南宁膨胀岩与地铁盾构管片相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南宁市轨道交通工程较多路段将穿越膨胀岩区域,该区域主要为第三系膨胀性泥岩,其成岩时间短,胶结程度差,具有显著吸水膨胀和失水收缩的特性。膨胀岩的胀缩性将对盾构管片内力和变形产生影响,膨胀岩与盾构管片的相互作用研究是一个全新的工程难题,值得深入研究。本文以南宁轨道交通一号线穿越膨胀岩区域为靶区,通过资料收集及综合分析,采用室内试验、数值计算及大型物理模型试验等综合研究方法,开展了膨胀岩与地铁隧道结构相互作用研究。
     通过现场调研和资料整理,剖析了南宁第三系泥岩的工程特性,揭示了南宁第三系膨胀泥岩的分布及构造特殊性,并对其物理指标、力学指标及膨胀特性指标进行了分析研究。基于区域工程地质条件、隧道上覆土层特征、水文地质条件等因素,对南宁轨道交通一号线膨胀岩区段进行岩层组合特性研究,提出了岩层组合模型。通过机理试验,研究了膨胀变形的时程特性和膨胀力影响因素及其关系。提出了综合考虑干密度和初始含水率双因素对膨胀力影响,获得膨胀力与干密度、初始含水率之间关系:P(ω,ρd)=-265.012pd+21.453ω+34.583e(2.3ρd-0.1ω)-142.294并开展微变形条件下膨胀力试验研究,提出了膨胀力随着微变形变化的规律,即微变形膨胀力与对应的零变形膨胀力之比随变形率增大而呈指数变小,得到膨胀力比值与微变形率关系式为:P/P0(ε)=C·eD·ε其中C,D为拟合常数。
     在此基础上,针对代表性岩层组合模型采用荷载-结构法,并考虑膨胀岩层施加范围对盾构管片的影响,研究不同情况下膨胀力对盾构管片内力及位移变形规律。研究表明:盾构管片受力最不利岩层组合模型是底部为膨胀岩,上部为非膨胀岩层的第Ⅲ类岩层组合;并研究得出了管片弯矩和变形随着底部膨胀围岩厚度的变化规律,即弯矩和变形随着盾构管片底部与膨胀围岩接触厚度夹角θ的增大呈现先增大后减小的趋势,其中最大正弯矩在θ=45°时出现,最大负弯矩和最大变形出现在0=30°。考虑膨胀力随着接触变形而衰减的修正模型进行数值计算,改进后计算模型能够更准确反映膨胀力对管片的内力和变形影响规律,考虑膨胀力折减后其内力和变形值均有所减小结合计算分析结果,构建膨胀岩围岩与盾构管片大型模型试验,分别围岩介质中埋设湿度传感器、土压力盒,在管片结构中埋设应变计和百分表,通过改变重塑膨胀性围岩的含水率以模拟膨胀力施加,实测盾构管片和围岩的内力、变形情况,研究盾构管片结构受力、变形规律,实测数据与数值模拟结果相吻合。
     基于南宁第三系膨胀性泥岩特殊和复杂的工程特性,在数值和物理模型研究基础上,解决了该区盾构设计中如何考虑膨胀围岩影响的难题,给出了在膨胀围岩下盾构管片的膨胀力施加范围以及膨胀力施加方式,优化了设计计算模型,可以更准确地反映盾构管片的实际受力情况。该成果可为南宁市涉膨胀岩区段地铁建设提供理论指导,也为国内外类似膨胀岩区域的地铁建设提供借鉴。
There are many swelling rock areas will be across by Nanning rail transit, which is mainly consist of the tertiary mudstone. This tertiary mudstone has the characteristics of short digenetic time, poor degree of consolidation and significantly in water swelling and water loss shrinking. The swell-shrink characteristics of the swelling rock will influence on the internal force and deformation of the shield segment. The research on the interaction of the swelling rock with the shield segments become a new engineering problem, which is worth in-depth study. Taking the swelling rock area across in Nanning rail transit line1as the target, through data collecting and comprehensive analyzing, using laboratory test, numerical calculation and comprehensive research methods, large-scale physical model test, the interaction research on the swelling rock and the subway tunnel structure was carried out.
