霍尔推力器通道内磁场对放电特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
霍尔推力器是一种为航天器在轨运行提供微小推力的动力装置,具有高效率、高比冲以及高可靠性等优点,广泛地应用于航天器的轨道提升、位置保持、姿态控制等推进任务。近年来,随着大型卫星平台建设、微小卫星组网、深空探测等航天技术的不断发展,相应地对霍尔推力器的性能也提出了更高的要求,推动了其技术发展。
     霍尔推力器依靠磁场抑制电子轴向输运以建立强电场,从而实现等离子体束流加速,因而磁场是影响推力器放电特性及性能水平的关键因素之一,也是推力器性能优化的重要设计自由度。本文主要围绕磁场对推力器放电特性的影响规律展开研究,在此基础上进一步研究磁场对电子输运过程的控制,从而为磁场优化设计提供理论依据。
     本文的主要工作包括以下五个方面:
     1.基于磁场影响霍尔推力器运行的物理机理,系统地总结了霍尔推力器对磁场强度、磁场梯度的要求,将霍尔推力器放电通道内磁场的主要分布特点归结为出口处磁场强度和强场区轴向磁场梯度这两个量化参数,从而为分析磁场对霍尔推力器放电特性和电子输运过程的影响,得出与实际工况相匹配的磁场优化选择范围提供了研究思路。
     2.根据霍尔推力器对磁场强度和磁场梯度选择的物理要求进行了实验设计,采用光谱仪、多栅探针、实时频谱分析仪等测量仪器分别研究了磁场强度和磁场梯度对霍尔推力器放电特性的影响规律,并从分析推进剂的电离特性、离子流的加速特性和强场区的等离子体振荡特性入手,总结了磁场强度和磁场梯度的优选范围。
     3.在不同工况下(放电电压和推进剂质量流量),采用推力器的磁安特性和多栅探针伏安特性计算得出了放电通道出口截面处电子传导电流大小,并依据电子传导电流与当地磁场强度的关系分析了主导电子传导机制,通过F检验法进行了显著性分析和验证。
     4.分析了霍尔推力器通道内电子的能量耗散及加热机制,通过研究不同磁场强度下电子传导电流与电子温度的关系得出了电子的主导加热机制,此外,在霍尔推力器放电实验中首次发现了发生于特定磁场强度范围内的反常电子加热现象,并对这一现象所伴随的不同价态粒子组分变化进行了分析。
     5.基于优化磁场的选择很大程度上要依赖于外部的实验条件,针对外部真空背压对磁场选择的影响进行了分析。首先论述了真空背压影响推力器运行的机理——羽流效应、放电效应和表面沉积效应,然后设计实验研究不同真空背压下的推力器放电特性,分析真空背压大小对推进剂电离和加速过程的影响规律,据此最后给出了与推力器工况以及真空罐体几何尺寸相匹配的参考真空背压上下限。
Hall Thruster is a kind of propulsion devices providing micro thrust for the on-orbit operation of spacecrafts. Due to its high efficiency, high specific impulse and high reliability, Hall thruster has been widely applied in many propulsion missions including orbit transfer, station keeping, and attitude control etc. In recent years, with the development of space technology such as large satellite platform, micro-satellite net and deep space exploration, the performance of the Hall Thrusters is left open to be improved as well.
     Strong axial electric field is built through applied magnetic field to prevent electrons transport along the channel of Hall thrusters, and then the ion flux can be accelerated effectively, so that magnetic field not only plays a great role in affecting the discharge characteristics and performance of Hall thrusters, but also acts as an important DOF (degree of freedom) for optimization design. In this paper, researches mainly focus on the influences of magnetic field affects the discharge characteristics of Hall thrusters, and base on this work, the control rules of magnetic field on electrons transport has been investigated, and thereby providing fundamental theories for designing optimized magnetic field.
     The main work in this paper is divided into following five parts:
     1. According to the physical mechanisms that magnetic field affect the operation of Hall thrusters, requirements of the magnetic field intensity and magnetic field gradient for Hall thrusters were systematically summarized. The distribution of magnetic field in discharge channel of Hall thrusters can come down to two quantitative parameters: magnetic field intensity in exit plane and axial magnetic field gradient in strong field zone, thus a research thought that analyzing the effect of magnetic field on discharge characteristics and electrons transport processes put forward, and thereby, optimized range of magnetic field matched to actual working conditions can be acquired.
     2. Experimental setups were designed according to the physical requirements of magnetic field intensity and axial gradient for Hall thrusters. The effects of magnetic field intensity and axial gradient on discharge characteristics of Hall thrusters were investigated respectively by using spectrometer, multi-grid probe, real-time spectrum analyzer and other measuring instruments, and started with analyzing ionization of propellants, acceleration of ion flux and plasma oscillation in strong filed zone, the optimized range of magnetic field strength and axial gradient were summarized.
