [26]任伟中,寇新建,凌浩美.数字化近景摄影测量在模型试验变形测量中的应用[J].岩石力学与工程学报,2004,23(3):436-440.
    [27]王秀美,贺跃光,曾卓乔.数字化近景摄影测量系统在滑坡监测中的应用[J].测绘通报,2002,2:28-30.
    [28]田胜利,葛修润,涂志军.隧道及地下空间结构变形的数字化近景摄影测量试验研究[J].岩石力学与工程学报,2006,25(7):1309-1315.
    [29] Arnold Bauer, Gerhard Paar, Alexander Kaltenb?ck. Mass Movement Monitoring Using Terrestrial Laser Scanner for Rock Fall Management[M]. Geo-information for Disaster Management. Springer Berlin Heidelberg,2005, part 5: 393-406.
    [30] Paar G, Bauer A. Terrestrial long range laser scanning for high-density snow cover measurement[A]. Proc 5th Conference on Optical 3D Measurement Techniques[C]. Vienna, 2001, pp 33-40.
    [31] Bauer A, Paar G, Kaufmann V. Terrestrial laser scanning for rock glacier monitoring[A]. Proc Eight International Conference on Permafrost[C], Zurich,2003, vol 1 pp 55-60.
    [32] Cillian O’Driscoll. An Introduction to the Global Positioning System[EB/OL]. December 7, 2001. http://www.issc.ucc.ie/~cillian/files/GPS/gps.pdf.[2007-01-13].
    [33] Chen Z, Shen F, Zhang X. et al. GPS monitoring of the crustal motion in Southwestern China [J]. Chinese Science Bulletin, 1999,44:1804-1807.
    [34] B.W. Parkinson, J. J. Spilker Jr. (Eds), The global positioning system: Theory and Applications (Vol. 1) [M].Washington DC: American Institute of Aeronautics and Astronautics,1996.
    [35]许斌,何秀凤,岳建平,等. GPS形变监测技术在天荒坪电站水库坝区的监测网试验[J].水利水电科技进展,2004,24(5):24-26,68.
    [36]过静珺,杨久龙,丁志刚,等.GPS在滑坡监测中的应用研究——以四川雅安峡口滑坡为例[J].地质力学学报,2004,10 (1):65-70.
    [37]徐绍铨,程温鸣,黄学斌,李征航. GPS用于三峡库区滑坡监测的研究[J].水利学报,2003,(1):114-118.
    [38]陕西省农村经济信息网.陕西省“十一五”防灾减灾专项规划及2020年展望[EB/OL].2006-12-14 [2007-1-4],http://www.sare.com.cn/xw/n/onews.asp?id=2947.
    [39] Yueping Yin, Wamo Zheng,·Yuping Liu,·Jialong Zhang,·Xiaochun Li. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China [J]. Landslides, 2010 (7):359-365.
    [40] Tien H Wu, Mohamed A Abdel-Iatif.Prediction and mapping of landslide hazard[J].Canadian Geotechnical Journal,2000,37(4):78l-795.
    [41] Mandy Lineback Gritzner.Assessing landslide potential using GIS,soil wetness modeling and toop graphic attributes,Payette River,Idaho[J]. Geomorphology,2001,37(1-2):149-165.
    [42] A.S. Dhakal, T. Amada, M. Aniva, Landslide hazard mapping and its evaluation using GIS: an investigation of sampling schemes for a grid-cell based quantitative method [J]. Photogramm. Eng Remote Sens,2000,66:981-989.
    [43] Fabio Bovenga, Elena Miali, Raffaele Nutrieato,Maria Teresa Chiaradia. GIS-based System for Landslide Early Warning Index Measurement [A]. VECIMS 2007-IEEE International Conference on Viztual Environments, Human-Computer Interfaces, and Measurement Systems, Ostuni-Italy [C],25-27 June 2007: 78-83.
    [44] Randall W. Jibson, Edwin L. Harp, John A. Michael. A Method for producing digital probabilistic seismic landslide hazard maps [J]. Eng Geol, 2000 (58): 271-289.
    [45]陈晓利,叶洪,程菊红.GIS技术在区域地震滑坡危险性预测中的应用——以龙陵地震滑坡为例[J].工程地质学报,2006,14(3):333-338.
