J-TEXT托卡马克欧姆放电条件下热辐射功率的测量与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
托卡马克放电会产生等离子体(包含电子和离子),同时存在的还有等离子体周围的、未被离化的中性粒子。这些粒子之间以及其与电磁场之间的相互作用,会伴随有电磁波的辐射。当托卡马克等离子体处于热力学平衡或局部热力学平衡状态,即系统内质点(分子、原子、离子、电子等)的能量分布可以用一定温度下的玻耳兹曼分布表示时,此时系统产生的电磁辐射行为广义上称为热辐射。热辐射是高温等离子体能量输运和耗散的一个重要途径,测量热辐射可以很好的了解能量平衡,同时通过对热辐射的测量可以给出等离子体的许多信息,如组分、电离状态等。因而在托卡马克等离子体物理研究中,热辐射测量是基本的诊断。
     论文主要的研究工作为J-TEXT托卡马克的热辐射测量系统的设计及其应用,以及对欧姆放电情况的实验观测和物理分析。主要内容有以下几个方面:
     (1)由于在目前的托卡马克温度下,对托卡马克等离子体的热辐射有显著贡献的电磁波谱多落在真空紫外波段及软X射线波段,因此根据J-TEXT托卡马克等离子体密度、温度等参数,可以估算出热辐射的主要贡献波段及辐射总功率,并由此选用合适的探测器(光电二极管)和设计合适的接收光路,搭建热辐射测量系统。整个系统根据其功能可分为两大部分:极向阵列和环向阵列。极向阵列主要用于探测辐射总功率,反演辐射功率剖面,观测极向热辐射的时间和空间演化过程。环向阵列分立于大环圆周的9个小窗口之上,可以研究环向热辐射的对称性(特别是在破裂放电情况下以及破裂缓解过程中)及验证磁面的完备性。其设计具有一定的创新意义。
     (2)实验发现在J-TEXT托卡马克欧姆放电中,平顶阶段的热辐射总功率大约占欧姆加热功率的20-80%,由此可见热辐射在能量平衡中扮演了非常重要的角色。基于极向热辐射阵列测量结果反演出来的辐射功率剖面原则上可以反映出温度大致的空间分布情况和等离子体中的杂质情况(如,组分、比例等)。在J-TEXT欧姆放电中,实验发现辐射功率剖面的基本形状主要有两种:峰化状和中空状。峰化状剖面芯部(r=0-0.2a,a为等离子体小半径)的辐射强度占总辐射强度的30%左右,边界部分(r=0.7a-a)为15%,分析表明芯部辐射主要由重杂质线辐射(FelI等)提供的;中空状剖面的芯部(r=0-0.2a)的辐射强度占总辐射强度的15%左右,边界部分(r=0.7a-a)为20%,这一部分的辐射主要由轻杂质(如C等)的线辐射提供。
     (3) J-TEXT热辐射测量系统采用光电二极管阵列作为其探测器,这种探测器的响应速度为0.5μs (AXUV16ELG),基本上可以满足一些MHD行为的观测要求。实验发现在J-TEXT欧姆放电情况下,热辐射信号在极向上和环向上都明显受到锯齿和其它MHD不稳定性的调制。在有剧烈Mirnov振荡的放电中,极向热辐射探测阵列甚至可以推演出磁岛(主要是m/n=2/1)所在的位置。
     (4)目前,J-TEXT托卡马克放电破裂事例中的71%是出撕裂模不稳定性导致的,其中m/n=2/1的模式占主要地位,同时还可能伴随有m/n=3/1等其它模式。在这类破裂放电中,热辐射强度在破裂之前并没有明显变化,但在破裂发生后却急剧增加。这说明热辐射并非是这类破裂的主要触发机制但却是破裂时能量损失的主要通道。估算表明,在破裂的热猝灭(TQ)阶段,由辐射损失的能量可以达到等离子体总内能的10%左右。
     (5)在J-TEXT托卡马克静态扰动场实验中,发现投入扰动场之后,芯部热辐射强度减小而边界热辐射强度增加,这可能主要是粒子的约束变差以及温度的变化造成的。在杂质气体(He气,Ne气,Ar气)补充充气实验中,发现脉冲送气并不能使辐射功率显著增加,而超声分子束补充送气却可以,增加量随气体的有效电荷数、送气压强和脉宽而不同。
There are electrons, ions and neutral atoms in the Tokamak plasma. The interactions between these particles as well as these particles and the electromagnetic fields often produce electromagnetic wave radiation. When the plasma is in thermodynamics equilibrium or local thermodynamics equilibrium state, that is, the particles'(molecule, atom, ion, electron etc.) distribution of the system can be described by the Boerziman distribution under a certain temperature, the electromagnetic radiation is called heat radiation. It is an important way of the transport and diffusion for the energy in the high-temperature plasma. Through the measurement of radiation, the energy balance can be understood well. Furthermore, the composition, ionization state, temperature and density can be obtained, so the radiation measurement is a basic diagnosis.