     3. Electron conductive current in exit plane at different working conditions which refers to different discharge voltage or propellant mass flow was calculated by using magneto-ampere character and voltage-ampere character of Hall thruster and multi-grid probe respectively, and then the dominant electron conductive mechanism was analyzed according to the relations between electron current and local magnetic field intensity, finally the significant analysis was conducted by F test method.
     4. Electron energy dissipation and heating mechanisms in channel of Hall thruster were analyzed. The dominant electron heating mechanism was investigated through analyzing the relations between electron conductive current and electron temperature under different magnetic field intensity. Moreover, during the discharge experiments of Hall thruster, an anomalous electron heating phenomenon in particular range of magnetic field intensity was firstly discovered, and research work has been done on the changing of the particle proportions with different valences.
     5. Since the choosing of optimized magnetic field depends largely on external experiment conditions, the effects of vacuum backpressure on choosing magnetic field were analyzed. Firstly, the mechanisms of vacuum backpressure on the operation of Hall thrusters including plume effect, discharge effect, and surface deposition effect were discussed. Secondly, experimental research was conducted to investigate the discharge characteristics of Hall thruster under different backpressures, and then the influences of backpressure on ionization and acceleration processes of propellants were analyzed. Finally, the upper and lower limit of vacuum backpressure which matched actual working conditions of thrusters and the dimensions of vacuum tank were given.
引文
1吴伟仁,刘晓川.国外深空探测的发展研究.中国航天. 2004(1): 1~3
    2王一然,刘晓川,罗开元.国际深空探测技术发展现状及趋势.国际太空. 2003(2): 12~16
    3聂万胜,庄逢辰.航天器电推进技术现状与发展趋势.装备指挥技术学院学报. 2003, 14(1): 37~45
    4 W. A. Hargus. Jr. Investigation of the Plasma Acceleration Mechanism within a Coaxial Hall Thruster. Report No.TSD-130. 2001: 3~4
    5 M. H. James. Low-Perturbation Interrogation of the Internal and Near-Field Plasma Structure of a Hall thruster Using a High-Speed Probe Positioning System. A Dissertation for the Degree of Doctor of Philosophy, The University of Michigan. 2001: 3~7
    6 S. R. Oleson. Advanced Propulsion for Space Solar Power Satellites. 35th Joint Propulsion Conference, Los Angeles, 1999, AIAA-99-2872
    7 R. O. Steven, M. S. John. Advanced Hall Electric Propulsion for Future In-Space Transportation. 3rd International Spacecraft Propulsion Conference,Cannes, France, 2000
    8林来兴.现代小卫星及其关键技术.中国空间科学技术. 1995(4): 37~43
    9李世忠,陈虹.现代小卫星技术与数字地球.遥感信息. 2000(4): 47~49
    10潘科炎.小卫星的推进系统.航天控制. 1996(2): 47~56
    11毛根旺,韩先伟,杨涓,何洪庆.电推进研究的技术状态和发展前景.推进技术. 2000,21(5): 1~5
    12 M. Martinez-Sanchez, J. E. Pollard. Spacecraft Electric Propulsion-An Overview. Journal of Propulsion and Power. 1998,4: 688~699
    13 K. N. Kozubskii, V. M. Murashko, Yu. P. Rylov, et, al. Stationary Plasma Thrusters Operate in Space. Plasma Physics Reports. 2003,29(3): 277~292
    14 http://www.braeunig.us/space/planet.html
    15 Robert. G. Jahn, Edgar Y. Choueiri. Electric Propulsion. Encyclopedia of Physical Science and Technology. Third Edition. 2002,5: 125~141
    16 A. C. Tribble, R. searing, R. Scheps, D. Underwood. Analysis of Spacecraft-Thruster Interactions for the SPT-70 and SPT-100 Stationary Plasma Thrusters. AIAA-94-0330, 30th AIAA/SAE/ASME/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, 1994
    17 U. Shumlak, T. R. Jarboe, R. A. Sprenger. Physics of the Hall Thruster. AIAA-97-3048, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle,WA, 1997
    18李玉全. Hall推进器通道器壁离子溅射侵蚀特性研究.哈尔滨工业大学工学博士论文. 2007:2
    19武志文.霍尔推力器电子近壁传导机制研究.哈尔滨工业大学工学博士论文. 2007:20
    20 H. R. Kaufman. Theory of Ion Acceleration with Closed Electron Drift. AIAA-82-19. 16th AIAA/JSASS/DGLR International Electric Propulsion Conference, 1982. New Orleans, Louisiana, 1982
    21 Alec D. Gallimore, etc. Review of the EP Activities of US Academia. AIAA 2001-3227, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2001. Salt Lake City, Utah, 2001
