Lévy过程的白噪声分析及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Levy过程有着丰富的数学结构,是概率论中最为重要的分支之一,在物理、金融等领域有着广泛的应用。Levy过程可以分解为时间变量、布朗运动和纯跳Levy过程的线性组合。Levy白噪声被视为Levy过程的广义时间导数。本文构建了Levy白噪声框架,其中Levy白噪声是指Gauss白噪声和纯跳Levy白噪声复合的二维噪声。并将Levy白噪声框架理论应用于随机微分方程、金融、生物种群和委托代理问题等领域。本文的主要工作包括:
     1.系统结合了Gauss白噪声框架理论和纯跳Levy白噪声框架理论,构建了Levy白噪声框架,为求解Levy过程驱动的随机微分方程提供了理论基础。白噪声方法求解随机微分方程依据随机分布空间的特征定理,利用Hermite变换将随机微分方程转化为非随机的普通方程,并求解此确定型方程,利用Hermite反变换将其解转换为随机分布空间中的分布过程,即为原随机微分方程的解。在纯跳Levy白噪声框架中本文用纯跳Levy白噪声表示位势,给出了随机薛定谔方程在随机分布空间的具体解。并论述了随机薛定谔方程的解在弱分布的意义下属于L1(u)空间。在Levy白噪声框架中,本文讨论了由Levy白噪声驱动的随机输运方程,给出了方程在随机分布空间中的具体解。
     2.在Levy白噪声框架下,推广Clark-Haussmann-Ocone定理,应用此定理,分别基于完全信息和部分信息,在Levy过程驱动的金融市场中,给出了Malliavin导数表示的欧式期权方差最小复制策略;用Levy白噪声框架理论建立了有界环境中的随机生物种群模型,并引入随机奇异控制研究投资者的最优收获策略。本文应用积分不等式验证定理,将随机控制问题的求解转化为确定型偏微分方程的求解,给出了最优性条件。
     3.利用Levy过程的随机控制、复合最优停时—随机控制、随机微分博弈等理论研究一次性支付委托代理问题。其一,在连续扩散环境中,给定线性契约,将经典的Hamilton-Jacobi-Bellman (HJB)方程验证定理推广到弱形式下,用来研究隐蔽行为下的代理人问题,将随机控制问题的求解转化为确定型偏微分方程的求解,给出了最优性条件。其二,将委托代理模型推广到Levy扩散环境中,并允许代理人选择契约的执行时间,给定广义契约,代理人问题被推广为二维的随机控制问题(复合最优停时-随机控制问题)。本文将经典的变分不等式HJB方程验证定理推广到弱形式下,用于求解隐蔽行为下的代理人问题,将复合最优停时-随机控制问题的求解转化为确定型偏微分方程的求解,给出了最优性条件。其三,在Levy扩散环境中,将委托代理问题视为委托人和代理人之间的非零和最优停时-随机控制博弈,其中代理人控制着随机控制过程,委托人选择契约的执行时间。本文证明了非零和最优停时-随机控制微分博弈的变分不等式HJB方程验证定理,将寻找纳什均衡的问题简化为求解一族确定型非线性变分-积分不等式,给出了纳什均衡的最优性条件。纳什均衡的意义在于:通过精心设计执行时间,委托人可以激励代理人做出最优的操作策略;反之,通过操作策略的选择,代理人可以迫使委托人在满足代理人利益最大化的时间执行契约。此定理对于广义的代价函数和一般的状态方程(代理人的操作策略同时影响状态方程的漂移项和扩散项)仍然成立,且适用于求解一般的非零和随机微分博弈,博弈一方控制随机过程,而另一方控制停时。
Levy processes are the most important parts in stochastic analysis, which have abundant mathematic structure. They have been used in a broad range of applications, such as physics and finance. A Levy process can be written as a linear combination of time t. a Brownian motion and a pure jump Levy process. And a Levy white noises are regarded as the derivative of a Levy process. In this thesis, we construct the framework of Levy white noises which are combined by Gaussian white noises and pure jump Levy white noises. Furthermore we study its applications in stochastic differential equations, finance, stochastic population and principal-agent problem. The main results, obtained in this thesis, are summarized as follows:
     1. We construct the framework of Levy white noises by combining the framework of Gaussian white noises and that of pure jump Levy white noises. The white noise approach to stochastic differential equation (SDE) driven by a Levy process is based on the characterization theorem of stochastic distribution space in this framework. The main idea of white noise approach can be concluded as follows:the SDE is firstly reduced to the deterministic differential equation (DDE) by Hermite transform, which can be solved. Then the solution of the SDE is obtained by the characterization theorem of stochastic distribution space, converting the solution of the DDE to a distribution. In the framework of pure jump Levy white noises, we give the explicit solution of the stochastic Schrodinger equation (SSE) driven by pure jump Levy white noises. And we prove that the solution of SSE is in L1(v) in sense of weak distribution under some conditions. In the framework of Levy white noises, we apply white noise approach to stochastic transport equation (STE) driven by Levy white noises. The explicit solution of the STE is obtained in stochastic distribution space. Moreover, we get the explicit solution of the stochastic heat equation by the solution of the STE.