     The thesis introduces the design and application of the radiated power measurement system in the J-TEXT tokamak, as well as the experimental results and the physical analyses. The major contents are as follows:
     (1) At the current temperature, the dominated wavelength of the radiation is between extreme Vacuum ultraviolet (XUV) and soft X-ray. According to the density, temperature and other parameters of the J-TEXT Tokamak, the main wavelength of the radiation and the total radiated power can be estimated. Then based on these parameters, the appropriate detectors (photodiodes) and the appropriate receiving optical path can be chosen and the radiated system can be designed. The system includes poloidal arrays and toroidal arrays. The former ones are intended to measure the radiated power, radiated power profiles and the radiation evolution process in the poloidal direction. The latter ones, which are in nine small ports can study the radiation symmetry (especially the process of the disruption and the disruption mitigation) of the toroidal direction and proof the completeness of the magnetic surface.
     (2) In the J-TEXT tokamak ohmic discharges, the total radiated power is about20%-80%of the ohmic power in the current flattened stage, so the total radiated power play an important role in the power balance. The radiated power profiles got by the poloidal arrays can reflect the temperature profiles of the plasma and the composition, proportion of impurities. In the J-TEXT discharges, there are two kinds of profiles:peak shaped profile and hollow shaped profile. For the peak shaped profile, the radiated power is about30%of the ohmic power at the center of the plasma(r=0-0.2a), which mainly comes from the impurity line radiation (Fell, etc.); at the boundary (r=0.7a-a), the radiated power is about15%.For the hollow radiation profile, the radiated power is about15%at the center (r=0-0.2a) and at the boundary, the radiated power is about20%, which are mainly provided by the light impurities.
     (3) The photodiode is applied in the J-TEXT tokamak. Its response time is0.5μs (AXUV16ELG), therefore the fast MHD instability information can be obtained by analyzing the radiation signals. It is found that the radiation signals are modulated by the sawtooth and other MHD instabilities in the poloidal direction and toroidal direction. When the Mirnov oscillation is strong, the magnetic island (main the m/n=2/1) location can be deduced by the radiation signals.
     (4) In the current discharges, the disruption is mainly caused by tearing mode instability. Among them, the m/n=2/1mode dominates, accompanied by m/n=3/1mode. In this kind of disruption, the radiated power doesn't change obviously before the disruption. But after the disruption, it significantly increases. This indicates that the radiation is not a trigger mechanism but a channel of energy loss. According to the estimation, the radiated energy is about10%of the thermal energy during the thermal quench (TQ).
     (5) In the static magnetic perturbation field experiments (SFX) of the J-TEXT tokamak, it is found that after the perturbation field applied, the core radiation intensity decreases but the edge radiation intensity increases. This may be because the confinement gets worse and the temperature changes. In the noble gas (He, Ne, Ar) injection experiments, the radiated power doesn't increase obviously by gas puffing. However, when the gases are injected by supersonic molecular beam (SMBI), the radiated power increases obviously and the increased rate changes as the Zeff, pressure and the gases pulses.