     Through site investigation and data compilation, analyzes the engineering properties of the tertiary mudstone in Nanning, reveals the distribution and the structure characteristics of the swelling tertiary mudstone in Nanning, and the physical index, mechanical index and the swelling feature index were analyzed. Based on the regional geological conditions, the covering soil characteristics of the shield tunnel and hydrogeological conditions of Nanning rail transit line1where across the swelling rock area, the strata combination characteristics of swelling rock section were studied and the rock combination model was put forward. Through mechanism test, the calendar features of the swelling deformation and the expansion of swelling force influencing factors and their relationships were studied. Consideration both the dry density and the initial moisture content of double factors impact the swelling force, got the relationship between them:P(ω,ρb)=-265.012ρd+21.453ω+34.583e(23ρb-01ω)-142.294Then the experiment research on micro expansive force under the condition of deformation were taken, proposed the change law of the expansion forces as the micro deformation, that the ratio of the expansion force of micro deformation to the corresponding zero deformation lessen as the micro deformation rate increase. The equation of the ratio of the expansive force and the micro deformation rate was obtained as follow:P/P0(ε)=C·eD·ε, C, D for fitting constants.
     On the basis of this analysis, the representative rock combination model for load-structure method, and considering the applying range of the influence of shield segments expansive rock, the expansive force under the condition of the segment internal force and deformation law were studied. Research shows that the class Ⅲ as the most adverse combination model, which the bottom of the shield segment were swelling rock, the upper of non-swelling rock. The results show that the moment and deformation of the segment change along with the thickness of the bottom swelling rock, which increases at first then decreases with the angle θ increasing, When the contact angel θ between expansion force and segment equal45°, positive bending moment was max, the maximum negative bending moment and maximum deformation happened When the contact angel θ equal30°Considering expansion force as the contact deformation and the attenuation correction model for numerical calculation, the improved calculation model can more accurately reflect the expansive force influence law of internal force and deformation of the segments after considering expansion force reduction value of internal force and deformation were reduced.
     Based on the special and complex properties of the tertiary mudstone in Nanning, on the basis of both numerical and physical model research, the problem about how to consider the effect of swelling rock surrounding the shield in the design were solved. The swelling force applied range and exerting mode for shield segments of the swelling rock surrounding were given, and the design and calculation model was optimized which can be more accurately reflect the actual stress of the segment. The results could be used in Nanning where the swelling rock section of subway construction to provide theoretical guidance and may benefit to the subway construction for both the domestic and foreign similar swelling rock areas for reference.
引文
[1]Holtz. W G, Gibbs H J, Engineering Properties of Expansive Clays[J].Proceedings, ASCE,1954(80)
    [2]城乡建设环境保护部.膨胀土地区建筑技术规范[S].(GBJ112-2013).北京:中国计划出版社.2013
    [3]高大钊,孙钧.岩土工程的回顾与前瞻[M].人民交通出版社.2001.6:312-313
    [4]徐永福,龚友平,殷宗泽.宁夏膨胀土膨胀变形特性的试验研究[J].水利学报,1997(9):27-30
    [5]廖世文.膨胀土与铁路工程[M].北京:中国铁道出版社,1984
    [6]高国瑞.膨胀土微结构和膨胀势[J].岩土工程学报,1984,6(2):40-48.
    [7]施斌.黏性土微结构的定量技术与微观力学模型[D].南京:南京大学,1995.
    [8]P.Delage, J.Graham. Mechanical behaviour of unsaturated soils:Under standing the behaviour of unsaturated soils require reliable conceptual models[A].Proc.1st int.conf. Unsaturated soil [C],1995, Pairs.
    [9]PDelage, M. Andiguier etal. Microstructure of a compacted siltfJ]. Can.Geotech.J.1996, Vol.33, 150-158.
    [10]E.E, Alonso., A.Gens, and A Josa. A constitutive model for patially saturated soils[J]. Geotechnique, 1996,40(3):405-430.
    [11]Gens A., E.E. Alonso. A frame work for the behavior of unsaturated expasive clays[J].1992:1013 1032.
    [12]A1-Homond A S etal. Cyclic swelling behavior of clays[J] Journal of Geotechnical Engineering,1995, 121(7):562-565.