     2. In the framework of Levy white noises, we give the white noise generalization of the Clark-Haussmann-Ocone theorem for Levy processes. As an application, in a financial market driven by Levy processes, the optimal replicating portfolios for a European option are represented by the explicit functional of Malliavin derivatives under full in-formation and under partial information. On the other hand, we set up by white noise analysis the stochastic population equation in a crowded environment perturbed by Levy processes. And the stochastic singular control is introduced to study the optimal harvesting problem. Based on the verification theorem of Integrovariational Inequali-ties, we reduce the optimal harvesting problem to solving a deterministic differential equations. The solution gives the optimality conditions.
     3. We introduce stochastic control, combined optimal stopping-stochastic control and stochastic differential game to study a principal-agent problem with Lump-sum pay-ments. Firstly, for a given linear contract in continuous diffusion setting, we develop the classic verification theorem of HJB equations in weak formulation and present the optimality conditions for the agent's problem in hidden actions. Secondly, the agent is allowed to exercise the contract prior the terminal time. For a given general contract, the agent's problem is formulated as an combined optimal stopping-stochastic control problem. In Levy diffusion setting, the classic verification theorem of Variational-Inequality-HJB equations is generalized in weak formulation to give optimality con-ditions for the agent's optimal exercise time in the case of hidden actions. Finally, when the principal is allowed to choose exercise time in Levy diffusion setting, we formulate the principal-agent problem as a nonzero-sum optimal stopping-stochastic control differential game between the principal and the agent. The principal controls stopping and the agent controls stochastic control. We prove a verification theorem in term of Variational-Inequality-HJB equations to provide the optimality conditions for Nash equilibrium of the game. The interesting feature of Nash equilibrium is that, the principal can induce the agent to make the best efforts, by an appropriate stopping rule design. Conversely, the agent can force the principal to exercise at a time of the agent's choosing, by applying suitable efforts. With the help of the verification the-orem, the characterization of Nash equilibrium is reduced to the solutions of a family of nonlinear variational-integro inequalities. The theorem for the game is applicable to more general nonzero-sum optimal stopping-stochastic control differential game than the specified principal-agent problem studied in this thesis.
引文
[1](?)ksendal B. Stochastic Differential Equations:An Introduction with applications. Berlin Heidelberg New York:Springer-Verlag,2003.
    [2]Kallianpur G. Stochastic Filtering Theory. New York, Heidelberg, Berlin: Springer-Verlag,1980.
    [3]Karatzas I, Shreve S. Brownian Motion and Stochastic Calculus. New York: Springer,1991.
    [4]Revuz D, Yor M. Continuous Martingale and Brownian Motion. New York: Springer-Verlag,1990.
    [5]Kunita H. Stochatic Flows and Stochastic Differential Equations. Cambrige:Cam-brige University Press,1990.
    [6]Protter P. Stochastic Integration and Differential Equations. Berlin Heidclberg New York:Springer,2003.
    [7]Jacod J, Shiryaev A N. Limit Theorems for Stochastic Processes. Berlin, Heidelberg, New York:Springer-verlag,2003.