引文
[1]朱士尧.核聚变原理.第一版.安徽合肥:中国科学技术大学出版社,1992:4-5
    [2]周全之.无污染和资源无限的聚变能.大众用电,2010,1:43-46
    [3]王廷江,杨丽珊.太阳辐射穿过大气层所发生的物理现象.现代物理知识,2005,17(2):23-24
    [4]http://www.iter.org/
    [5]石秉仁.磁约束聚变原理与实践.第1版.北京:原子能出版社,1999:1-4
    [6]http://resources,edb.gov.hk/physics/articleIE/starmaker/starMaker_e.htm
    [7]Mitsuru K. and Nobuyuki I.. Role of fusion energy for the 21 century energy market and development strategy with international thermonuclear experimental reactor. (internal report)
    [8]Mori M., IshidA S., Ando T., et al. Achievement of high fusion triple product in the JT-60U high βp H mode. Nucl. Fusion,1994,34(7):1045-1053
    [9]王淦昌.21世纪主要能源展望.核科学与工程,1998,18(2):97-108
    [10]Schuster E. and Ariola M.. The role of controls in nuclear fusion. In Proeeedings of the 45th IEEE Conferenee on Decision and Control. SanDiego, CA:IEEE, 2006:2263-2270
    [11]朱士尧.核聚变原理.第1版.安徽合肥:中国科学技术大学出版社,1992:59-61
    [12]项志遴,俞昌旋.高温等离子体诊断技术.上海:上海科学技术出版社,1982:68-77
    [13]马腾才,胡希伟,陈银华.等离子体物理原理.合肥:中国科学技术大学出版社,1988:365-366
    [14]Dendy R.. Plasma Physics, An Introduction Course. England:Cambridge University Press,1995:432-492
    [15]Zhuang G., Pan Y., Hu X. W., et al. The reconstruction and research progress of the TEXT-U tokamak in China, Nucl. Fusion,2011,51(9):094020
    [16]高丽,庄革,胡希伟等J-TEXT托卡马克装置上Ha辐射观测系统.现代科学仪器,2008(5):33-35
    [17]高丽,庄革,胡希伟等J-TEXT托卡马克上的可见光CCD成像系统.科学技术与工程,2008,8(2):353-356
    [18]Schivell J., Renda G., Lowrance J., et al. Bolometer for measurements on high temperature plasmas. Rev. Sci. Instrum.,1982,53(10):1527-1534
    [19]Nishitani T., Nagashima K., Sugiyama T., et al. Bolometer measurement in JT-60. Rev. Sci. Instrum.,1988,59(8):1866-1868
    [20]Hsuan H., Bol K. and Ellis R. A.. Measurement of the energy balance in ATC tokamak. Nucl. Fusion,1975,15(4):657-662
    [21]Gusev V. K., Golant V. E., Gusakov E. Z., et al. Globus-M spherical tokamak, Techn. Physics,1999,44(9):1054-1057
    [22]Gardareina J. L., Correa Y., and Rigollet F.. Thermal quadrupoles approach for two-dimensional heat flux estimation using infrared and thermocouple measurements on the JET tokamak. Int J Therm Sci.,2009,48(1):1-13
    [23]毛福山.热电偶串并联使用的测量特性.工业计量,1997(2):40-41
    [24]Orlinskjj D. V. and Magyar G.. Plasma diagnostics on large tokamaks. Nucl. Fusion,1988,28(4):611-697
    [25]Gray D. S., Luckhardt S. C., Chousal L., et al. Time resolved radiated power during tokamak disruptions and spectral averaging of AXUV photodiode response in DIII-D. Rev. Sci. Instrum.,2004,75(2):376-381
    [26]朱玉宝.HT-7上托卡马克上XUV波段辐射功率与分布的绝对测量.见上海第十二届全国等离子体科学技术会议.上海:东华大学,2005
    [27]余国刚,潘宇东,刘仪AXUV光电二极管探测器在聚变装置 HL-2A热辐射 测量系统上的应用.核电子学与探测技术,2006,26(6):985-989
    [28]Scaturro L. S. and Pickrell M. M.. Bolometric measurements and the role of radiation in Alcator power balance. Nucl. Fusion,1980,20(5):527-536
    [29]Post D. E.. A review of recent developments in atomic processes for divertors and edge plasmas. J. Nucl. Mater.,1995,220-222:143-157
    [30]Shimizu K., Takizuka T., Sakasai A.. A review on impurity transport in divertors. J. Nucl. Mater.,1997,241-243:167-181
    [31]Tahiliani K., Jha R., Gopalkrishana M. V., et al. Radiation power measurement on the ADITYA tokamak. Plasma Phys. Control. Fusion,2009,51(8): 0805004(1-13)
    [32]Mccool S. C, Bravenec R. V., Brower D. L., et al. Scaling laws for text plasma profiles. Report Number:DOE/ER/53267-129 FRCR-444. Austin:University of Texas Fusion Research Center,1994
    [33]Rebhan E., Vieth U., Reiter D., et al. Effect of helium concentration on ignition curves with energy confinement time including radiation losses. Nucl. Fusion, 1996,36(2):264-269
    [34]Pickrell M. M.. The role of radiation on the power balance of the alcator-c tokamak:[PH. D. Thesis]. Massachusetts:Massachusetts Institute of Technology, 1983
    [35]Jackson G. L., Winter J., Taylor T. S., et al. Regime of very high confinement in the boronized DIII-D tokamak. Phys. Rev. Lett.,1991,67(22):3098-3101