    [13]Fredlund, Rahardio, Soil Mechanics for Unsaturated Soil [M].New York:Willy-Interscience,1993
    [14]Tariq A-R, Durnford DS. Analytical volume change model for swelling clay soils[J].Soil Sci Soc Am J 1993;57:1183-7.
    [15]Botao Lin AB C. Investigation on Soil-Water Characteristic Curves of Untreated and Stabilized Highly Clayey Expansive Soils [J]. Geotechnical and Geological Engineering.2012.30:803-812.
    [16]Botao Lin A B C. Prediction of expansive soil swelling based on four micro-scale properties[J]. Bulletin of Engineering Geology and the Environment.2012(71):71-78.
    [17]Thyagaraj T, Rao S M. Osmotic Swelling and Osmotic Consolidation Behaviour of Compacted Expansive Clay[J]. Geotechnical and Geological Engineering.2012:1-11.
    [18]Chertkov V Y. Physical modeling of the soil swelling curve vs. the shrinkage curve[J]. Advances in Water Resources.2012,44:66-84.
    [19]Luciano Oldecop, Eduardo Alonso.Modelling the degradation and swelling of clayey rocks bearing calcium-sulphate[J]. International Journal of Rock Mechanics and Mining Sciences.2012.9(54):90-102
    [20]S. Banu Ikizler, Mustafa Aytekin, et al Prediction of swelling pressures of expansive soils using artificial neural networks[J].Advances in Engineering Software.2010.4(41):647-655
    [21]廖世文.膨胀土与铁路工程[M].北京:中国铁道出版社,1984
    [22]高国瑞.膨胀土微结构和膨胀势[J].岩土工程学报,1984,6(2):40-48.
    [23]施斌.黏性土微结构的定量技术与微观力学模型[D].南京:南京大学,1995.
    [23]谭罗荣、孔令伟.特殊岩土工程土质学[M].科学出版社.2006.9:12-13.
    [25]Cokca E Relationship between methylene blue value, initial soil suction and swell percent of expansive soils[J]. Turk J Eng Environ Sci 2002 (26):521-529
    [26]Uzundurukan S. Determining and modeling of principal parameters affecting swelling properties of soils [D]. PhD Thesis,Suleyman Demirel University, Isparta (in Turkish).2006
    [27]Rao BH, Venkataramana K, Singh DN. Studies on the determination of swelling properties of soils from suction measurements[J].Can Geotech J 2011(48):375-387
    [28]SuN. Theory of infiltration:Infiltration into swelling soils in a material coordinate[J]. Journal of Hydrology.2010,395(1-2):103-108.
    [29]Chen FH (1988) Foundations on expansive soils[M], Elsevier, Amsterdam,1988
    [30]Dafalla M A. The Influence of Placement Conditions on the Swelling of Variable Clays [J]. Geotechnical and Geological Engineering.2012,30(6):1311-1321.
    [31]Erzin Y, Gunes N. The unique relationship between swell percent and swell pressure of compacted clays[J]. Bulletin of Engineering Geology and the Environment.2013,72(1):71-80.
    [32]李献民,王永和,杨果林,等.击实膨胀土工程变形特征的试验研究[J].岩土力学.2003,24(5):826-830
    [33]丁振洲,郑颖人,李利晟.膨胀力变化规律试验研究[J].岩土力学.2007(7):1328-1332.
    [34]卢肇钧,吴肖茗,孙玉珍,等.膨胀力在非饱和土强度理论中的作用[J].岩土工程学报,1997(5):22-29.
    [35]肖宏彬,张春顺,何杰,等.南宁膨胀土变形时程性研究[J].铁道科学与工程学报,2005(6):47-52.
    [36]谭罗荣,孔令伟.膨胀土膨胀特性的变化规律研究[J].岩土力学,2004(10):1555-1559.
    [37]谢云,陈正汉,孙树国,等.重塑膨胀土的三向膨胀力试验研究[J].岩土力学,2007(8):1636-1642.