    [8]Metivier M. Semimartingales. Berlin, New York:de Gruyter,1982.
    [9]Bichteler K. Stochastic Integration with Jumps. Cambrige:Cambrige University Press,2002.
    [10]Hida T. White noise analysis and its applications. Proceedings of the International Mathematical Conference.1982:43-48.
    [11]Hida T. Brownian Motion. Heidelberg, Berlin:Springer-Verlag,1980.
    [12]Hida T. Kuo H H, Potthoff J, Streit L. White Noise Analysis. Dordrecht:Kluwer, 1993.
    [13]Kondratiev Y G, Streit L. Spaces of white noise distributions:constructions, de-scriptions, applications. Reports on Mathematical Physics,1993,33(3):341-366.
    [14]Albeverioa S, Hida T, Potthoff J. Streit L. The vacuum of the h(?)egh-krohn model as a generalized white noise functional. Physics Letters B,1989,217(4):511-514.
    [15]Albeverio S. The wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space-time. Journal of Functional Analysis, 1974,16:39-82.
    [16]Gross L. Potential theory in hilbert spaces. Journal of Functional Analysis,1965, 1(1):123-189.
    [17]Daleckii J. Differential equations with functional derivatives and stochastic equa-tions for generalized random processes. Doklady Akademii Nauk,1966,166(1):1035-1038.
    [18]Malliavin P. Stochastic calculus of variations and hypoelliptic operators. Bulletin of The American Mathematical Society.1978:195-263.
    [19]Fujisaki M. Kallianpur G. Kunita H. Stochastic differential equations for the non-linear filtering problem. Osaka Journal of Mathematics,1972,9(3):19-40.
    [20]Pardoux E. Equations aux derivees partielles stochastiques nonlineaires monotones: These. Universite Paris XI,1975.
    [21]Zakai M. On the optimal filtering of diffusion processes. Z Wahrsch Verw Gebiete, 1969, 11(1):230-243.
    [22]Walsh J B. An introduction to stochastic partial differential equations, ecole d'ete de probalites de Saint-Flour XIV-1984.1986:265-437.
    [23]Holden H, Oksendal B. Ub(?)e J. Zhang T. Stochastic Partial Differential Equations: A Modeling, White Noise Approach. Boston:Birkhauser,1996.
    [24]Ito K. Stochastic integral. Proceedings of the Imperial Academy,1944,20(3):519-524.
    [25]Ito K. Multiple wiener integral. Journal of the Mathematical Society of Japan, 1951,3(1):157-169.
    [26]Albeverio S, Kondratiev J, Streit L. How to generalize white noise analysis to non-gaussian measures. Dynamics of Complex and Irregular Systems.1993:120-130.
    [27]Kondratiev Y, Silva J L, Streit L. Generalized appell systems. Methods of Functional Analysis and Topology,1997,3(3):28-61.
    [28]Kondratiev Y, Silva J L, Streit L. Us G. Analysis on poisson and gamma spaces. Infi-nite Dimensional Analysis, Quantum Probability and Related Topics,1998,1(1):91-117.
    [29]宁克标Poisson白噪声分析:博士学位论文.华东师大,1996.
    [30](?)sendal B, Proske F. White noise of poisson random measures. Potential Analysis, 2004,21(4):375-403.
    [31]Ito Y, Kubo I. Calculus on gaussian and poisson white noises. Nagoya Mathematical Journal,1988, 111(2):41-84.
    [32]Benth F E, Gjerde J. A remarke on the equivalence between poisson and gaussian stochastic partial differential equations. Potential Analysis.1998,8(2):179-193.
    [33]Albeverio S, Daletsky Y L, Kondratiev J, Streit L. Non-gaussian infinite dimensional analysis. Journal of Functional Analysis,1996,138(2):311-350.
    [34]Kondratiev Y G. Streit L, Westerkamp W, Yan J. Generalized functions in infinite dimensional analysis. Hiroshima Mathematical Journal,1998,28(2):213-260.
    [35]Bertoin J. Levy Processes. Cambridge:Cambridge University Press.1996.
