城市地铁地下结构地震反应的试验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过离心机振动台模型试验和数值模拟的手段对地下结构地震反应特性进行了较为系统的研究。开展了不同类型地基-双层地下结构系统离心机振动台模型试验,通过对比试验结果标定数值模型,基于标定后的数值模型研究埋深和土层条件对地下结构地震反应的影响。采用数值模拟方法研究大空间地下结构地震反应特点,并对地下结构Pushover分析方法在大空间地下结构地震反应分析中的适用性和精度进行了分析。本文主要成果有:
     (1)为实现在离心机振动台试验中获得地下结构的破坏现象,采用正交试验方法对石膏复合材料的强度、弹性模量以及耐水性进行了系统的试验研究,得到了低强度和耐水性强的石膏复合材料。同时配置了低强度微粒混凝模型材料,并对石膏复合材料和微粒混凝土对原型混凝土结构的模拟精度进行了数值分析。
     (2)针对地下结构的地震反应问题,设计并完成了3组共11次1:50比尺的离心机振动台模型试验,研究了不同地基自由场地震反应和不同地基中地下结构的地震反应特性。试验取得了较为丰富、合理的数据,得到了不同地基自由场加速度反应规律和剪应力-剪应变变化关系,分析了不同地基中地下结构应变反应,并在试验中观察到地下结构破坏现象,发现了结构抗震不利部位。
     (3)基于OpenSees计算平台,建立了地基自由场和地基-地下结构动力相互作用系统非线性数值分析模型。通过与试验结果的对比,对数值模型及其中所采用的砂土、粘土本构模型参数与土体阻尼比计算参数进行了标定,采用标定后的数值模型研究了埋深和土层条件对地下结构地震反应的影响,讨论了对地下结构抗震性能产生不利影响的土层条件。
     (4)建立地基-地下结构非线性动力相互作用系统的静-动力联合分析有限元数值模型,对大空间地下结构进行弹塑性地震反应时程分析,研究了大空间地下结构地震反应规律和破坏特性,讨论了PGRD和局部PGRD作为地震动物理参数用于大空间地下结构地震反应分析时的合理性和有效性。同时采用地下结构Pushover分析方法对大空间地下结构进行了地震反应分析,讨论了地下结构Pushover分析方法在大空间地下结构地震反应计算中的适用性和精度。
This dissertation looks at the seismic response characteristics of underground struc-tures through a systematic centrifuge shaking table model tests and numerical simulation.Centrifuge shaking table model tests were conducted for two-story underground structuresystems above different foundation types. The numerical models were calibrated and val-idated based on the results of model test. In addition, the influences of burial depth andsoil properties on the seismic response of underground structures were analyzed by thenumerical approach. Seismic response characteristics of large-space underground struc-tures were studied by the Pushover analysis such that the suitability and accuracy of thePushover analysis for underground structures were investigated. The main contributionsof this dissertation are described in as follows:
     (1) Orthogonal experimental design was carried out to study the material propertiesof the plaster mixture, including fracture strength, Young’s modulus and the ability ofwaterproof. As a result, a proper type of plaster mixture was obtained with lower strengthand better water resistance. Meanwhile, a type of low strength micro-particle concretewas made. In addition, the modeling accuracy on the prototype structure by using theproperties of plaster mixture and micro-particle concrete were verified by the numericalmodel. The utilization of these materials leads a more desirable failure mechanism of theunderground structures under the centrifuge shaking table tests.
     (2) A total of11dynamic centrifuge1/50scale model tests were performed to studythe seismic response of underground structure. The results of shaking table tests present-ed the seismic characteristics of the different foundations. Based on the measured data,acceleration responses and shear stress-strain hysteresis curve of those foundation typeswere obtained. In addition, the seismic responses of a two-story underground structurewith two spans under certain different foundations were achieved. The failure mecha-nisms of such underground structure are observed under the centrifuge shaking table testsuch that certain weak positions under seismic load were recognized.