    [38]EA.索洛昌(苏).膨胀土上建筑物的设计与施工[M].徐祖森等译.北京:中国建筑工业出版社,1982
    [39]D.R.Carder.Earth Perssure on retaining walls and abautments[J].Ground Engineeringl988(7):7-10
    [40]C.R.I.Clyaton, I.F.Symons, J.C.Hiedra-Cobo. The Pressure of clay backfill agains retaining structure[J].Canadian Geotechnical Journal.1991(4):282-297
    [41]张颖钧.裂土挡土墙模型试验缓冲层设置的研究[J].岩土工程学报,1995(1):38-45
    [42]王年香,章为民,顾行文,等.膨胀土挡墙侧向膨胀压力研究[J].水利学报,2008.5(39):580-587
    [43]Allam M M, Sridharam S. Effect of wetting and drying on shear strength [J]. Journal of Geotechnical Engineering,1981,107(4):421-438
    [44]Robert W Day. Swell-shrink behavior of compacted clay[J] Journal of Geotechnical Engineering,1994,120(3):618-623
    [45]缪林昌,仲晓晨,殷宗泽.膨胀土的强度与含水率的关系[J].岩土力学,1999,20(6):18-21.
    [46]杨庆,张慧珍,栗茂田.非饱和膨胀土抗剪强度的试验研究[J].岩石力学与工程学报,2004,23(2):420-425.
    [47]刘特洪.工程建设中膨胀土问题[M].北京:中国建筑工业出版社,1997
    [48]杨和平,肖夺.干湿循环效应对膨胀土抗剪强度的影响[J].长沙理工大学学报(自然科学版),2005,2(2):1-5
    [49]韩华强,陈生水膨胀土的强度和变形特性研究[J].岩土工程学报,2004,26(3):422-424
    [50]Robert W Day. Swell-shrink behavior of compacted clay[J] Journal of Geotechnical Engineering,1994,120(3):618-623
    [51]D.GFredlund[加拿大],H. Rahardjo[印度尼西亚].陈仲颐等译.非饱和土土力学[M].中国建筑工业出版社,1999
    [52]Ning Lu, William J.Likeos.韦昌富等译.非饱和土力学[M].高等教育出版社,2012.6
    [53]Mokni N, Olivella S, Alonso E E. Swelling in clayey soils induced by the presence of salt crystals[J]. Applied Clay Science.2010,47(1-2):105-112.
    [54]Yitagesu F A, van der Werff H, et al. On the relationship between plasticity and spectral characteristics of swelling soils:The 3-5um wavelength region[J]. Applied Clay Science.2012,69:67-78.
    [55]Dominijanni A, Manassero M. Modelling the swelling and osmotic properties of clay soils. Part Ⅰ:The phenomenological approach[J]. International Journal of Engineering Science.2012,51:32-50.
    [56]Dominijanni A, Manassero M. Modelling the swelling and osmotic properties of clay soils. Part Ⅱ:The physical approach[J]. International Journal of Engineering Science.2012,51:51-73.
    [57]Bharat T V, Sivapullaiah P V, Allam M M. Novel procedure for the estimation of swelling pressures of compacted bentonites based on difluse double layer theory[J]. Environ Earth Sci.2012:1-12.
    [58]磨英飞,李轶,劳伟.广西南宁市第三系膨胀岩土分布区地质灾害发育特征[J].四川建材,2006(4):232-234
    [59]刘靓.南宁盆地泥岩力学性质研究[J].湖南地质,2002,21(4):286-290
    [60]杨和平,王静,湛文涛,等.南宁外环膨胀土路基处治技术及设计方案研究[J].岩土力学,2011(S2):359-365.