    22 G. D. Racca, A. Marini, L. Stagnaro, etc. SMART-1 Mission Description and Development Status. Planetary and Space Science. 2002 (50) :1323~1337
    23 S. Roche, N. Gascon, M. Prioul. Operating Conditions and Plasma Study of an Aton-Class Hall Thruster. The 3rd International Conference on Spacecraft Propulsion, Cannes, 2000: 351~354
    24 O. A. Gorshkov, A. S. Koroteev. Overview of Russian Activities in Electric Propulsion. AIAA-2001-3229, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Salt Lake City, Utah, 2001
    25 S. O. Tverdokhlebov. Overview of Russian electric propulsion activities.AIAA 2002-3562,38th AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, 2002
    26 V. Kim, G. Popov, S. Tverdokhlebov, A. Semenkin, E. Tverdokhlebova, G. Karabadxhak. Overview of Russian EP Activities. AIAA-2003-4440
    27 Racca, D. Giuseppe. Smart-1: The First Small Mission for Advanced Research in Technology. Acta Astronautica. 1999, 45(4):337-345
    28 A. I. Bugrova, A. S. Lipatov, A. I. Morozov, D. V. Churbanov. On a Similarity Criterion for Plasma Accelerators of the Stationary Plasma Thruster Type. Technical Physics Letters. 2002,28(10):821~823
    29 A. I. Morozov, V. M. Balebanov, A. I. Bugrova, A. S. Lipatov, V. K. Khartchevnikov. ATON-Thruster plasma Accelerator. Plasma Physics Reports. 1997,23(7):587~597
    30 A. I. Bugrova, A. S. Lipatov, A. I. Morozov, L. V. Solomatina. Global Characteristics of an ATON Stationary Plasma Thruster Operating with Krypton and Xenon. Plasma Physics Reports. 2002, 28(12):1032~1037
    31 M. Cappelli. Overview of Electric Propulsion Research in U.S. Academia. AIAA-2003-4442
    32 D. T. Jacobson, R. S. Jankovsky, V. K. Rawlin, D. H. Manzella. High Voltage TAL Performance. AIAA-2001-3777
    33 B. Pote, R. Tedrake. Performance of a High Specific Impulse Hall Thruster. IEPC-2001-35
    34 D. H. Manzella, D. T. Jacobson, R. S. Jankovsky. High Voltage SPT Performance. AIAA-2001-3774
    35 J. J. Szabo, N. Z. Warner, M.Martinez-Sanchez. Instrumentation and Modeling of a High Isp Hall Thruster. AIAA-2002-4248
    36 J. J. Szabo, P. S. Rostler, S. A. McElhinney, N. Z. Warner. One and Two Dimensional Modeling of the BHT-1000. IEPC-2003-231
    37 N. Z. Warner, J. J. Szabo, M. Martinez-Sanchez. Characterization of a HighSpecific Impulse Hall Thruster Using Electrostatic Probes. IEPC-2003-82
    38 Richard R. Hofer, Alec D. Gallimore. The Role of Magnetic Field Topography in Improving the Performance of High-Voltage Hall Thrusters. AIAA-2002-4111. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2002, Indianapolis, Indiana
    39 R. R. Hofer, R. S. Jankovsky. The Influence of Current Density and Magnetic Field Topography in Optimizing the Performance, Divergence, and Plasma Oscillations of High Specific Impulse Hall Thrusters. IEPC-2003-142
    40 Les Johnson, Leslie Alexander, Randy M. Baggett, Joseph A. Bonometti, Melody Herrmann, Bonnie. F. James, Sandy E. Montgomery. NASA’s In-Space Propulsion Technology Program: Overview and Update. AIAA-2004-5671
    41 S. Robert, H. David, R. R. Hofer. NASA’S Hall Thruster Program 2002. AIAA-2002-3675
    42 D. Jacobson, D. Manzella, R. Hofer, P. Peterson. NASA's 2004 Hall Thruster Program. AIAA-2004-3600
    43 D. Jacobson, J. John, D. Manzella, P. Peterson. An Overview of Hall Thruster Development at NASA's John H. AIAA-2005-4242
    44 A. Fruchtman, N. J. Fisch. Variational Principle for Optimal Accelerated Neutralized Flow. Physics of Plasmas. 2007,8(1):56~58
    45 Y. Raitses, D. Staack, A. Dunaevsky, N. J. Fisch. Operation of a Segmented Hall Thruster with Low-Sputtering Carbon-Velvet Electrodes. Journal of Applied Physics. 2006,99:036103
    46 A. Fruchtman, N. J. Fisch, Y. Raitses. Control of the Electric-field Profile in the Hall Thruster. Physics of Plasmas. 2007,8:1048~1056
    47 http://www.busek.com/halleffect.html
    48 N. B. Meezan, W. A. Hargus, Jr., M. A. Cappelli. Anomalous Electron Mobility in a Coaxial Hall Discharge Plasma. Physical Review E.2001,63:026410
    49 N. B. Meezan, A. Cappelli. Kinetic Study of Wall Collisions in a Coaxial Hall Discharge. Physical Review E. 2002,66:036401
    50 Richard R. Hofer, James M. Haas, Optimization of Hall Thruster Magnetic Field Topography. 27th IEEE International Conference on Plasma Science New Orleans, LA, 2000.