     (3) A series of nonlinear analysis was carried out through the OpenSees platform.The nonlinear numerical model was established and validated in order to estimate theinteraction between free field foundation and seismic response of underground structures. The numerical coefficients, such as constitutive model of sand and clay model as well asthe damping ratio of the soil were calibrated by using the data from the centrifuge shakingtable tests. Improved numerical model was able to estimate the effect of burial depthand soil properties to seismic response of underground structures. The undesirable soilconditions were recognized in order to maintain a better seismic response of undergroundstructures.
     (4) A large-scale numerical model was established for measuring the nonlinear soil-structure interaction, which accounts for both static and dynamic modeling. A series ofelastic-plastic time history analyses were conducted on a large-space underground struc-ture in order to study seismic response characteristics and failure mechanism of suchstructural system. The efficiency of using PGRD and local PGRD as ground motionparameters in the seismic analysis of large-space underground structures was discussed.Meanwhile, pushover analysis was used to study seismic response of the large-space un-derground structure. With the comparison between different methods, the accuracy of thePushover analysis was investigated for such underground structures.
引文
[1]钱七虎,陈志龙,王玉北.地下空间科学开发与利用.南京:江苏科学技术出版社,2007.
    [2] Hashash Y M A, Park D, Yao J I. Ovaling deformations of circular tunnels under seismicloading, an update on seismic design and analysis of underground structures. Tunnelling andunderground space technology,2005,20(5):435–441.
    [3]梁宁慧,刘新荣,曹学山,等.中国城市地铁建设的现状和发展战略.重庆建筑大学学报,2008,30(6):81–85.
    [4]李彬.地铁地下结构抗震理论分析与应用研究[博士学位论文].北京:清华大学,2005.
    [5]王梦恕.21世纪是隧道及地下空间大发展的年代.岩土工程界,2006,3(6):13–15.
    [6]李小春,蒋宇静.日本的地下空间利用.岩石力学与工程学报,2004,23(增2):4770–4777.
    [7]欧孝夺,李结全,欧刚,等.南宁市地下空间开发可持续发展的思考.地下空间与工程学报,2007,3(3):397–401.
    [8]中国工程院课题组.中国城市地下空间开发利用.北京:中国建筑工业出版社,2001.
    [9]柳昆,彭芳乐.城市中心区地下道路的规划设计模式.上海交通大学学报,2012,46(1):13–17.
    [10]陈志龙,张平,郭东军,等.中国城市中心区地下道路建设探讨.地下空间与工程学报,2009,5(1):1–6.
    [11]胡嘉.北京奥运会运动员村-地下建筑空间设计研究.地下空间与工程学报,2011,7(2):232–237.
    [12]宛素春,王春梅.北京奥运会运动员村-地下建筑空间设计研究.北京工业大学学报,1995,21(2):52–59.
    [13]钱七虎,陈晓强.国内外地下综合管线廊道发展的现状、问题及对策.地下空间与工程学报,2007,3(2):191–194.
    [14] Chen J, Shi X, Li J. Shaking table test of utility tunnel under non-uniform earthquake waveexcitation. Soil Dynamics and Earthquake Engineering,2010,30(11):1400–1416.
    [15] Boegly W J, Griffith W L. Underground utility tunnels. Mechanical Engineering,1971,93(9):27–32.
    [16] Jiang L Z, Chen J, Li J. Seismic response of underground utility tunnels: shaking table testingand FEM analysis. Earthquake Engineering and Engineering Vibration,2010,9(4):555–567.
    [17] Huo H. Seismic design and analysis of rectangular underground structures[D]. West Lafayette:Purdue University,2005.
    [18] Rowe R. Tunneling in seismic zones. Tunnels and Tunneling,1992,24:41–44.
    [19] Kuesel T R. Earthquake design criteria for subways. Journal of the Structural Division,1969,95(6):1213–1231.