    [36]Donne, A. J. H., Costley A. E., Barnsley R., et al. Progress in ITER Physics Basis, Chapter 7:Diagnostics. Nucl. Fusion,2007,47(6):S337-S384
    [37]Loarte A., Lipschultz B., Kukushkin A. S. et al. Power and particle control. Nucl. Fusion,2007,47:S203-S263
    [38]Jackson G. L., Staebler G. M., Allen S. L., et al. Impurity feedback control for enhanced divertor and edge radiation in DIII-D discharges. J. Nucl. Mater.,1997, 241-243:618-622
    [39]Maraschek M., Fuchs J. C, Mast K. F., et al. Real-time determination of total radiated power by bolometric cameras with statistical methods. Rev. Sci. Instrum.,1998,69(1):109-115
    [40]张先梅.HT-7托卡马克欧姆放电时的电子热输运分析:[博士学位论文].安徽合肥:等离子体所,2001
    [41]Goeler von S., Stodiek W. and Sauthoff N..Studies of internal disruptions and m=1 oscillations in Tokamak discharges with soft-X-Ray tecniques. Phys. Rev. Lett.,1974,33(20):1201-1203
    [42]Chowdhuri M. B., Raju D., Manchanda R., et al. Exploring Core-to-edge Transport in Aditya Tokamak by Oscillations Observed in the edge Radiation. In the 12th International Congress on Plasma Physics, Nice (France) 2004:1-10
    [43]Dean S. O., Callen J. D., Furth H. P., et al. Status and Objectives of Tokamak Systems for Fusion Research. J. Fusion Energy,1998,17(4):289-337
    [44]Puiatti M. E., Mattioli M., Telcsca G., et al. Radiation pattern and impurity transport in argon seeded ELMy H-mode discharges in JET. Plasma Phys. Control. Fusion,2002,44 (9):1863-1878
    [45]Craven W. A., Wootton A. J.. Text-U error field measured from mhd dynamics. Nucl. Fusion,1998,38(4):585-595
    [46]Koslowski H. R.. Operational limits and limiting instabilities in tokamak machines. Trans. Fusion Sci. Technol.,2004,45:115-122
    [47]Greenwald ML Density Limits in Toroidal Plasmas. Plasma Phys. Control. Fusion,2002,44(8):R27-R80
    [48]Wesson A. J., Gill R. D., Hugon M., et al. Disruptions in JET. Nucl. Fusion,1989, 29(4):641-666
    [49]Stabler A., Mccormick K., Mertens V., et al. Density limit investigations on ASDEX. Nucl. Fusion,1992,32(9):1557-1584
    [50]Murakami M., Callen J. D. and Berry L. A.. Some observations on maximum densities in Tokamak experiments. Nucl. Fusion,1976,16(2):347-348
    [51]Stott P. E., Hugill J., Fielding S. J., et al. Control. Fusion Plasma Phys. (Proc.8th Eur. Conf. Prague,1979), Eur. Phys. Soc.1979:1-151
    [52]Joye B., Lister J. B., Moret J-M et al. The radiated power from the TCA tokamak over a wide range of ohmically heated conditions. Plasma Phys. Control. Fusion, 1987,29(1):27-36
    [53]Vannucci A. and Mccool S. C..Disruptive instabilities in the Text-U Tokamak. Nucl. Fusion,1997,37(9):1229-1244
    [54]Pautasso G., Buchl K., Fuchs J. C., et al. Use of impurity pellets to control energy dissipation during disruption. Nucl. Fusion,1996,36(10):1291-1297
    [55]Granetz R. S., Hollmann E. M., Whyte D. G.. Gas jet disruption mitigation studies on Alcator C-Mod and DIII-D. Nucl. Fusion,2007,47(9):1086-1091
    [56]Yoshino R., Kondoh T., Neyatani Y., et al. Fast plasma shutdown by killer pellet injection in JT-60U with reduced heat flux on the divertor plate and avoiding runaway electron generation. Plasma Phys. Control Fusion,1997,39(2):313-332
    [57]Taylor P. L., Kellman A. G., Evans T. E., et al. Disruption mitigation studies in DIII-D. Phys. Plasmas,1999,6(5):1872-1879
    [58]Hollmann E. M, Jernigan T. C., Groth M., et al. Measurements of impurity and heat dynamics during noble gas jet-initiated fast plasma shutdown for disruption mitigation in DIII-D. Nucl. Fusion,2005,45(9):1046-1055
    [59]Pautasso G., Fuchs C. J., Gruber O., et al. Plasma shut-down with fast impurity pu□ on ASDEX upgrade. Nucl. Fusion,2007,47(8):900-913
    [60]Lehnen M. Massive gas injection experiments at JET. In IEA Workshop W70 on Key ITER Disruption Issues, Culham,2009.