    [36]Applebaum D. Levy Processes and Stochastic Calculus. Cambrige:Cambrige University Press,2004.
    [37]Peszat S. Zabczyk J. Stochastic Partial Differential Equations with Levy Noise. Cambridge:Cambridge University Press,2007.
    [38]Applebaum D, Wu J L. Stochastic partial differential equations driven by levy space-time white noise. Random Operators and Stochastic Equations,2000,8(3):245-260.
    [39]Mueller C. The heat equation with levy noise. Stochastic processes and their applications,1998,74(1):67-82.
    [40]Eberlein E. Keller U. Hyperbolic distributions in finance. Bernouilli, 1995,1(3):281-299.
    [41]Barndorff-Nielsen O E. Processes of normal inverse gaussian type. Finance and Stochastics,1998,2(1):41-68.
    [42]Schoutens W. Levy Processes in Finance. Chichester, West Sussex: Wiley,2003.
    [43]Eberlein E. Application of generalized hyperbolic levy motion to finance. Levy Processes.2001:319-336.
    [44]Cont R, Tankov P. Financial Modelling with Jump Processes. London:Chapman and Hall/CRC Press,2003.
    [45]Nualart D, Schoutens W. Chaotic and predictable representations for levy processes. Stochastic Processes and Their Applications,2000,90(1):109-122.
    [46]Lee Y. Analysis of generalized levy white noise functional. Journal of Functional Analysis,2004,211:1-70.
    [47]胡晓山Levy白噪声分析及其应用:博士学位论文.华中科技大学,2002.
    [48]吴莺Levy-Meixner白噪声分析:博士学位论文.华中科技大学,2005.
    [49]L(?)kka A. Martingale representation of functionals of levy processes. Stochastic Analysis and Applications,2004,22:867-892.
    [50]Nunno G D,(?)ksendal B, Proske F. White noise analysis for levy processes. Journal of Functional Analysis,2004,206(1):109-148.
    [51]Benth F E, L(?)kka A. Anticipative calculus for levy processes and stochastic differ-ential equations. Stochastics and Stochastics Reports,2004,76:191-211.
    [52]L(?)kka A,(?)sendal B, Proske F. Stochastic partial differential equations driven by levy space-time white noise. The Annals of Applied Probability, 2004,14(3):1506-1528.
    [53]L(?)kka A, Proske F. Infinite dimensional analysis of pure jump levy processes on the poisson space. Mathematica Scandinavica,2006,98(1):237-261.
    [54](?)ksendal B, Sulem A. Applied Stochastic Control of Jump Diffusion. Berlin: Springer,2007.
    [55]Benth F, Karlsen K, Reikvam K. Optimal portfolio management rules in a non-gaussian market with durability and intertemporal substitution. Finance and Stochastics,2001,4(2):447-467.
    [56]Benth F, Karlsen K, Reikvam K. Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint:a viscosity solution approach. Finance and Stochastics,2001,5(3):275-303.
    [57]Benth F, Karlsen K, Reikvam K. A note on portfolio management under non-gaussian logreturns. International Journal of Theoretical and Applied Finance, 2001,4(5):711-732.
    [58]Benth F. Karlsen K, Reikvam K. portfolio optimization in a levy market with in-tertemporal substitution and transaction costs. Stochastics and Stochastics Reports, 2002,74(3):517-569.
    [59]Benth F, Karlsen K, Reikvam K. A semilinear black-scholes partial differential equa-tion for valuing american options. Finance and Stochastics,2003,7(1):277-298.
    [60]Benth F, Karlsen K, Reikvam K. Mertons portfolio optimization problem in a black and scholes market with non-gaussian stochastic volatility of ornstein-uhlenbeck type. Mathematical Finance,2003,13(2):215-244.
    [61]Holden H,(?)sendal B. A white noise approach to stochastic differential equations driven by wiener and poisson processes. Nonlinear Theory of Generalized Functions. 1999:293-313.
    [62]Holden H, Lindstr(?)m T,(?)ksendal B, Ub(?)e J, Zhang T S. Stochastic boundary value problems:a white noise functional approach. Probability Theory and Related Fields,1993,95(3):391-419.