    [20] Bickel J O, Kuesel T R. Tunnel engineering handbook. New York: Van Nostrand Reinhold,,1982.
    [21] Parra-Montesinos G J, Bobet A, Ramirez J A. Evaluation of soil-structure interaction andstructural collapse in Daikai subway station during Kobe earthquake. ACI Structural Journal-American Concrete Institute,2006,103(1):113–122.
    [22] Jiang Y J, Wang C X, Zhao X D. Damage assessment of tunnels caused by the2004MidNiigata Prefecture Earthquake using Hayashi’s quantification theory type II. Natural hazards,2010,53(3):425–441.
    [23] Bakir P G, De Roeck G, Degrande G D, et al. Seismic risk assessment for the mega-cityof Istanbul: Ductility, strength and maximum interstory drift demands. Soil Dynamics andEarthquake Engineering,2007,27(12):1101–1117.
    [24] Wang C J. Seismic racking of a dual-wall subway station box embedded in soft soil strata.Tunnelling and Underground Space Technology,2011,26(1):83–91.
    [25] Okhovat M R, Shang F, Maekawa K. Nonlinear seismic response and damage of reinforcedconcrete ducts in liquefiable soils. Journal of Advanced Concrete Technology,2009,7(3):439–454.
    [26]刘晶波,王文晖,赵冬冬.地下结构横截面地震反应拟静力计算方法对比研究.工程力学,2013,30(1):105–111.
    [27]刘晶波,王文晖,赵冬冬, et al.循环往复加载的地下结构Pushover分析方法及其在地震损伤分析中的应用.地震工程学报,2013,35(1):21–28.
    [28] Kontoe S, Zdravkovic L, Potts D M, et al. Case study on seismic tunnel response. Canadiangeotechnical journal,2008,45(12):1743–1764.
    [29]刘晶波,李彬.地铁地下结构抗震分析及设计中的几个关键问题.土木工程学报,2006,39(6):106–110.
    [30]地下铁道设计规范(GB50157-92).北京:中国计划出版社,1993.
    [31]地铁设计规范(GB50157-2003).北京:中国计划出版社,2003.
    [32] Ramazi H, Hosseinnejad M. The Silakhor (Iran) earthquake of31March2006, from an en-gineering and seismological point of view. Seismological Research Letters,2009,80(2):224–232.
    [33] Bhalla S, Yang Y, Zhao J, et al. Structural health monitoring of underground facilities-Technological issues and challenges. Tunnelling and Underground Space Technology,2005,20(5):487–500.
    [34] Liu E X. Seismic response of large underground structures in liquefiable soils subjected tohorizontal and vertical earthquake excitations. Computers and Geotechnics,2005,32(4):223–244.
    [35]赵成刚,冯启民.生命线地震工程.北京:地震出版社,1979.
    [36] Scawthorn C, Rourke T D, Blackburn F T. The1906San Francisco earthquake and fire-Enduring lessons for fire protection and water supply. Earthquake Spectra,2006,22(S2):135–158.
    [37] Sato T, Graves R W, Somerville P G. Three-dimensional finite-difference simulations of long-period strong motions in the Tokyo metropolitan area during the1990Odawara earthquake(MJ5.1) and the great1923Kanto earthquake (MS8.2) in Japan. Bulletin of the SeismologicalSociety of America,1999,89(3):579–607.
    [38] Trifunac M D, Todorovska M I. Nonlinear soil response as a natural passive isolationmechanism-the1994Northridge, California, earthquake. Soil Dynamics and Earthquake En-gineering,1998,17(1):41–51.
    [39] Hindy A, Novak M. Earthquake response of underground pipelines. Earthquake Engineering&Structural Dynamics,1979,7(5):451–476.
    [40] Esteva L. The Mexico earthquake of September19,1985-consequences, lessons, and impacton research and practice. Earthquake Spectra,1988,4(3):413–426.
    [41]王璐.地下建筑结构实用抗震分析方法研究[博士学位论文].重庆:重庆大学,2011.