    [61]易念平,蔡仕干,张信贵,等.南宁地区泥质岩试验的基本模式[J].桂林工学院学报,2002,22(1):36-39
    [62]范秋雁.膨胀岩与工程[M].北京:科学出版社,2008
    [63]划铁雄译,日本隧道标准规范(盾构篇)及解释[M].成都:西南交通大学出版社,1993
    [64]MorganH D A. Contribution to the Analysis of Stress in an Circular TunneI[J]. Geotechnique.Vol.11, No.l, March,1961
    [65][美]奥罗克TD主编.隧道衬砌设计指南[M].北京:中国铁道出版社,1987
    [66]Peck R B. State of the Art of Soft Ground Tunnelling[C]. Proceedings of Rapid Excavation and Tunnelling Conference, Chicago,Vol.1,1972
    [67]Dar S M. Stress Analysis of Hollow Cylindrical Inclusions[J]. Journal of Geotechnical Engineering Division. ASCE, Vol.100,No. GT2.Feb,1974
    [68]Bull A. Stress in the Linings of Shield-Driven Tunnels Trans [J]. ASCE, Nov,1994
    [69]Curtis, D,J.Discussing of Muir Wood A M. The Circular Tunnel in Elastic Ground[J]. Geotechnique, Vol.26, No.2,Jun,1976
    [70]Muir Wood A M. The Circular Tunnel in Elastic Ground[J]. Geotechnique, Vol.25, No.1,1975
    [71]Hewet B M. Shield and Compressed Air Tunnelling. Me Graw-Hill Book Company[Ml, Inc N Y,1992
    [72]Schmidt B.Tunnel Lining Design-Do the Theories Work[J].Proceedings of Australia-New Zealand Geomechanics Conference, Perth, Australian, May,1984
    [73]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993
    [74]金康宁.同时考虑切、法向抗力的弹性地基圆拱单元[J].工程力学,1986(3):56-62
    [75]朱合华,崔茂玉,杨金松,盾构衬砌管片的设计模型与荷栽分布的研究[J].岩土工程学报,2000(3):190-194
    [76]Hashimoto T,Zhu H H,Nagaya J A.New model for simulating the behavior of segment in shield tunnel[C].Proc of the 49th Annual Conference of the Japan Society for Civil Engineering,Sep,1994:626
    [77]Murakami H, Koizumi A. Study on load bearing capacity and mechanical of shield segment in Japan[C]. Proc for 5th Japan Society for Civil Engineers,1978(4):103-115
    [78]章青.盾构式输水隧洞的计算模型及其工程应用[J].水利学报,1999(2):19-22
    [79]唐志成,何川,林刚.地铁盾构隧道管片结构力学行为模型试验研究[J].岩土工程学报,2005(1):85-89
    [80][日]土木学会主编,朱伟译.隧道标准规范[盾构篇]及解说[M].中国建筑工业出版社,2011.8
    [81][日]小泉淳主编,官林星译.盾构隧道管片设计[M].中国建筑工业出版社,2012.3
    [82]奚爱华,延安东路越江隧道管片的顶力试验及其结论[J].隧道与地下工程,1988(1):17-23
    [83]张厚美,过迟,傅德明.圆形隧道装配式衬砌接头刚度模型研究[J],岩土工程学报,2000(5):309-313
    [84]任强.北京地铁盾构施工风险评价与控制技术研究[D].中国地质大学(北京),2010
    [85]张姗磊.北京地铁土压平衡盾构施工对既有建筑物影响分析[D].中国地质大学(北京),2010
    [86]丛恩伟.北京地铁盾构法施工引起地表沉降的分析与预测研究[D].天津大学,2004
    [87]李林.北京地铁土压平衡盾构施工对既有建筑物影响分析[D].中国地质大学(北京),2010
    [88]殷加顺.盾构施工注浆对地层变形影响的有限元模拟及试验研究[D].天津大学,2009
    [89]张书丰.地铁盾构隧道施工期地表沉降监测研究[D].河海大学,2004
    [90]王福恩.上海地铁M8线黄兴路车站深基坑综合施工技术研究[D].西南交通大学,2003
    [91]张远荣.盾构过富水砂层对环境影响的分析研究[D].中国铁道科学研究院,2011.3
    [92]贾嘉陵.湿陷性黄土地层盾构施工引发地层变形特性研究[D].北京交通大学,2008
    [93]黄强兵.地裂缝对地铁隧道的影响机制及病害控制研究[D].长安大学,2009
    [94]Gallage C, Chan D, Kodikara J. Response of a plastic pipe buried in expansive clay. In:Proceedings of the ICE-geotechnical engineering (accepted December 2009).
    [95]Gould S, Kodikara J, Rajeev P, Zhao XL, Burn S. A new mathematical equation for void ratio-water content-net stress surface of expansive soils[J]. Can Geotech 2011;48(6):867-77.