    [63]Proske F. The stochatic transport equation driven by levy white noise. Communi-cations in Mathematical Sciences,2004,2(4):627-641.
    [64]Aase K,(?)ksendal B, Privault N. Ub(?)e J. White noise generalization of clark-haussmann theorem with application to mathematical finance. Finance Stochastics. 2000,4(4):465-496.
    [65]Lungu E M,(?)ksendal B. Optimal harvesting from a population in a stochastic crowded environment. Mathematical Biosciences,1997,145(1):47-75.
    [66]Cvitanic J. Wan X, Zhang J. Optimal compensation with hidden action and lump-sum payment in a continuous-time model. Applied Mathematics and Optimization, 2009,59(1):99-146.
    [67]Cvitanic J, Wan X, Zhang J. Principal-agent problems with exit options. B.E. Journal of Theoretical Economics,2008,8(1):1-23.
    Baghery F. Haadem S, (?)ksendal B, Turpin I. Otimal stopping and stochastic control differential games for jump diffusions. Pure Mathematics Eprint Oslo.2010. 73(3):333-347.
    [69]Mataramvura S,(?)ksendal B. Risk minimizing portfolios and hjbi equations for stochastic differential games. Stochastics.2008,80(4):317-337.
    [70]Gelfand I, Vilenkin N. Generalized Functions 4. San Diego:Academic Press,1968.
    [71]Thangavelu S. Lectures on Hermite and Laguerre Expansions. Princeton:Princeton University Press,1993.
    [72]Chow P L. Generalized solution of some parabolic equations with a random drift. Applied Mathematics and Optimization,1989,20(1):1-17.
    [73]Nualart D, Zakai M. Generalized brownian functionals and the solution to a stochas-tic partial differential equation. Journal of Functional Analysis,1989,84(2):279-296.
    [74]Potthoff J. White noise methods for stochastic partial differential equations. Stochastic Partial Differential Equations and Their Applications.1992:238-251.
    [75]Potthoff J. White noise approach to parabolic stochastic patial differential equa-tions. Stochastic Analysis and Applications in Physics.1994:307-327.
    [76]Deck T, Potthoff J. On a class of stochastic partial differential equations related to turbulent transport. Probability Theory and Related Fields,1998,111(1):101-122.
    [77]Gjerde J. Holden H,(?)ksendal B, Ub(?)e J. Zhang T. An equation modelling transport of a substance in a stochastic medium. Seminar on Stochastic Analysis, Random Fields and Applications.1995:123-134.
    [78]Kallianpur G, Xiong J. Stochastic models of environmental pollution. Advances in Applied Probability,1994,26(2):377-403.
    [79]Gjessing H. Wick calculus with applications to anticipating stochastic differential equations. Manuscript, University of Bergen,1994,1(1):1-22.
    [80]Holden H. Lindstr(?)n T,(?)ksendal B. Ub(?)e J, Zhang T S. The pressure equation for fluid flow in a stochastic medium. Potential Analysis,1995.4(6):655-674.
    [81]Durrett R. Brownian Motion and Martingales in Analysis. California: Wadsworth Publishing Company,1984.
    [82]Egorov Y, Shubin M. Partial Differential Equations I. Encyclopedia of Mathematical Sciences. New York:Springer-Verlag,1992.
    [83]Holden H, Lindstr(?)m T,(?)ksendal B, Ub(?)e J, Zhang T. The stochastic wick type burgers equation. Stochastic Partial Differential Equations.1995:141-161.
    [84]Karatzas I, Ocone D. A generalized clark representation formula, with application to optimal portfolios. Stochastics and Stochastic Reports,1991,34(2):187-220.
    [85]Oksendal B. An introduction to malliavin.calculus with applications to economics. Working paper, University of Oslo,1996,1(1):1-18.
    [86]Elliott R J, van der Hoek J. A general fractional white noise theory and applications to finance. Mathematical Finance,2003,13(2):301-330.
    [87]Hu Y, (?)ksendal B. Fractional white noise calculus and applications to finance. Infinite Dimensional Analysis Quantum probability related topics.2003,6(1):1-32.