    51 J. M. Haas, R. R. Hofer, A. D. Gallimore. Hall Thruster Discharge Chamber Plasma Characterization Using a High-Speed Axial Reciprocating Electrostatic Probe. AIAA-1999-2426
    52 P. Y. Peterson, A. D. Gallimore, J. M. Haas. Experimental Investigation of a Hall Thruster Internal Magnetic Field Topography. IEPC-2007-030
    53 J. A. Linnell, A. D. Gallimore. Internal Plasma Structure Measurements of a Hall Thruster Using Xenon and Krypton Propellant. IEPC-2005-024
    54 M. Celik, M. Santi, S. Cheng, M. Martinez-Sanchez, J. Peraire. Hybrid-PIC Simulation of a Hall Thruster Plume on an Unstructured Grid with DSMC Collisions. IEPC-2003-134
    55 M. Santi, S. Cheng, M. Celik, M. Martinez-Sanchez, J. Peraire. Further Development and Preliminary Results of the AQUILA Hall Thruster Plume Model. AIAA-2003-4873
    56 M. Keidar, I. D. Boyd. Effect of a Magnetic Field on the Plasma Plume from Hall Thrusters. Journal of Applied Physics. 1999,86(9):4786~4791
    57 D. B. VanGilder, I. D. Boyd, M. Keidar. Particle Simulations of a Hall Thruster Plume. Journal of Spacecraft and Rockets. 2000,37(1):129~136
    58 S. Roy, B. P. Pandey. Development of a Finite Element Based Hall Thruster Model. Journal of Propulsion and Power. 2003,19(5):964~975
    59 S. Roy, B. Pandey. Development of a Finite Element Based Hall Thruster Model for Sputter Yield Prediction. IEPC-2007-49
    60 M. Gollor, S. Weinberg. Electric Propulsion Electronics Activities in Europe.AIAA-2008-5284
    61 A. Rolfo, A. Cadiou, O. Secheresse, P. Dumazert, V. Gounot, X. Ragot, N. Mattei, T. Grassin, P. Garnero. Plasma Thrusters Development in France. Acta Astronautica. 2002,51(1): 39~46
    62 A. Bouchoule, A. Cadiou, A. Heron, M. Dudeck, M. Lyszyk. An Overview of the French Research Program on Plasma Thrusters for Space Applications. Contributions to Plasma Physics. 2007,41(6):573~588
    63 F. Darnon, D. Arrat, S. Escrivan, E. Chesta, N. Pillet. Overview of Electric Propulsion Activities in France. AIAA-2007-5165
    64 N. Gascon, M. Dudeck, S. Barral. Wall Material Effects in Stationary Plasma Thrusters. I. Parametric Studies of an SPT-100. Physics of Plasmas. 2003,10(10):4123~4136
    65 S. Barral, K. Makowski, Z. Peradzyński, N. Gascon. Wall Material Effects in Stationary Plasma Thrusters. II. Near-Wall and In-Wall Conductivity. Physics of Plasmas. 2003,10(10):4137~4152
    66 A. Rolfo. Plasma Thrusters Development in France. Acra Asrronautica. 2002,51:39~46
    67 A. Bouchoule, A. Cadiou, A. Heron, M. Dudeck, M. Lyszyk. An Overview of the French Research Program Plasma Thrusters for Space Applications. Contribution to Plasma Physics. 2007,41(6):573~588
    68 C. Koppel, F. Marchandise M. Prioul, D. Estublier, F. Darnon. The Smart-1 Electric Propulsion Subsystem around the Moon: In Flight Experience. AIAA-2005-3671
    69 M. Tajmar, J. Gonzalez, A. Hilgers. Modelling of Spacecraft Environment Interactions on Smart-1. AIAA-2000-3526
    70 H. Kuninaka. Activities on Electric Propulsion in Japan - Space Flight from Basic Research. AIAA-2002-3563
    71 H. Tahara, K. Mitsuo, D. Goto, T. Yasui, T. Yoshikawa. OperatingCharacteristics of Low Power Hall Thrusters. 22nd International Symposium on Space Technology and Science, Morioka, Japan, Paper No.ISTS-2000-b-36p, 2000
    72 H. Tahara, D. Goto, T. Yasui, T. Yoshikawa. Thrust Performance and Plasma Characteristics of Low Power Hall Thrusters. IEPC-2001-042
    73 H. Tahara, Y. Nikai, T. Yasui, T. Yoshikawa. Hall Thruster Research at Osaka University. AIAA-99-2570
    74 T. Hirokazu, S. Atsushi, Y. Seiro. Optimization of Magnetic Field and Acceleration Channel for Low Power Hall Thrusters. 24th International Symposium on Space Technology and Science, Miyazaki, Japan. 2004:264~273
    75 Taichiro Tamida, Takafumi Nakagawa, Ikuro Suga, etc. Determining Parameter sets for Low-frequency-oscillation-free Operation of Hall Thruster. Journal of Applied Physics. 2007, 102: 043304
    76康小录,汪兆凌,汪南豪.稳态等离子体推力器低功率工作模式实验研究.推进技术. 2001,22(04):326~328
    77廖宏图,汪兆凌,康小录.稳态等离子体推力器磁场设计与数值分析.推进技术. 2002,23(03):240~244
    78廖宏图,余水淋,康小录.霍尔推力器内部等离子体流场数值分析.推进技术. 2005,26(03):270~275
    79鄂鹏.稳态等离子推进器的磁场设计研究.哈尔滨工业大学硕士论文. 2004
    80 Yu Daren, Wu Zhiwen, Wu Xiaoling. Numerical Simulation for One Dimensional Steady Quasineutral Hybrid Model of Stationary Plasma Thruster. Plasma Science and Technology. 2005, 7(4):2939~2942
    81 Yu Daren, Liu Hui, Cao Yong, Fu Haiyang. The Effect of Magnetic Mirror on Near Wall Conductivity in Hall Thrusters. Contributions to Plasma Physics. 2008, 48(8): 543-554.