    [61]Hollmann E. M., Jernigan T. C. and Antar G.. DIII-D Studies of Massive Gas Injection Fast Shutdowns for Disruption Mitigation. In 33rd EPS Conference on Plasma Phys. Rome,2006,301:(P-5.136,1-4)
    [62]Reinke M. L. and Hutchinson I. H.. Two dimensional radiated power diagnostics on Alcator C-Mod. Rev. Sci. Instrum.,2008,79(10):10F306(1-3)
    [63]Reinke M., Whyte D. G., Granetz R., et al. Toroidally resolved radiation dynamics during a gas jet mitigated disruption on Alcator C-Mod. Nuclear Fusion, 2008,48(12) 125004(1-7)
    [64]Pautasso G.. Disruption studies in ASDEX upgrade in view of ITER. Plasma Phys. Control. Fusion,2009,51:124056 (1-11)
    [65]Maruyama S., Yang Y., Sugihara, M., et al. Fuelling and disruption mitigation in ITER, in Sofe 2009.23rd IEEE/NPSS Symposium on Fusion engineering,2009
    [66]项志遴,俞昌旋.高温等离子体诊断技术.上海:上海科学技术出版社,1982:57-61
    [67]Mcwhirter R. W. P.. Validity criteria for local thermodynamic equilibrium in plasma spectroscopy. Phys. Rev. A.,1990,42(11):6588-6601
    [68]梁雅琼,仲佳勇.类铍氧离子X射线及EUV光谱理论模拟.天文学报,2005,46(2):151-157
    [69]Wesson J.. Tokamaks,3rd ed. Oxford:Oxford University Press,2003:228-229
    [70]Sheffield J.. The physics of magnetic fusion reactors. Reviews of modem physics, 1994,66(3):1015-1103
    [71]项志遴,俞昌旋.高温等离子体诊断技术.上海:上海科学技术出版社,1982:70-73
    [72]Bornatici M., Cano R., Barbieri De O., et al. Electron cyclotron emission and absorption in fusion plasmas. Nucl. Fusion,1983,23(9):1153-1258
    [73]Albajar F., Johner J., Granata G.. Improved calculation of synchrotron radiation losses in realistic tokamak plasmas. Nucl. Fusion,2001,41(6):665-678
    [74]Hutchinson H. I.. Principles of plasma diagnostic. Cambridge University Press. Cambridge,1987:198-199
    [75]Dux R.. Impurity Transport in Tokamak Plasmas, IPP-Report,2004. http://www. aug.ipp.mpg.de/E2/Mitarbeiter/Zohm/PhD_ Network_ 2008/Impurity_transport_ classandneoclass.pdf
    [76]马腾才,胡希伟,陈银华.等离子体物理原理.合肥:中国科学技术大学出版社,1988:359-368
    [77]丁永华.HT-7低杂波电流驱动实验的电子加热实验研究:[硕士学位论文].湖北武汉:华中科技大学图书馆,2006
    [78]Peysson Y. and Hesse M.. Soft X-ray Emission during Application of Lower Hybrid Waves on JET. Report Number:EUR-CEA-FC-1351.1988
    [79]徐伟,万宝年,谢纪康.HT-6M托卡马克装置杂质输运.物理学报,2003,52(8):1970-1978
    [80]Piffl V., Burdakov A., Korneva N., et al. Measur ements of line radiation power in the CASTOR tokamak. In 33rd EPS Conference on Plasma Phys. Rome (Italy), 2006,301:P-2.196(1-4)
    [81]王文书,李赞良,黄矛.CT-6B托卡马克等离子体的真空紫外光谱.物理学报,1987,36(6):712-716
    [82]高伟.HT-7托卡马克MARFE不稳定性与交流放电杂质行为研究:[博士学位论文].合肥:中国科学院等离子体物理研究所,2009
    [83]Behrisch R.. Boundary conditions for a fusion plasma. J. Physique C,1977,38(8): 43-52
    [84]Haasz A. A. and Davis J. W.. Flux dependence of the radiation-enhanced sublimation of graphite due to D+irradiation. J. Nucl. Materials,1995,224(2): 141-145
    [85]Robson A. and Thonemann P.. An arc maintained on an isolated metal plate exposed to a plasma. Proc. Phys. Soc,1959,73(3):508-512
    [86]陈伟.HL-2A杂质原子参数和非日冕辐射的模拟:[硕士学位论文].武汉:华中科技大学图书馆,2006
    [87]http://www.ird-inc.com/axuv.html
    [88]曹继红.一种软X射线极紫外射线辐射标定方法:[硕士学位论文].吉林长春:中国科学院长春光学精密机械与物理研究所,2003
    [89]Boivin R. L., Goetz J. A., Mannar E. S., et al. High resolution bolometry on the Alcator C-Mod tokamak (invited). Rev. Sci. Instrum.,1999,70(1):260-264