    [46] Singhroy V. Satellite remote sensing applications for landslide detection and monitoring (chapter7) [M]. In: Sassa K, Canuti P (eds) Landslide disaster risk reduction. Springer, Berlin, 2008:143-158.
    [47]康东玲,史启敏.基于“3S”技术的滑坡泥石流监测新技术[J].湖北地矿,2002,16(4):60-63.
    [48]张振德,何宇华.遥感技术在长江三峡库区大型地质灾害调查中的应用[J].国土资源遥感,2003,(2):11-14,26.
    [49] Sun Danfeng,Li Hong,Lin Pei. Monitoring land use and landscape changes caused migrant resettlement with remote sensing in Region of Three Gorges of Yangtze River[J]. Transactions of the CSAE, 2003,19,(5):218-224.
    [50] Singhroy V, Molch K, Couture R, Poncos V. InSAR monitoring of post-landslide activity [A]. In: IEEE International Geoscience and Remote Sensing Symposium [C]. CO, USA, 2006: 1-4
    [51]王志旺,李端有.3S技术在滑坡监测中的应用[J].长江科学院院报,2005.(22)5:33-36.
    [52]高富,艾夕辉,段尚彪,等.GPS、GIS技术在西庄河流域滑坡灾害研究中的应用[J].山地学报,2003,21(2):239-245.
    [53]张继贤.3S支持下的滑坡地质灾害监测、评估与建模[J].测绘工程,2005.14(2):1-5.
    [54] K.J. Tsai, S.H. Yu, C.P. Hsiao, M.C. Ho, C.C. Chen, Investigations By Using GPS/GIS/RS Technology on the Slope Stability of Kaohsiung Communities on Slopeland in Taiwan [A]. ISOPE-2005: Fifteenth International Offshore and Offshore and Polar Engineering Conference [C], 2005 Vol. [1-4. 2005].
    [55] Shad M. Sargand, Lisa Sargent, Stephen P. Farrington. Inclinometer–Time Domain Reflectometry Comparative Study: Final Report[R]. Ohio Research Institute for Transportation and Environment, 2004:1-4.
    [56]陈伟,吴裕锦,彭振斌.广州某基坑抢险监测及坍塌事故技术原因分析[J].地下空间与工程学报,2006,2(6):1034-1039.
    [57]刘观仕,胡德明,徐光斌.测斜仪在软基路堤施工监测中的应用[J].土工基础,2004,18(3): 57-60.
    [58]靳德武,牛富俊,李宁.青藏高原多年冻土区热融滑塌变形现场监测分析[J].工程地质学报,2006,14(5): 677-682.
    [59]马云宾.光纤光栅传感技术在管道滑坡监测中的应用研究[D].西安:长安大学硕士论文.2009.
    [60]胡志新,马云宾,谭东杰,等.基于光纤光栅传感的管道滑坡监测方法研究[J].光子学报,2010,39(1):33-36
    [61]陈朋超,李俊,刘建平,等.光纤光栅埋地管道滑坡区监测技术及应用[J].岩土工程学报.2010,32(6):897-902
    [62] TOPP G C,DAVIS J L. Measurement of soi1 water content using Time Domain Reflectometry(TDR):a field application [J].Journal of Soil Science Society of America,1985,49:19-24.
    [63] ANDERSON N, WELCH D. Practical application of time domain reflectometry (TDR) to monitor and analyze soil and rock slopes, geotechnical measurements: lab and field[A].Reston, Virginia: ASCE, Geotechnical Special Publication [C],2000: 65-79.
    [64] Serafini David C, Fiegel Gregg L.Estimating slope movement with time domain reflectometry (TDR) [A]. Los Angeles, CA, United States, Geotechnical Engineering for Transportation Projects: Proceedings of Geo-Trans 2004 [C], 2004:2 084-2 092.
    [65] DENNIS N D, OOI Chong-wei,WONG Voon-huei. Estimating movement of shallow slope failures using time domain reflectometry [A]. USA, Proc TDR 2006 [C], Purdue University, 2006: 16.