    [42]于翔,赵跃堂,郭志昆.人防工程的抗地震问题.地下空间,2001,21(1):28–32.
    [43] Menkiti C O, Mair R J, Miles R. Highway tunnel performance during the1999Duzce earth-quake//Proceedings of the15th International Conference on Soil Mechanics and GeotechnicalEngineering. Taylor, Istanbul,2001:1365–1368.
    [44]钱七虎,陈晓强.利用地下空间建设“花园城市”.地下空间,2003,23(3):302–305.
    [45]宋胜武.汶川大地震工程震害分析与研究.北京:科学出版社,2009.
    [46]邓爽.长江隧道衬砌结构地震响应的三维数值分析[硕士学位论文].武汉:武汉理工大学,2006.
    [47]季倩倩.地铁车站结构振动台试验研究[博士学位论文].上海:同济大学,2002.
    [48] Philip J M. Shaking table scale model tests of nonlinear soil-pile-superstructure interaction insoft clay[D]. California, USA: University Of California, Berkeley,1998.
    [49] Tsukamoto Y, Ishihara K, Sawada S, et al. Settlement of rigid circular foundations during seis-mic shaking in shaking table tests. International Journal of Geomechanics,2012,12(4):462–470.
    [50]陶连金,王沛霖,边金.典型地铁车站结构振动台模型试验.北京工业大学学报,2006,32(9):798–801.
    [51]张建经,韩鹏飞.重力式挡墙基于位移的抗震设计方法研究-大型振动台模型试验研究.岩土工程学报,2012,34(3).
    [52] Zuo X, Chen G X, Wang Z H, et al. Spatial effect analysis on shaking table tests of subwaystation structure in soft ground. Advanced Materials Research,2012,368:1338–1345.
    [53]刘晶波,刘祥庆,王宗纲.地基-地下结构系统动力离心模型试验相似设计方法研究.后勤工程学院学报,2008,24(3):1–6.
    [54]张建民,于玉贞,濮家骝,等.电液伺服控制离心机振动台系统研制.岩土工程学报,2004,26(6):843–845.
    [55] Chou J C, Kutter B L, Travasarou T, et al. Centrifuge modeling of seismically induced uplift forthe BART transbay tube. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(8):754–765.
    [56] Deng L J, Kutter B L, Kunnath S K. Centrifuge modeling of bridge systems designedfor rocking foundations. Journal of Geotechnical and Geoenvironmental Engineering,2011,138(3):335–344.
    [57]苏栋,李相菘.可液化土中单桩地震响应的离心机试验研究.岩土工程学报,2006,28(4):423–427.
    [58]刘光磊.饱和地基中地铁地下结构地震反应机理研究[博士学位论文].北京:清华大学,2007.
    [59]刘祥庆.地铁地下结构地震反应分析方法与试验研究[博士学位论文].北京:清华大学,2008.
    [60]凌道盛,郭恒,蔡武军,等.地铁车站地震破坏离心机振动台模型试验研究.浙江大学学报(工学版),2012,46(12):2201–2209.
    [61]王勖成.有限单元法.北京:清华大学出版社,2003.
    [62]岳庆霞.地下综合管廊地震反应分析与抗震可靠性研究[博士学位论文].上海:同济大学,2007.
    [63] Boulanger R W, Wilson D W, Kutter B L, et al. Nonlinear FEM analyses of soil-pile inter-action in liquefying sand. Proceedings, Geotechnical Engineering for Transportation Projects,Geotechnical Special Publication,2004,(126):470–478.
    [64] Mahmood M N, Ahmed S Y. Non-Linear Dynamic Analysis of Framed Structures Includ-ing Soil-Structure Interaction Effects. Arabian Journal for Science and Engineering,2008,33(1):45–64.
    [65]李广信.高等土力学.北京:清华大学出版社,2004.
    [66]郑颖人,孔亮.岩土塑性力学.北京:中国建筑工业出版社,2010.