    [90]孙景文.高温等离子体X射线谱学.北京:国防工业出版社,2003:74-76
    [91]秦运文,托卡马克等离子体辐射诊断中的线积分辐射率.核聚变与等离子体物理,1999,19(1):9-15
    [92]Janicki C, Decoste R. and Noel P.. Soft x-ray imaging diagnostic on the TdeV tokamak. Rev. Sci. Instrum.,1992,63(10):4410-4417
    [93]光电二极管前置放大器的设计.世界电子元器件,2000(12):37-40
    [94]李远明,陈文涛.微弱光信号前置放大电路设计.电子元器件应用,2007,9(8):51-53
    [95]http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?family=analog &familyld=72&uiTemplateId=NODE_STRY_PGET
    [96]Veres G., Pitts A. R., Wischmeier M., et al. Radiation distributions in TCV. J. Nucl. Mater.,2007,363-365:1104-1109
    [97]国家同步辐射实验室.光谱辐射标准秆和计量线站http://www.nsrl.ustc.edu. en/zhuangzhi/syxz/201009/120100910_46888.html
    [98]周洪军,王冠军,郑津津等.5-40 nm波段高次谐波的定量研究.光学学报,2010,30(9):2753-2756
    [99]周洪军.谱辐射标准和计量线站高次谐波抑制研究和关键部件研制:[博士学位论文].合肥:中国科技大学图书馆,2006
    [100]张东清.同步辐射软X射线能区探测器绝对标定:[硕士学位论文].北京:中国科学院高能物理研究所,1999
    [101]Nishitani T., Itami K., Nagashima K., et al. Radiation Losses and Global Power Balance of JT-60 Plasmas. Nucl. Fusion,1990,30(6):1095-1106
    [102]Nagayama Y.. Tomography of m=l mode structure in tokamak plasma using least square fitting method and Fourier Bessel expansions. J. Appl. Phys.,1987, 62(7):2702-2706
    [103]Youngblood B. J.. Bolometer diagnostics on Alcator C-Mod:[Master thesis] Cambridge:Univ. of Massachusetts Institute of Technology,2004
    [104]Ramsey A. T. and Diesso M.. Abel inversions:Error propagation and inversion reliability. Rev. Sci. Instrum.,1999,70(1):380-383
    [105]Shirai H.. Transport studies of tokamak plasmas in JT-60 device. JAERI-Research,1994,94-001:1-245
    [106]Dyabilin S K., Badalec J., Borschegovski A. A., et al. Global energy balance and density limit on Castor tokamak. Czech. J. Phys. B,1987,37(6):713-724
    [107]Ware A. A.. The direct Ohmic heating of positive ions in tokamak plasmas. Nucl. Fusion,1981,21(6):623-630
    [108]Huba J. D.. NRL plasma formulary.2002 rev. Washington, DC:Naval Research Laboratory,2002:28-29
    [109]Jha R., Sen A., Kaw P. K., et al. Investigation of gas puff induced fluctuation suppression in ADITYA tokamak. Plasma Phys. Control. Fusion,2009,51(9): 095010(1-17)
    [110]Snipes J. A., Bora D. and Kochanski T. P.. Initial bolometer measurement on TEXT. Texas Univ., Austin (USA). Fusion Research Center.1984:1-28
    [111]潘宇东.HA-1M上热辐射测量系统的研制及初步实验研究:[博士学位论文].成都:核工业西南物理研究院,1998
    [112]Ridolfini P. V., Zagorski R., Crisanti F., et al. Characterisation of the scrape-off layer plasma in the FTU tokamak. J. Nucl. Mater,1995,220-222:218-222
    [113]王全明,李可华,刘永等.HL-1M装置的杂质线辐射特性.核聚变与等离子体物理,2001,21(2):124-128
    [114]石秉仁,托卡马克改善约束研究,2008
    [115]Jin W., Zhuang G., Ding Y. H.. Development of a soft X-ray pulse height analyzer on the J-TEXT tokamak. Nuclear Instruments and Methods in Physics Research A,2012,674:15-19
    [116]Isler R. C. Impurities in tokamaks. Nucl. Fusion,1984,24(12):1599-1678
    [117]Fussmann G., Field A. R., Kallenbach A., et al. Impurity transport and neoclassical predictions. Plasma Phys. Control. Fusion,1991,33(13):1677-1695
    [118]Petrasso R. D., Sigmar D. J., Wenzel K. W., et al. Observations of centrally peaked impurity profiles following pellet injection in the Alcator-C Tokamak. Phys. Rev. Lett,1986,57(6):707-710