    82 Yu Daren, Li Yuquan, Song Shenhua. Ion Sputtering Erosion of Channel Wall Corners in Hall Thrusters. Journal of Physics D: Applied Physics. 2006,39:2205~2211
    83 Yu Daren, Li Yuquan. Volumetric Erosion Rate Reduction of Hall Thruster Channel Wall during Ion Sputtering Process. Journal of Physics D: Applied Physics. 2007, 40:2526~2532
    84 Yu Daren, Wu ZhiWen, Wang XiaoGang. Numerical Simulation for Near Wall Conductivity Effect on Current Profiles in the Annular Channel of Hall-type Stationary Plasma Thrusters. Physics of Plasma. 2005, 12: 043507
    85 Wu Zhi-Wen, Yu Daren, Wang Xiao-Gang. Effects of Erosion Surface on Near Wall Conductivity (NWC) in the Hall-type Stationary Plasma Thruster. Vacuum. 2006, 80,(11~12), 1376~1380
    86 E Peng, Yu Daren, Wu Zhiwen, Han Ke. On the Role of Magnetic Field Intensity Effects on the Discharge Characteristics of Hall Thrusters. Acta Physica Sinica. 2009, 58(4): 250~257 (in Chinese)
    87 Yu Daren, Li Hong, Wu Zhiwen, Mao Wei. Effect of Oscillating Sheath on Near-wall Conductivity in Hall thrusters. Physics of Plasmas, 2007,14: 064505
    88 Yu Daren, Zhang Fengkui, Liu Hui, Li Hong, Yan Guojun, Liu Jinyuan. Effect of Electron Temperature on Dynamic Characteristics of Two-dimensional Sheath in Hall Thrusters. Phys. Plasmas. 2008, 15:104501
    89 Yu Daren, Wu Zhiwen, Ning Zhongxi,Wang Xiaogang. Measurement of Sheath Thickness by Lining out Grooves in the Hall-type Stationary Plasma Thrusters. Physics Letter A. 2007, 364(2):146~151
    90 Ding Yongjie, Yu Daren, Wu Zhiwen. Parameters Distribution along the Channel Axis in the Scaling Designed Stationary Plasma Thruster. Plasma Science and Technology. 2006,8:716~719
    91 Yu Daren, Ding Yongjie, Zeng Zhi. Improvement on the Scaling Theory ofthe Stationary Plasma Thruster. Journal of Propulsion and Power. 2005,21(1):139~143
    92 Yu Daren, Wei Liqiu, Ding Yongjie, Han Ke, Yan Guojun, Qi Fengyan. Experimental Study on the Physical Mechanism of Coupling Oscillation: A Newly Discovered Oscillation in Hall Thrusters. Plasma Sources Science and Technology. 2007,16(4):757~764
    93 Yu Daren, Wei Liqiu, Wei Zhenlei, E Peng. Experimental Study on Low Frequency Oscillation in a Plume of Hall Thrusters. Plasma Sources Science and Technology. 2008,17(3):035022
    94 Yu Daren, Wang Chunsheng, Wei Liqiu, Gao Chao, Yu Guang. Stabilizing of Low Frequency Oscillation in Hall Thrusters. Phys. Plasmas. 2008, 15:113503
    95 A. I. Morozov. The Conceptual Development of Stationary Plasma Thrusters. Plasma Physics Reports. 2003, 29(3): 235-250
    96 Racca, D.Giuseppe. Smart-1: The First Small Mission for Advanced Research in Technology. Acta Astronautica. 1999,45(4~9): 337-345
    97 K. V. Brushlinskii, A. I. Morozov. Steady-State Plasma Flow in a Magnetic Field. Reviews of Plasma Physics 8, New York, Consultant Bureau, 1980
    98 A. I. Morozov, V. V. Savelev. Fundamentals of Stationary Plasma Thruster Theory. Reviews of Plasma Physics 21, New York, Consultant Bureau, 2001
    99 Richard R. Hofer, Robert S. Jankovsky. The Influence of Current Density and Magnetic Field Topography in Optimizing the Performance, Divergence, and Plasma Oscillations of High Specific Impulse Hall Thrusters. IEPC-2003-142, 28th International Electric Propulsion Conference
    100 A. I. Morozov, Y. V. Esipchuck, A. M. Kapulkin , V. A. Nevrovskii, V. A. Smirnov. Effect of the Magnetic Field on a Closed-drift Accelerator. Soviet Physics, Technical Physics. 1972, 17(2):482-487
    101 E. Y. Choueiri. Plasma Oscillations in Hall Thrusters. Physics of Plasma,2001,8: 4