    [88]Lindstr(?)m T,(?)ksendal B, Ub(?)e J. Wick multiplication and ito-skorohod stochas-tic differential equations, in S. Albeverio et. al. (editors):Ideas and Methods in Mathematical Analysis, Stochastics and Applications,.1992:183-206.
    [89]Benth F E. A note on population growth in a crowded stochastic environment. Stochastic Analysis and Related Topics 5.1996:111-119.
    [90]Alvarez L, Shepp L. Optimal harvesting of stochastically fluctuating populations. Journal of Mathematical Biology,1998,37(2):155-177.
    [91]Framstad N C. Optimal harvesting of a jump diffusion population and the effect of jump uncertainty. SIAM Journal on Control and Optimization,2003,42(4):1451-1465.
    [92]Ronghua L, Wang W K P Q. Numerical analysis for stochastic age-dependent pop-ulation equations with poisson jumps. Journal of Mathematical Analysis and Ap-plications,2005,327(2):1214-1224.
    [93]朱少平,黄斌,王拉省.带跳与年龄相关随机种群模型方程收敛性分析.生物数学学报,2009,24(1):120-128.
    [94]Makasu C. On a problem of optimal harvesting from a stochastic system with a jump component. Stochastics,2002,73(3):333-347.
    [95]冯敬海,王岩,冯恩民.复合白噪声驱动的输运方程.应用概率统计,2009,25(6):597-610.
    [96]Yong J, Zhou X Y. Stochastic Controls:Hamiltonian Systems and HJB Equations. New York: Springer,1999.
    [97]Holmstrom B, Milgrom P. Aggregation and linearity in the provision of intertem-poral incentives. Econometrica,1987,55(2):303-328.
    [98]Schattler H, Sung J. The first-order approach to the continuous-time principal-agent problem with exponential utility. Journal of Economic Theory,1993,61(2):331-371.
    [99]Schattler H, Sung J. On optimal sharing rules in discrete- and continuous- times principal-agent problems with exponential utility. Journal of Economic Dynamics and Control,1997,21(2):551-574.
    [100]Sung J. Linearity with project selection and controllable diffusion rate in continuous-time principal agent problems. RAND Journal of Economics,1995,26(4):720-743.
    [101]Sung J. Corporate insurance and managerial incentives. Journal of Economic The-ory,1997,74(2):297-332.
    [102]Detemple J, Govindaraj S, Loewenstein M. Optimal contracts and intertemporal incentives with hidden actions. Boston University working paper,2001,1(1):1-26.
    [103]Ou-Yang H. Optimal contracts in a continuous-time delegated portfolio manage-ment problem. The Review of Financial Studies,2003,16(1):173-208.
    [104]Cadenillas A, Cvitanic J, Zapatero F. Dynamic principal-agent problems with per-fect information. Working paper, University of Southern California,2003,1(1):1-32.
    [105]Mirrlees J A. Notes on welfare economics, information and uncertainty. Essays on Economic Behavior under Uncertainty.1974:1-10.
    [106]Mirrlees J A. The optimal structure of incentives and authority within an organi-zation. Bell Journal of Economics,1976,7(1):105-131.
    [107]Holmstrom B. Moral hazard and observability. Bell Journal of Economics,1979, 10(1):74-91.
    [108]Sannikov Y. A continuous-time version of the principal-agent problem. Review of Economic Studies,2008,75(3):957-984.
    [109]Williams N. On dynamic principal-agent problems in continuous time. Working paper, Princeton University,2004,1(1):1-41.
    [110]DeMarzo P, Sannikov Y. Optimal security design and dynamic capital structure in a continuous-time agency model. The Journal of Finance,2006,61(6):2681-2724.
    [111]Cvitanic J, Wan X, Zhang J. First-best contracts for continuous-time principal-agent problems. Journal of applied mathematics and stochastic analysis,2006, 20(3):1-27.
    [112]Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Processes. Kodansha:North-Holland,1989.
    [113]Taylor M E. Partial Differential Equations III nonlinear equations. New York: Springer,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700