    [66]梁志刚,陈云敏,陈仁朋,等.同轴电缆电磁波反射技术监测滑坡研究[J].岩土工程学报,2005, 27(4):453-458.
    [67]邬晓岚,涂亚庆.滑坡监测的一种新方法--TDR技术探析[J].岩石力学与工程学报,2002,21 (5):740-744.
    [68]陈云敏,陈赟,陈仁朋,等.滑坡监测TDR技术的试验研究[J].岩石力学与工程学报,2004, 23(16):2748-2755.
    [69]谭捍华,傅鹤林.TDR技术在公路边坡监测中的应用试验[J].岩土力学,2010,31(4):1331-1336.
    [70]丁勇,施斌,崔何亮,等.光纤传感网络在边坡稳定监测中的应用研究[J].岩土工程学报,2005,27(3): 338-342.
    [71] BAO X, DEMERCHANT M, BROWN A. TENSILE AND COMPRESSIVE STRAIN MEASUREMENT IN THE LAB AND FIELD WITH THE DISTRIBUTED BRILLOUIN SCATTERING SENSOR [J]. LIGHTWAVE TECHNOL,2001,19(11):1698- 1704.
    [72] UCHIYAMA H, SAKAIRI Y, NOZAKI T. AN OPTICAL FIBER STRAIN DISTRIBUTION MEASUREMENT INSTRUMENT USING THE NEW DETECTION METHOD [J]. ANDO TECHNICAL BULLETIN,2002,10:52-60.
    [73] LEE K M, MANJUNATH V R. EXPERIMENTAL AND NUMERICAL STUDIES OF GEOSYNTHETIC-REINFORCED SAND SLOPES LOADED WITH A FOOTING [J]. CANADIAN GEOTECHNICAL JOURNAL, 2000,37(4):828-842.
    [74] PANDEY N K, YADAV B C. EMBEDDED FIBRE OPTIC MICRO BEND SENSOR FOR MEASUREMENT OF HIGH PRESSURE AND CRACK DETECTION [J]. SENSORS AND ACTUATORS A: PHYSICAL, 2006,128(1):33-36.
    [75]隋海波,施斌,张丹,王宝军,魏广庆,朴春德.基于BOTDR的锚杆拉拔试验研究[J].岩土工程学报,2008,30(5):755-759.
    [76] B.J. WANG, K. LI, B. SHI, G.Q. WEI, TEST ON APPLICATION OF DISTRIBUTED FIBER OPTIC SENSING TECHNIQUE INTO SOIL SLOPE MONITORING [J]. LANDSLIDES,2009(6):61-68.
    [77]李科,施斌,唐朝生,魏广庆,王宝军.黏性土体干缩变形分布式光纤监测试验研究[J].岩土力学,2010,31(6):1781-1785.
    [78]周会娟,廖毅,孟洲.基于布里渊散射的分布式光纤传感技术[J].光学技术,2008,34(S):251-253.
    [79]张俊义,晏鄂川,薛星桥,等.BOTDR技术在三峡库区崩滑灾害监测中的应用分析[J].地球与环境,2005,33(S):355-358.
    [80]史彦新,张青,孟宪玮.分布式光纤传感技术在滑坡监测中的应用[J].吉林大学学报:地球科学版,2008,38(5):820-824.
    [81]李焕强,孙红月,刘永莉,孙新民,尚岳全.光纤传感技术在边坡模型试验中的应用[J].岩石力学与工程学报,2008(27)8:1703-1708.
    [82]刘元雪,郑颖人.光纤监测技术及其应用于岩土工程的关键问题研究[J].岩石力学与工程学报,1999,18(5):585-587.
    [83] Yu Qinrong, Bao Xiaoyi, Chen Liang.Strain dependence of Brillouin frequency,intensity, and bandwidth in polarization-maintaining fibers[J]. Optics Letters,2004,29(14):1605-1607.
    [84]钱振东,黄卫,关永胜,韩光义.BOTDA在沥青混凝土铺装层裂缝监测中的应用[J].东南大学学报:自然科学版,2008,38(5):799-803.
    [85]张竞文,吕安强,李宝罡,杨志.基于BOTDA的分布式光纤传感技术研究进展[J].光通信研究,2010(4):25-28.