    102 A. I. Morozov, Y. Epsinchuck, A. M. Kapulkin et al. Sov. Phys. Tech. Phys. 1972, 17: 482
    103 Y. Esipchuck, A. Morozov, G. Tilinin, A. Trofimov. Sov. Phys. Tech. Phys. 1974, 18: 928
    104 Y. Esipchuck and G. Tilinin, Sov. Phys. Tech. Phys. 1976, 21: 417
    105 G. Tilinin, Sov. Phys. Tech. Phys. 1977, 22: 974
    106 V. V. Zhurin, H. R. Kaufman, R. S. Robinson. Physics of Closed Drift Thrusters. Plasma Sources Sci. Technol.1999, 8: R1–R20
    107 Li Yuquan, Yu Daren. Reconstruction of Ionization Density Distribution in Hall Thruster Channel from Ion Energy Spectrum of Plasma Jet. Plasma Science and Technology. 2006,(8): 666~669
    108丁永杰.稳态等离子体推力器模化设计方法研究.哈尔滨工业大学工学博士论文. 2008:40~41
    109王新稳,李萍,李延平.微波技术与天线.电子工业出版社, 2006: 229~236
    110魏振磊. Hall推力器放电特性的探针诊断.哈尔滨工业大学工学硕士论文. 2007:61~62
    111 Linnell, J. A., A. D. Gallimore. Internal Plasma Potential Measurements of a Hall Thruster Using Xenon and Krypton Propellant. 29th International Electric Propulsion Conference, Princeton University, 2005
    112 M. A. Cappelli, N. B. Meezan, N. Gascon. Transport Physics in Hall Plasma Thrusters. 40th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, 2002, AIAA-2002-0485.
    113 Y. Raitses, A. Smirnov, D. Staack, N. J. Fisch. Measurements of Secondary Electron Emission Effects in the Hall Thruster Discharge. Physics of Plasmas. 2005, (12): 073507
    114 F. S. Gulcinski III. Examination of the Structure and Evolution of Ion EnergyProperties of a 5kW Class Laboratory Hall Effect Thruster at Various Operational Conditions. Ph.D Theisis, The University of Michigan. 1999: 120~122
    115 N. Dorval, J. Bonnet, J. P. Marque, E. Rosencher. Determination of the Ionization and Acceleration Zones in a Stationary Plasma Thruster by Optical Spectroscopy Study: Experiments and Model. Journal of Applied Physics. 2002, 91(8): 4811~4817
    116 N. B. Meezan, W. A. Hargus, D. P. Schmidt, M. A. Cappelli. Optical Study of Anomalous Electron Transport in a Laboratory Hall Thruster. AIAA-99-2284
    117 A. M. Bishaev, A. I. Bugrova, A. V. Desyatskov, M. V. Kozintseva. Radiation Characteristics of the ATON Plasma Thruster. 4th All-Russian Seminar on Problems of Theoretical and Applied Electron Optics. 2000:79~81
    118 G. F. Karabadzhak, Yu-Hui Chiu, Skip Willians, et al. Hall Thruster Optical Emission Analysis Based On Single Collision Luminescence Spetra. 37th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference & Exhibit, Salt Lake City, 2001. AIAA-2001-3893:1~10
    119 D. Krzysztof, N. Gillian, ea.al. Accurate transition rates for the 5p-5s transitions in KrI. Physical Review A, Vol. 62, 2000(2): 022505
    120项志遴,俞昌璇.高温等离子体诊断技术.上海科学技术出版社, 1982: 67~73
    121 S. Tsurubuchi, H. Kobayashi, M. Hyodo. Electron-impact Emission Cross-section for the 5p→5s and 5s→4pTransitions of KrI. Journal of Physics-London-B Atomic Molecular and Optical Physics.2003(36): 2629 ~2645
    122 E. B. Saloman, NIST ASD Team. NIST Atomic Spectra Database (version 3.1.4), NIST, Gaithersburg, MD, 2008
    123 R. C. Wetzel, F. A. Baiocchi, T. R. Hayes, et.al. Absolute cross sections for electron-impact ionization of the rate-gas atoms by the fast-neutral-beammethod. Physical Review A,Vol. 5, 1987(2): 559-577
    124 A. Smirnov, Y. Raitses, N. J. Fisch. Enhanced Ionization in the Cylindrical Hall Thruster. Journal of Applied Physics. 2003,94(2): 852~857
    125袁敬闳,莫怀德.等离子体中的波.电子科技大学出版社, 1990: 2~4
    126 N. A.克拉尔, A. W.特里维尔皮斯.等离子体物理学原理.郭书印,黄林,邱孝明译.原子能出版社, 1983: 87~89