    [67] Mroz Z. On the description of anisotropic workhardening. Journal of the Mechanics andPhysics of Solids,1967,15(3):163–175.
    [68] Mroz Z, Pietruszczak S T. A constitutive model for sand with anisotropic hardening rule.International Journal for Numerical and Analytical Methods in Geomechanics,1983,7(3):305–320.
    [69] Iwan W D. On a class of models for the yielding behavior of continuous and composite sys-tems. Journal of Applied Mechanics,1967,34(3):612–617.
    [70] Prevost J H. Mathematical modelling of monotonic and cyclic undrained clay behaviour. In-ternational Journal for Numerical and Analytical Methods in Geomechanics,1977,1:195–216.
    [71] Yang Z H. Numerical Modeling of Earthquake Site Response Including Dilation and Lique-faction[D]. New York, US: Columbia University,2000.
    [72] Elgamal A, Yang Z H, Parra E, et al. Modeling of cyclic mobility in saturated cohesionlesssoils. International Journal of Plasticity,2003,19(6):883–905.
    [73] Dafalias Y F, Popov E P. A model of nonlinearly hardening materials for complex loading.Acta Mechanica,1975,21(3):173–192.
    [74] Dafalias Y F, Popov E P. Cyclic loading for materials with a vanishing elastic region. NuclearEngineering and Design,1977,41(2):293–302.
    [75]刘晶波,刘祥庆,薛颖亮.地下结构抗震分析与设计的Pushover方法适用性研究.工程力学,2009,26(1):49–57.
    [76] Sun L X. Centrifuge modeling and finite element analysis of pipeline buried in liquefiablesoil[D]. New York, US: Columbia University,2001.
    [77] Adalier K, Abdoun T, Dobry R, et al. Centrifuge modelling for seismic retrofit design ofan immersed tube tunnel. International Journal of Physical Modelling in Geotechnics,2003,3(12):23–35.
    [78]于玉贞,邓丽军,李荣建.砂土边坡地震动力响应离心模型试验.清华大学学报,2007,47(6):789–792.
    [79]刘晶波,刘祥庆,王宗纲,等.土-结构动力相互作用系统离心机振动台模型试验.土木工程学报,2010,43(11):114–121.
    [80]杨政,廖红建,楼康禺.微粒混凝土受压应力应变全曲线试验研究.工程力学,2002,19(2):92–96.
    [81]鞠杨,苏宏,李锡静,等.微粒混凝土配制技术.低温建筑技术,1994,(4):25–26.
    [82]江见鲸.钢筋混凝土工程学.北京:中国建筑工业出版社,1998.
    [83]楼康禺.微粒混凝土受压时应力应变全曲线研究[博士学位论文].上海:同济大学,1988.
    [84]件志扬.模型试验中材料特性差异导致的误差分析[硕士学位论文].上海:同济大学,2006.
    [85]殷杰,朱永全.三拱双柱式地铁车站结构静载模拟材料的研究.石家庄铁道学院,1990,3(2):80–86.
    [86]陈燕,岳文海,董若兰.石膏建筑材料(第二版).北京:中国建筑工业出版社,2012.
    [87]黄薇,陈进.电液伺服控制离心机振动台系统研制.长江科学院院报,1996,13(1):40–44.
    [88]混凝土结构设计规范(GB50010-2011).北京:中国建筑工业出版社,2011.
    [89]徐光明,章为民.离心模型中的粒径效应和边界效应研究.岩土工程学报,1996,18(3):80–86.
    [90] Kusakabe O. Application of centrifuge modeling to foundation engineering. Foundation andConstruction,1993,11(1):1–10.
    [91] Ovesen N K. Centrifugal testing applied to bearing capacity problems of footings on sand.Geotechnique,1975,25(2):394–401.
    [92]李德寅,王邦楣,林亚超.结构模型实验.北京:科学出版社,1996.
    [93]谈庆明.量纲分析.合肥:中国科学技术大学出版社,2005.