    [86]朱鸿鹄,殷建华,洪成雨,等.基于光纤传感的边坡工程监测技术[J].工程勘察,2010(3):6-10,14
    [87] Kwon I B, Kim C Y, Choi M Y.Distributed strain and temperature measurement of a beam using fiber optic BOTDA sensor[J].ProcSPIE,2003,5057:486-496.
    [88] M. Iten, A.M. Puzrin, BOTDA road-embedded strain sensing system for landslide boundary localization [A]. Proc. SPIE, Vol. 7293, 729316 [C]. San Diego, CA, USA,2009:1-12.
    [89] Bao X, Li W,Li Y,et al. Distributed fiber sensors based on stimulated Brillouin scattering with centimeter spatial resolution [A]. 2008 International conference on optical instruments and technology: Microelectronic and optoelectronic devices and integration [C],Beijing: China Instrument and Control Society, 2009.
    [90] L. Zeni, Optical fiber distributed sensors: a tool for in-situ structural and environmental monitoring [A]. IWL 2009, Rainfall Induced Landslides, 8-10 giugno 2009, Napoli [C]. [2010-9-12], http://www.corista.unina.it/Docs/optical_fiber.pdf.
    [91] LED环球在线.OTDR的基本原理[EB/OL]. [2009-3-2],http://info.ledgb.com/detail-17312.html.
    [92] Li Chuan, Zhang Yi-Mo, Liu Hui, et al. Distributed fiber-optic bi-directionalstrain–displacement sensor modulated by fiber bending loss[J]. Sensors and Actuators A: Physical, 2004,111(2-3):236-239.
    [93]周策,陈文俊,汤国起.BHT-Ⅱ型滑坡崩塌岩体推力监测系统的应用[J].中国地质灾害与防治学报,2004,15(S):71-73.
    [94]张利勋,刘永智,欧中华等.滑坡崩塌岩体推力监测用分布式OTDR技术[J].光电工程,2006.33(7):52-56.
    [95] I.B. Kwon, C.Y. Kim, D.C. Seo, H.C. Hwang, Multiplexed Fiber Optic OTDR Sensors for Monitoring of Soil Sliding [A], XVIII Imeko World Congress Metrology for a Sustainable Development [C]. September 17- 22, 2006, Rio de Janeiro, Brazil. [2010-7-13], http://www.imeko.org/publications/wc-2006/PWC-2006-TC20-002u.pdf.
    [96] K. Higuchi, K. Fujisawa1, K. Asai1, A. Pasuto, G. Marcato, Application of new landslide monitoring technique using optical fiber sensor at Takisaka Landslide, Japan [A]. 1st North American Landslide Conference Vail, Colorado [C]. 2007, [2010-7-16], http://www.pwri.go.jp/eng/activity/pdf/reports/higuchi.070603.pdf.
    [97] Tang Tian-guo, Chen Chun-hua, Liu Hao-wu. Application of Distributed Optical Fiber Sensors into Crack Monitoring of Dam's Foundation[J]. CHINESE JOURNAL OF SENSORS AND ACTUATORS, 2007,(20)10:2357-2360.
    [98] T.G. Tang, Q.Y. Wang, H.W. Liu. Experimental research on distributed fiber sensor for sliding damage monitoring [J]. Opt Laser Eng, 2009(47):156-160.
    [99]唐建新,魏作安,万玲等.高等级公路中的边坡工程问题[J].公路交通技术,2003,(2):3-5.
    [100]文海家,张永兴,柳源.滑坡预报国内外研究动态及发展趋势[J].中国地质灾害与防治学报,2004,15(1):1-4,16.
    [101]王恭先.滑坡防治中的关键技术及其处理方法[J].岩石力学与工程学报,2005,24(21):3818-3827.
    [102]张志英,何昆.边坡监测方法研究[J].土工基础,2006,20(3): 82-84.
    [103] Zheng-Wei Zhu, Dong-Yan Liu, Qiao-Ying Yuan, Bang Liu, Jing-Cheng Liu. A novel distributed optic fiber transduser for landslides monitoring [J]. Opt Laser Eng (2011), http://dx.doi.org/10.1016/j.optlaseng.2011.01.010.