    127 V. Kim, V. Kozlov, A. Lazurenko, G. Popov, A.Skrulnikov, C. Clauss, M. Day, J. Sancovie. Development and Characterization of Small SPT. AIAA-1998-3335
    128 L. Garrigues, G. J. M. Hagelaar, J. Bareilles, C. Boniface, J. P. Boeuf. Model Study of the Influence of the Magnetic Field Configuration on the Performance and Lifetime of a Hall thruster. Physics of Plasmas. 2003, 10(12): 4886-4892
    129 A. I. Morozov, Yu. V. Yesipchuk, A. M. Kapulkin, V. A. Nevrovsky, V. A. Smirnov. The Effect of Magnetiv Field Configuration on the Regime of ACD Operation. Soviet Physics-Technical Physics. 1972, 42(3): 612~619 (in Russia)
    130付海洋.磁场位形对霍尔推力器内电子运动的影响研究.哈尔滨工业大学工学硕士论文. 2008: 51
    131杜世刚.等离子体物理.原子能出版社. 1998: 74~79
    132 R. Balescu.等离子体中的输运过程(第一卷):经典输运理论.徐锡申,陈雅深,陆全康译.首都师范大学出版社, 1995: 4~6
    133朱士尧.等离子体物理基础.科学出版社, 1983: 96~99
    134徐家鸾,金尚宪.等离子体物理学.原子能出版社, 1981: 122
    135 D.Bohm. The Characterister of Electrical Discharge in Magnetic field. New York, McGraw-Hill, 1949: 65
    136 G. S. Janes, R. S. Lowder. Anomalous Electron Diffusion and Ion Acceleration in a low Density Plasma. Physics of Fluids. 1966,9(6):1115~1123
    137 S.Yoshikawa, D.Rose. Anomalous Diffusion of Plasma Across a Magnetic Field. Physics of Fluids. 1962,5(3): 334~340
    138 J. Fife, M. Martinez-Sanchez. Comparison of Results from a Two-Dimensional Numerical SPT Model with Experiment. 32nd AIAA/ASME/SAE/ASEE Jonit Propulsion Conference, Lake Buena Vista, FL,1996
    139 W. A. Hargus Jr, M. A. Cappelli. Development of a Linear Hall Thruster. 32nd AIAA/ASME/SAE/ASEE Jonit Propulsion Conference & Exhibit, 1998, Cleveland, OH, AIAA-98-3336
    140 C. A. Lentz, M. M. Sanchez. Transient One Dimensional Numerical Simulation of Hall Thrusters. AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit June 28-30, 1993, Monterey, CA, AIAA-93-2491.
    141 Justin W. Koo, Iain D. Boyd. Modeling of Anomalous Electron Mobility in Hall Thrusters, Physics of Plasmas. 2006, 13: 033501
    142 A. I. Bugrova, A. I. Morozov, V. K. Kharchevnikov. The Near Wall Conductivity Effect in the Channel of SPT. Technical Physics Letters. 1983, 9(1): 3~6 (in Russian)
    143 A. I. Morozov, A. Shubin. Electron kinetics in wall conductivity. Pis’ma v Zhurnal Tekhnicheskoi Fizika. 1984, 10(1): 28~31 (in Russian)
    144丁宁,何启兵,黄林,邱孝明.欧姆加热等离子体的能量输运.计算物理. 1992, 9(4):12
    145 J. G.林哈脱.等离子体物理学.陆全康,徐学基译.上海科学技术出版社, 1962: 226
    146颜竹芳.等离子体加热方法国内外应用与发展概况.工业加热. 1988(4)
    147菅井秀郎[日].等离子体电子工程学.张海波,张丹译.科学出版社, 2005
    148 F. F. Chen.等离子体物理学导论.林海光译.人民教育出版社, 1981:141~143
    149魏宝文,赵红卫.离子的喷泉—电子回旋共振离子源.清华大学出版社,暨南大学出版社, 2002: 49~54
    150 Z. M. Sheng, Y. Wang, J. Ma, S. B. Zheng. Simulation on Heating of Plasma in a Magnetic Field with Electro Static Wave. Acta Physica Sinica, 2006, 55(3): 1301~1306 (in Chinese)
    151 A. I. Bugrova, A. I. Morozov, V. K. Kharchevnikov. Experimental Study on Near Wall Conductivity. Fiz. Plazmy. 1990, (16): 1469-1480 (in Russian)
    152 E. Ahedo, P. Martínez-Cerezo, M. Martínez-Sánchez. One-dimensional Model of the Plasma Flow in a Hall Thruster. Physics of Plasmas. 2001,8: 3058
    153 C. Boniface, L. Garrigues, G. J. M. Hagelaar, J. P. Boeuf, D. Gawron, S. Mazouffre. Anomalous Cross Field Electron Transport in a Hall Effect Thruster. Applied Physics Letters, 2006,89:161503
    154沙定国.误差分析与测量不稳定度评定.北京理工大学出版社, 2003: 176~177
    155袁荫棠.概率论与数理统计.中国人民大学出版社, 1990: 269
    156马腾才,胡希伟,陈银华.等离子体物理原理.中国科学技术大学出版社, 1988: 210~216
    157 Y. Raitses, D. Staack. Electron-wall Interaction in Hall Thrusters. Physics of Plasmas. 2005, 12:057104