    [94]杨俊杰.相似理论与结构模型试验.武汉:武汉理工大学出版社,2005.
    [95] Iai S, Tobita T, Nakahara T. Generalised scaling relations for dynamic centrifuge tests.Geotechnique,2005,55(5):355–362.
    [96]陈正发.粘性土地基中地铁隧道动力离心模型试验系统开发[博士学位论文].北京:清华大学,2005.
    [97] Zeng X, Schofield A N. Design and performance of an equivalent-shear-beam container forearthquake centrifuge modelling. International Journal of Rock Mechanics and Mining Sci-ences and Geomechanics Abstracts,1996,33(8):366A–366A.
    [98] Campbell D J, Cheney J A, Kutter B L. Boundary effects in dynamic centrifuge model tests//Ko, H Y and Mclean, F G. Proceedings of the International Conference Centrifuge1991.Rotterdam, Netherlands,1991:441–448.
    [99] Hushmand B, Scott R, Crouse C. Centrifuge liquefaction tests in a laminar box. Geotechnique,1988,38(2):253–262.
    [100] Koga Y, Matsuo O. Shaking table tests of embankments resting on liquefiable sandy ground.Soils and Foundations,1990,30(4):162–174.
    [101] Zeghal M, Elgamal A, Tang H, et al. Lotung downhole array. II: evaluation of soil nonlinearproperties. Journal of Geotechnical Engineering,1995,121(4):363–378.
    [102] Elgamal A, Zeghal M, Parra E. Liquefaction of reclaimed island in Kobe, Japan. Journal ofGeotechnical Engineering,1996,122(1):39–49.
    [103] Kagawa T, Sato M, Minowa C, et al. Centrifuge simulations of large-scale shaking table tests:case studies. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(7):663–672.
    [104] Lambe T W, Whitman R V. Soil mechanics. New York: Wiley,1969.
    [105] Elgamal A, Yang Z, Lai T, et al. Dynamic response of saturated dense sand in laminat-ed centrifuge container. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(5):598–609.
    [106] Parra E. Numerical modeling of liquefaction and lateral ground deformation including cyclicmobility and dilation response in soil systems[D]. Troy, US: Rensselaer Polytechnic Institute,1996.
    [107] Yang Z, Elgamal A. Influence of permeability on liquefaction-induced shear deformation.Journal of Engineering Mechanics,2002,128(7):720–729.
    [108] Mazzoni S, McKenna F, Scott M H, et al. OpenSees command language manual. PacificEarthquake Engineering Research (PEER) Center,2005..
    [109] Smith I M. Computational geomechanics with special reference to earthquake engineering//O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, B. A. Schrefler, T. Shiomi, Mechanics ofCohesive-frictional Materials. John Wiley, New York,2000:673–673.
    [110] Prevost J. A simple plasticity theory for frictional cohesionless soils. International Journal ofSoil Dynamics and Earthquake Engineering,1985,4:9–17.
    [111] Lacy S. Numerical procedures for nonlinear transient analysis of two-phase soil system[D].Princeton, NJ.: Princeton University,1986.
    [112] Kramer S L. Geotechnical earthquake engineering. Prentice–Hall, Upper Saddle River, NJ.,1996.
    [113] Khoiri M, Ou C Y. Evaluation of deformation parameter for deep excavation in sand throughcase histories. Computers and Geotechnics,2013,47:57–67.
    [114] Yang Z, Elgamal A, Parra E. Computational model for cyclic mobility and associated shear de-formation. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(12):1119–1127.
    [115] Ilankatharan M, Kutter B. Modeling input motion boundary conditions for simulations ofgeotechnical shaking table tests. Earthquake Spectra,2010,26(2):349–369.
    [116] Yang Z, Lu J, Elgamal A. OpenSees geotechnical simulation capabilities and user manual.University of California, San Diego,2005..