    [96]P. Rajeev, J. Kodikara. Numerical analysis of an experimental pipe buried in swelling soil[J].Computers and Geotechnics 2011(38):897-904
    [97]P. Rajeev, J. Kodikara. Numerical analysis of an experimental pipe buried in swelling soil[J].Computers and Geotechnics 2011(38):897-904
    [98]Dawei Mao, Bj(?)n Nilsen. Analysis of loading effects on reinforced shotcrete ribs caused by weakness zone containing swelling clay[J]. Tunnelling and Underground Space Technology.2011(26):472-480
    [99]Anagnostou, G, A model for swelling rock in tunneling [J]. Rock Mech. Rock Eng.1993.4 (26): 307-331.
    [100]Barla, M. Tunnels in Swelling Ground-Simulation of 3D stresspaths by triaxial laboratory testing[D]. Ph.D. Politecnico di Torino,1999.180
    [101]Aksoy C O, Ogul K, Topal I, et al. Numerical modeling of non-deformable support in swelling and squeezing rock[J]. International Journal of Rock Mechanics and Mining Sciences.2012,52:61-70.
    [102]Marco Barla. Numerical simulation of the swelling behaviour around tunnels based on special triaxial tests [J]. Tunnelling and Underground Space Technology,2008.9(23):508-521
    [103]S.B. Tang, C.A. Tang. Numerical studies on tunnel floor heave in swelling ground under humid conditions [J]. International Journal of Rock Mechanics and Mining Sciences 2012.10(55):139-150
    [104]Yoo C, Shin H. Deformation behaviour of tunnel face reinforced with longitudinal pipes-laboratory and numerical investigation[J]. Tunnelling and Underground Space Technology.2003,18(4):303-319.
    [105]Gysel, M., Design of tunnels in swelling rock. Rock Mech. Rock Eng.1987.4(20):219-242.
    [106]Madsen, F.T. Suggested methods for laboratory testing of swelling rocks[J]. Int. J. Rock Mech. Min. Sci. Geomech.,1999.3(26):211-225.
    [107]Tang A, Cui Y, Trinh V, et al. Analysis of the railway heave induced by soil swelling at a site in southern France[J]. Engineering Geology.2009,106(1-2):68-77.
    [108]Guney Y, Sari D, Cetin M, et al. Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil[J]. Building and Environment.2007,42(2):681-688.
    [109]Ernest E. Wahlstrom.Fundamentals for the design and construction of tunnels located in swelling rock and their use during construction of the turning loop of the subway Stuttgart[J]. Engineering Geology 1981.3(17):64-65
    [110]Kovari, K., Chiaverio, F. Modular yielding support for tunnels in heavily swelling Rock [J]. Preprint STUVA Conference 07,2007.11:26-29
    [111]Pimentel, E.,2007. A laboratory testing technique and a model for the swelling behavior of anhydritic rock [J]..1 lth Congress of the International Society for Rock Mechanics
    [112]Madsen, F.T. Suggested methods for laboratory testing of swelling rocks[J]. Int. J. Rock Mech. Min. Sci. Geomech.,1999.3(26):211-225.
    [113]T. Sato, T. Kikuchi, K. Sugihara.In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock atTono mine, central Japan[J]. Engineering Geology, April 2000.4(56):97-108
    [114]J. Perez-Romero, C.S. Oteo, P. de la Fuente. Design and optimisation of the lining of a tunnel in the presence of expansive clay level[J]. Tunnelling and Underground Space Technology,2007.1(22):10-22
    [115]Hamza M, Ata A, Roussin A. Ground movements due to the construction of cut-and-cover structures and slurry shield tunnel of the Cairo Metro[J]. Tunnelling and Underground Space Technology.1999,14(3): 281-289.
    [116]Abu-Krisha A. Analysis of TBM tunnelling in swelling soils[J]. Tunnelling and Underground Space Technology.2006,21(3-4):252.