    [104]朱正伟.边坡稳定监测技术进展研究[J].重庆科技学院学报(自然科学版),2008,10(3):31-34.
    [105] Saito M. Forecasting time of slope failure by tertiary creep [A], Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering [C], Mexico City, 1969, Vol. 2, 677-683.
    [106]刘雄.光纤传感技术在岩土力学与工程中的应用研究[J].岩石力学与工程学报,1999,18(5):588-591.
    [107]刘泉声,徐光苗,张志凌.光纤测量技术在岩土工程中的应用[J].岩石力学与工程学报,2003,23,(2):310-314.
    [108]赵勇.光纤传感原理与应用技术[M].北京:清华大学出版社,2007,8.
    [109]廖延彪.光纤光学—原理与应用[M].北京:清华大学出版社,2010,9.
    [110]廖延彪.光纤传感技术[M].北京:清华大学出版社,2010,9.
    [111]王惠文.光纤传感技术与应用[M].北京:国防工业出版社,2001,4.
    [112] Fields JN, Cole JH. Fiber micro-bend acoustic sensor [J].Applied Optics, 1980, 19(19): 3265-3267.
    [113] Nadarajah N, Zhou Chong-hua. Fiber-optic acoustic sensor for non-destructive evaluation [J]. Optics and Lasers in Engineering, 1995,22:137-148.
    [114]曾桂林,光纤陀螺技术发展及军需分析[J].应用光学.2001,1(22):124-131.
    [115]钟小江,仝卫国,李宝树.光纤光栅传感器技术及其在电力系统中的应用[J].传感器世界,2007(5):25-29.
    [116]郭团乔学光贾振安孙安陈长勇.光纤光栅传感技术及其在石油工业中的应用[J].测试技术学报,2004,18(3):208-213.
    [117]褚佩华.光纤光栅火灾自动探测系统在石油化工企业中的应用[J].石油化工自动化,2006(6):21-22,33.
    [118]唐晋生,盛克敏,等.激光光纤传感器在地震预报中的应用[J].激光杂志,2002,23(1):73-74.
    [119]陈希明,张以谟,李川,刘铁根,李欣,吕丽娜.光纤化学传感器技术与应用[J].光电子技术与信息,2001,4(4):113-16.
    [120]蒲晓允,左世友,光纤生物传感器技术及其应用[J].重庆医学.2006,35(17):1537-1538.
    [121]刘艳,刘计朋,朱震,刘勇,王安.基于光纤微弯损耗的压力传感器实验研究[J].仪表技术与传感器,2008(1):4-5,37.
    [122]王学仁.光纤传感器[M].武汉:华中理工大学出版社,1989.
    [123]唐天国,朱以文,蔡德所,刘浩吾,蔡元奇.光纤岩层滑动传感监测原理及试验研究[J].岩石力学与工程学报,2006,25(2):340-344.
    [124]朱正伟,刘东燕,袁侨英,等.基于复合光纤装置的多参数检测仪[P].中国专利:CN200710078298.8,[2007-08-22].
    [125]柴敬,魏世明,常心坦,李毅.岩梁变形监测的分布式光纤传感技术[J].岩石力学与工程学报,2004(23)23:4068-4071.
    [126]王俊奇,王钊.土工泡沫工程性质及其应用[J].工程勘察,2002(4):9-12.
    [127] Dowding CH, RG Cole and CE Pierce. Detection of Shearing in Soft Soils Using Compliantly Grouted TDR Cables[A]. 2nd International Symposium and Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications[C], Infrastructure TechnologyInstitute Northwestern University, Evanston, Illinois. 2001.
    [128] Mikkelson PE. Cement-Bentonite Grouted Backfill for Borehole Instruments [M]. Geotechnical News, Dec, 1992.
    [129]编委会.工程地质手册(第四版) [M].北京:中国建筑工业出版社,243-246.
    [130]中华人民共和国国家标准.岩土工程勘察规范GB 50021-2001(2009年版) [M].北京:中国建筑工业出版社,2009,10:112-113.
    [131]中华人民共和国行业标准,建筑桩基技术规范[M]. JGJ94-2008.北京:中国建筑工业出版社,2008. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700