    158 A. I. Morozov. Steady-state Uniform Debye Sheaths. Sov. J. Plasma Phys. 1991, 17: 393
    159 A. Smirnov, Y. Raitses, N. J. Fisch. Enhanced Ionization in the Cylindrical Hall Thruster. Journal of Applied Physics. 2003,94(2): 852~857
    160 G. D. Hobbs, J. A. Wesson. Heat flow through a Langmuir Sheath in the Presence of Electron Emission. Plasma Physics. 1967, 9: 85~87
    161 J. Ashkenazy, Y. Raitses, G. Appelbaum. Parametric Studies of the HallCurrent Plasma Thruster. Physics of Plasmas. 1998, 5(5): 2055~2063
    162胡希伟.等离子体理论基础.北京大学出版社, 2006: 583~585
    163 F. Hegeler, G. Masten, G. Leiker, H. Krompholz, M. Kristiansen. Proceedings of the 9th IEEE Pulsed Power Conference, Albuquerque, NM. New York,Institute of Electrical and Electronics Engineers, R. White, K. Prestwich, 1995, 1: 237~241
    164 T. Randolph, V. Kim, H. Kaufman, K. Kozubsky, V. V. Zhurin, M. Day. Proceedings of the 23rd International Electric Propulsion Conference, Seattle, WA. Worthington, Ohio, Electric Rocket Propulsion Society, J. Brophy , 1993,1: 95~102
    165 R. R. Hofer, P. Y. Peterson, A. D. Gallimore. Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA. Cleveland, OH, Electric Rocket Propulsion Society , 2001,1: 45~54
    166 M. L. R. Walker. Effects of Facility Backpressure on the Performance and Plume of a Hall Thruster. Ph.D. Thesis, Department of Aerospace Engineering, Univ. of Michigan. 2005
    167 M. L. R. Walker, A. L. Victor, R. R. Hofer, A. D. Gallimore. Effect of Backpressure on Ion Current Density Measurements in Hall Thruster Plumes. Journal of Propulsion and Power. 2005, 21(3): 408~415
    168白德宇.真空环境对霍尔推力器性能影响的理论和实验研究.哈尔滨工业大学工学硕士论文. 2008:43
    169 Y. O. David, E. H. Daniel, M. M. Colleen, M. H. James, A. D. Gallimore. Modeling of Stationary Plasma Thruster-100 Thruster Plumes and Implications for Satellite Design. Journal of Propulsion and Power. 1999, 15(2): 345~357
    170 I. D. Boyd, R. A. Dressler. Far Field Modeling of the Plasma Plume of a Hall Thruster. Journal of Applied Physics. 2002, 92: 1764~1769
    171 A. D. Gallimore, M. M. L. Walker, B. E. Beal, T. B. Smith. AComprehensive Investigation of Facility-Effects on the Testing of High-Power Monolithic and Clustered Hall Thruster Systems. Final Technical Report, for research supported by AFOSR Contract. No. F49620-02- 1-0051
    172 R. R. Hofer, P. Y. Peterson, A. D. Gallimore. Characterizing Vacuum Facility Backpressure Effects on the Performance of a Hall Thruster. Proceedings of the 21st International Electric Propulsion Conference, Orlando, FL, 1990: 41~45
    173 A. I. Bugrova, A. V. Desiatscov, A. I. Morozov, V. K. Kharchevnikov. Experimental Investigation Negative Ions in SPT Thruster Channel. Proceedings of the 26th International Electric Propulsion Conference, Kitakyushu, Japan, 1999: 503~511
    174 A. I. Bugrova, A. V. Desyatskov, A. I. Morozov, V. K. Kharchevnikov. Measurements of a Negative Ion Flux in Plasma thruster Tests in a Vacuum Chamber. Plasma Physics Reports. 2000, 26(8): 715~719
    175王逊,何焕玮.热阴极电离真空计.北京大学出版社, 1991: 17~19
    176 K. Dzierzega, U. Griesmann, G. Nave. Physica Scripta 2001,63: 209
    177 L. Garrigues, I. D. Boyd, J. P. Boeuf. Computations of Hall Thruster Performance. Journal of Propulsion and Power. 2001, 27(4): 772~779
    178 V. M. Gavryushin, V. Kim. Effect of the Characteristics of a Magnetic Field on the Parameters of an Ion Current at the Output of an Accelerator with Closed Electron Drift. Sov. Phys, Tech. Phys. 1981(4): 505~507

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700