    [117]谢磊.富水膨胀土地质条件下柳城隧道的施工技术[D].西南交通大学,2009.5
    [118]赵云峰,白先祥,吴汉雄.膨胀土地区隧道施工的几点经验[J].西部探矿工程,2009,(4):163-164
    [119]郝中海,李文杰.膨胀土隧道施工技术要点[J].公路交通科技,2002.19(6):102-104
    [120]葛家良,赵国堂膨胀岩的特征及其对巷道稳定性影响[J].江苏煤炭,1994(4):34-36
    [121]靳丽川.膨胀岩对铁路隧道的影响及工程措施[J].铁道标准设计,1998(8):45-46
    [122]吴顺川,高永涛.膨胀岩巷道膨胀失稳破坏过程分析及注浆支护参数确定[J].有色金属,1998,50(4):4-9
    [123]王子忠,张良喜.膨胀岩水一岩耦合作用对隧洞衬砌变形破坏的机制分析及施工设计要点[J].四川水力
    [124]陶西贵,张耀膨胀性软岩洞室支护效应二维有限元分析[J].岩土工程技术,2004,18(6):303-306
    [125]周坤.膨胀土隧道衬砌膨胀力数值模拟研究[D].西南交通大学,2007
    [126]J.J.Klin, M Sc Mit, L R Schmid随道工程中的膨胀现象—理论与实践的比较[M].隧道翻译丛书,1993
    [127]周伟天,何川,晏启祥,等.膨胀土地层中盾构管片内力探讨[J].2008海峡两岸轨道交通建设与环境工程高级技术论坛
    [128]北京城建设计研究总院.地铁设计规范(GB50157-2003)[S].2003.
    [129]张庆贺,王慎堂,严长征,等.盾构隧道穿越水底浅覆土施工技术对策[J].岩石力学与工程学报,2004,23(5):857-861.
    [130]邢慧堂.南京长江隧道泥水盾构穿越江中超浅覆土段施工技术[J].现代隧道技术,2010,47(2):68-73.
    [131]宋修元.砂卵石地层下盾构过浅覆土路段施工技术[J].铁道建筑技术,2009(9):106-109.
    [132]李乾,于海亮.北京地铁小间距浅覆土平行盾构隧道施工技术[J].施工技术,2012(1):78-83.
    [133]徐晗,黄斌,何晓民.膨胀岩工程特性试验研究[J].水利学报,2007(S1):716-722.
    [134]胡瑾,王保田,张文慧等.无荷和有荷条件下膨胀土变形规律研究[J].岩土工程学报,2011(S1):342-345.
    [135]张婷,黄斌,吴云刚.膨胀土击实样膨胀特性试验研究[J].人民长江,2011,42(z2):166-169.
    [136]刘特洪.工程建设中的膨胀土问题[M].北京:中国建筑工业出版社,1997:24-25
    [137]中华人民共和国国家标准编写组.GB/T50279-98岩土工程基本术语标准[S].北京:中国计划出版社,1999:28.
    [138]李献民,王永和,杨果林,等.击实膨胀土工程变形特征的试验研究[J].岩土力学,2003,24(5):826-830.
    [139]谢云,陈正汉,孙树国,等.重塑膨胀土的三向膨胀力试验研究[J].岩土力学,2007,28(8):1636-1642
    [140]王梦恕.中国隧道及地下工程修建技术[M].人民交通出版社,2010,5:44-45
    [141]L. Mtiller.新奥法的基本思想和主要原则[J].地下工程,1980.(6)
    [142]范秋雁.论软岩支护中的让压技术-兼谈新奥法的让压理论[J].矿山压力与顶板管理,1993.2:5-8
    [143]林刚,罗世培,郭俊等.膨胀岩土地层盾构隧道结构力学行为研究[J].现代隧道技术,2011.6(48):74-79
    [144]唐志成,何川,林刚.地铁盾构隧道管片结构力学行为模型试验研究[J].岩土工程学报,2005,27(1):85-89
    [145]何川,封坤,杨雄.南京长江隧道超大断面管片衬砌结构体的相似模型试验研究[J].岩石力学与工程学报,2007,26(11):2260-2269.
    [146]何川,朱合华,徐前卫,廖少明,等.土压平衡盾构施工的顶推进力模型试验研究[J].岩土力学,2007,28(8):1587-159.
    [147]相似理论与结构模型试验[M].杨俊杰.武汉理工大学出版社,20005:299
    [148]南宁地铁一号线初步设计资料.
    [149]童斌华,夏俊吾,蒋红星.空心板梁混凝土强度与抗压弹性模量随龄期增长趋势探讨.施工技术.,2004.4(vo1.33).49-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700