    [119]贝特曼.磁流体力学不稳定性.第1版.徐复,薜明伦,陈乐山等译.北京:原子能出版社,1982:241-242
    [120]Kadomtsev B. B.. Disruptive instability in tokamak. Sov. J. Plasma Phys.,1975, 1(5):389-391
    [121]Wesson J.. Sawtooth Oscillations. Plasma Phys. Contr. Fusion,1986,28(1): 243-248
    [122]许袆.HT-7托卡马克锯齿热脉冲传播的实验研究:[硕士学位论文].合肥:中国科学院等离子体物理研究所,2003
    [123]Granetz R. S. and Camacho J. F.. Soft-x-ray tomograph on Alcator C. Nucl. Fusion,1985,25(6):727-731
    [124]徐伟,方自深,万宝年.HT-6M托卡马克可见光谱中的锯齿振荡现象.光谱学与光谱分析.1997,17(1):34-39
    [125]Callen J. D. and Jahns G. L.. Experimental measurement of electron heat diffusivity in a tokamak. Phys. Rev. Lett.,1977,38(9):491-494
    [126]Soler M. and Callen J. D.. On measuring the electron heat diffusion coefficient in atokamak from sawtooth oscillation observations. Nucl. Fusion,1979,19(6): 703-714
    [127]Fredrickson E. D., Callen J. D., McGuire K., et al. Heat pulse propagation studies in TFTR. Nucl. Fusion,1986,26(7):849-862
    [128]肖宏,高庆弟,郭干城等.HL-1装置热脉冲传播分析.核聚变与等离子体物理,1989,9(1):41-45
    [129]Dreval M., Xiao C., Elgriw S., et al. Determination of radial location of rotating magnetic islands by use of poloidal soft x-ray detector arrays in the STOR-M tokamak. Rev. Sci. Instrum.,2011,82(5):053503(1-8)
    [130]Craven W. A.. Resonant external magnetic perturbations on the Texas Experimental Tokamak:[PhD Thesis]. Aust:Univ. of Texas,1996
    [131]胡希伟.等离子体理论基础.北京:北京大学出版社,2006:63-64
    [132]胡希伟.等离子体理论基础.北京:北京大学出版社,2006:120-121
    [133]Zhang Y. Z., Denton R. and Mahajan S. M. Nonlinear tearing mode:Rutherford regime and global characteristics. Phys. Rev. Lett.,1990,65(23):2877-2880
    [134]Schuller F. C. Disruptions in tokamaks. Plasma Phys. Control. Fusion,1995, 37(11A):A135-A162
    [135]周航宇.HL-2A装置上破裂特征的分析.中国核科技报告,2008,1:1-9
    [136]Wesson J.. Tokamaks,3rd ed. Oxford:Oxford University Press,2003:374-380
    [137]Ghoranneviss M., Hogabri A. and Kuhn S.. MHD activity at low q (a) in Iran Tokamak 1 (IR-T1). Nucl. Fusion,2003,43 (3):210-215
    [138]Sykes A. and Wesson A. J.. Major disruptions in tokamaks. Phys. Rev. Lett., 1980,44(8):1215-1218
    [139]Hicks H. R., Carreras B. A., Holmes J. A., et al. Non-linear analysis of disruptions in the JIPP T-II tokamak. Nucl. Fusion,1982,22(1):117-122
    [140]Turner M. F. and Wesson A. J.. Transport, instability and disruptions in tokamaks. Nucl. Fusion,1982,22, (8):1069-1078
    [141]White R. B., Monticello D. A. and Rosenbluth M. N.. Simulation of large magnetic islands:a possible mechanism for a major tokamak disruption. Phys. Rev. Lett.,1977,39(25):1618-1621
    [142]Schittenhelm M., Zohm H. and Asdex Upgrade Team. Analysis of coupled MHD modes with Mirnov probes in Asdex Upgrade. Nucl. Fusion,1997,37(9): 1255-1270
    [143]Pietrzyk, Z. A., Pochelon A. and Behn R.. Density limits and disruptions in the TCA tokamak. Nucl. Fusion,1992,32(10):1735-1753
    [144]Zhao Q. C., Chen L. and the HT-7 Group. Experiment of Stability Operation Region and MHD Instability Observation on HT-7. J. Plasma Fusion Res. Series, 1998,1:277-280
    [145]Waidmann G. and Kuang G.. Density limits and evolution of disruptions in ohmic TEXTOR plasmas. Nucl. Fusion,1992,32(4):645-654