    [117] Kumar J, Madhusudhan B N. A note on the measurement of travel times using bender andextender elements. Soil Dynamics and Earthquake Engineering,2010,30(7):630–634.
    [118] Viggiani G, Atkinson J H. Interpretation of bender element tests. Géotechnique,1995,45(1):149–154.
    [119] Seed H B, Idriss I M. Soil moduli and damping factors for dynamic response analyses.1970.At head of title: Earthquake Engineering Research Center.
    [120] Jaky J. The coefficient of earth pressure at rest. Journal of Society of Hungarian Architectsand Engineers,1944,25:355–358.
    [121] Menq F y. Dynamic properties of sandy and gravelly soils[D]. Austin, US: University of Texasat Austin,2003.
    [122] Kokusho T, Aoyagi T, Wakunami A. In situ soil-specific nonlinear properties back-calculatedfrom vertical array records during1995Kobe earthquake. Journal of Geotechnical and Geoen-vironmental Engineering,2005,131(12):1509–1521.
    [123] Park D, Hashash Y M A. Evaluation of seismic site factors in the mississippi embaymen-t. I. estimation of dynamic properties. Soil Dynamics and Earthquake Engineering,2005,25(2):133–144.
    [124] Rayleigh L R B. The theory of sound. Dover Pubns, New York, NY,1945.
    [125]刘晶波,杜修力.结构动力学.北京:机械工业出版社,2007.
    [126] Phillips C, Hashash Y M, Olson S M, et al. Significance of small strain damping and dilationparameters in numerical modeling of free-field lateral spreading centrifuge tests. Soil Dynam-ics and Earthquake Engineering,2012,42(0):161–176.
    [127] Kwok A O L, Stewart J P, Hashash Y M A, et al. Use of exact solutions of wave propagationproblems to guide implementation of nonlinear seismic ground response analysis procedures.Journal of Geotechnical and Geoenvironmental Engineering,2007,133(11).
    [128] Park D, Hashash Y M A. Soil damping formulation in nonlinear time domain site responseanalysis. Journal of Earthquake Engineering,2004,8(2):249–274.
    [129] Lin L I K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics,1989,45(1):pp.255–268.
    [130] Taucer F F, Spacone E, Filippou F C. A fiber beam-column element for seismic response anal-ysis of reinforced concrete structures. UCB/EERC-91/17, Earthquake Engineering ResearchCenter, College of Engineering, University of California, Berkeley.,1991..
    [131] Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlappinghoops at low and high strain rates. ACI Journal,1982,79(1):13–27.
    [132] Menegotto M, Pinto P E. Method of analysis for cyclically loaded RC plane frames includingchanges in geometry and non-elastic behavior of elements under combined normal force andbending. Proceedings of IABSE Symposium on Resistance and Ultimate Deformability ofStructures Acted on by Well Defined Repeated Loads,1973.15–22.
    [133] Filippou F C, Popov E P, Bertero V V. Effects of bond deterioration on hysteretic behaviorof reinforced concrete joints. UCB/EERC-83/19, Earthquake Engineering Research Center,College of Engineering, University of California, Berkeley.,1983..
    [134]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法.土木工程学报,1998,31(3):55–64.
    [135]刘晶波,李彬.三维黏弹性静-动力统一人工边界.中国科学(E辑),2005,35(9):966–980.
    [136]秦洪悦.天津站交通枢纽工程横向抗震分析[硕士学位论文].天津:天津大学,2007.
    [137] Naimi M, Sarma S K, Seridi A. New inclined boundary conditions in seismic soil–structureinteraction problems. Engineering structures,2001,23(8):966–978.
    [138]谷音,刘晶波,杜义欣.三维一致粘弹性人工边界及等效粘弹性边界单元.工程力学,2007,24(12):31–37.
    [139]李彬,刘晶波,刘祥庆.地铁车站的强地震反应分析及设计地震动参数研究.地震工程与工程振动,2008,28(1):17–23.
    [140]韩林海.钢管混凝土结构-理论与实践.北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700