    [146]Hollmann E. M., Gray D. S., Whyte D. G.. Radiated power measurement during the thermal quench phase of a density limit disruption. Phys. Plasmas,2003, 10(7):2863-2870
    [147]胡希伟.等离子体理论基础.北京:北京大学出版社,2006:76-77
    [148]Pigarov A. and Krasheninnikov S.. Application of the collisional-radiative, atomic-molecular model to the recombining divertor plasma. Phys. Lett. A,1996, 222(4):251-257
    [149]Mirnov S. V., Azizov E. A., Evtikhin V. A., et al. Experiments with lithium limiter on T-11M tokamak and applications of the lithium capillary-pore system in future fusion reactor devices. Plasma Phys. Control. Fusion,2006,48(6): 821-837
    [150]Mayer M., Philipps V., Wienhold P., et al. Hydrogen inventories in nuclear fusion devices, J. Nucl. Mate.,2001,290-293:381-388
    [151]Mineev A., Sugihara M., Lobanov K., et al. Simulation of disruption mitigation under massive gas injection in tokamak KTM. In joint meeting of the 3rd iaea technical meeting on spherical tori and the 11th international workshop on spherical Torus,2005
    [152]Belov A. M., Mirnov S. V., Alekseyev A. G.. Observation of fast penetration of impurities into the plasma core during the disruptions at T-11M Tokamak. In 27th EPS Conference on Contr. Fusion and Plasma Phys. Budapest,2000,24B: 596-599
    [153]Whyte D. G., Evans T. E., Hyatt A. W., et al. Rapid inward impurity transport during Impurity pellet Injection on the DIII-D Tokamak. Phys. Rev. Letters,1998, 81(20):4392-4395
    [154]Rao B.,Ding Y. H., Zhang M., et al. External resonant magnetic field experiments impacting on MHD activities on J-TEXT tokamak. In the 15th national conference on plasma science and technology. Abstracts.2011:123-123
    [155]Albert J. G.. The effect of resonant magnetic perturbations on the impurity transport in TEXTOR-DED plasmas:[PH. D. thesis]. Julich:Forschungszentrum, 2009:69-70
    [156]Hender T. C, Fitzpatrick. R., Morris A. W., et al. Effect of resonant magnetic perturbations on compass-c tokamak discharges. Nucl. fusion,1992,32(12): 2091-2117
    [157]严龙文,杨青巍,钱俊等.HL-1M装置锁模不稳定性研究.核聚变与等离子体物理,2000,20(4):193-197
    [158]Nave M. F. F. and Wesson A. J.. Mode locking in tokamaks. Nucl. Fusion,1990, 30(12):2575-2584
    [159]Murakami M., Neilson G. H., Howe H. C, et al. Plasma Confinement Studies in the ISX-A tokamak. Phys. Rev. Lett.,1979,42(10):655-658
    [160]Whyte D. G., Granetz R., Bakhtiari M. et al. Disruption mitigation on Alcator C-Mod using high-pressur gas injection:Experiments and modeling toward ITER. J. Nucl. Mater.,2007,363-365:160-1167
    [161]Unterberg B., Brix M., Jaspers R., et al. Plasma wall interaction and plasma edge properties with radiation cooling and improved confinement in TEXTOR-94. J. Nucl. Mater.,1999,266-269:75-83
    [162]Pautasso G., Coster D., Eich T.. Disruption studies in ASDEX Upgrade in view of ITER. Plasma Phys. Control. Fusion,2009,51(12):124056(1-11)
    [163]Boedo J. A., Ongena J., Sydora R., et al. Turbulent transport and turbulence in radiative I mode plasmas in TEXTOR-94. Nucl. Fusion,2000,40(2):209-222
    [164]洪文玉,严龙文,王恩耀等.HL-1M装置边缘等离子体结构研究.物理学报,2005,54(1):173-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700