基于欧拉—欧拉模型的空气重介质流化床多相流体动力学的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气重介质流化床分选技术是一种适用于煤炭干法分选的高效分离工艺,为全球干旱缺水地区选煤技术的发展和应用提供了一条全新的路径和模式。在空气重介质分选基础理论的研究中发现,分选所采用的浓相气固流化床是一种非常复杂的气固多相流体系,因此有必要分别从宏观和微观层面对流化床内的多相流体动力学行为进行深入研究。本文基于“欧拉-欧拉”多相流模型,应用理论分析、试验测量与数值模拟计算相结合的方法,对流化床中的入料颗粒受力特性、气泡运动规律、加重质颗粒动力学行为及气固多相耦合作用机理等开展研究工作,以期为深入理解入料颗粒在流化床中的按密度分离规律、加重质密相与入料颗粒相的协同作用机理、完善流态化分选理论与研制和改进流化床分选设备等提供一定的理论支持。
     提出了采用“欧拉-欧拉”多相流模型对流化床内气固多相的复杂动力学行为进行数值计算研究。在总结大量经验模型和理论推导的基础上,针对本研究采用的浓相气固分选流化床,分别提出了气固曳力系数、颗粒间作用系数和固相应力项三种本构方程的理论计算公式来实现控制方程的封闭,为后续的数值模拟研究奠定了坚实基础。
     采用试验测量、数值模拟和理论模型验证相结合的方法,研究了流化床内的气泡动力学行为。结果表明,在表观流化气速1.5Umf≤U≤2.2Umf的条件下,气泡沿床层高度方向和床体轴向的平均直径分布分别为35mm     入料颗粒在流化床中的受力特性是粒群实现按流化床分选密度有效分离的基础。在对流化床中球形颗粒运动受力分析的基础上,建立了入料颗粒在流化床中运动时的受力平衡方程和基本动力学公式。自行设计了入料颗粒在流化床中运动时的受力测量系统,对不同粒径的球形颗粒在不同种类加重质形成的流化床中的受力进行测量。结果表明,入料颗粒的受力特性遵循稳定的变化规律,提出了受力均值和标准差随气速的变化关系均可由标准函数或修正后的标准函数表征。深入分析了颗粒连续受力的显著类周期性规律,获得了入料颗粒受力频率与振幅的波动范围。
     对入料颗粒在流化床中的受力波动数据进行分段拟合,建立了入料颗粒在流化床中瞬时受力的动力学拟合方程组。在试验测量、数值模拟和理论分析计算的基础上,对不同入料颗粒在流化床中的受力结果进行比较验证,结果表明,采用三种方法得到的颗粒瞬时受力均值与波动规律等基本保持一致。入料颗粒在流化床中的受力研究结果为探索不同密度的分选颗粒在流化床中的复杂动力学行为提供了必要条件。
     应用ICEM CFD软件构建与试验装置一致的三维流化床模型并进行精确网格划分,基于本文建立的适用于空气重介质流化床的数值计算模型,分别通过试验测量和数值模拟方法,对床层压降与密度分布进行定性与定量考察。结果证明流化床压降与标准差随气速的变化规律与加重质种类无关,只与U/Umf的数值有关。流化床密度分布规律的结果表明,1.5Umf≤U≤2.2Umf是床层密度分布最均匀稳定、波动幅度最小的操作气速范围,此时流化床的时均横向和轴向密度基本分布在1.95~2.10g/cm~3的范围内,密度标准差小于0.20g/cm~3,研究结果对完善流化床的压降和密度调控机制具有很好的促进作用。
     基于流化床压降和密度分布规律的试验和模拟结果,对流化床内的气固多相流体动力学行为进行深入的数值模拟研究。结果显示,流化稳定后,气相和加重质颗粒密相均处于均匀稳定分布状态,宏观上表现为床层活性较好,压降稳定,流化床三维空间内各点的密度分布很均匀,波动很小。微观上表现为气相具有很好的贯通性,颗粒相基本呈现稳定的环流和升降运动轨迹与速度变化规律,为入料粒群的分离提供了均匀稳定的分选密度环境,研究结果对流化床布风装置的设计和加重质的选取具有一定的参考价值和意义。
     本文在建立空气重介质流化床数值计算模型与自行研制的气泡运动采集系统和颗粒受力测量装置的基础上,通过对流化床中气泡动力学行为、入料颗粒受力特性、床层压降波动和密度分布特征、气相分布状态与加重质密相颗粒的运动规律、介质细颗粒与分选粗颗粒间的协同作用机理等开展深入研究,旨在为丰富流态化分选基本理论与流化床分选设备的研发改进及调控机制等发挥有效作用。
     该论文有图133幅,表29个,参考文献199篇。
Air Dense Medium Fluidized Bed (ADMFB) is a highly effective separation technique fordry coal separation, which provides a novel method and pattern for the development andapplication of the coal classification technique in arid and hydropenic regions of the world. It isfound that the dense gas-solid fluidized bed is a complicated gas-solid multiphase fluid systemin the research process of the air dense medium separation theory. Therefore, it is significantlynecessary to conduct the further research on the multiphase fluid dynamical behavior of thefluidized bed from the macroscopical and microcosmic view respectively. Based on theEuler-Euler multiphase fluid model, the combination methods of theoretical analysis,experimental measurement and numerical simulation were applied to carry out the studying offorce measurement of the separation particles, moving bubbles behavior, dynamical behaviorsof the medium solids and coupling interaction mechanism between gas and solid phases. It aimsto provide the theoretical foundation for the classification mechanism of the separation particlesby the density, synergistic mechanism of interaction between the medium solids and separationparticles to complete the fluidization classification theory, and to develop and improve thefluidized separator.
     The Euler-Euler multiphase fluid model was proposed to conduct the numerical simulationon the complex gas-solid multiphase dynamical behaviors in the fluidized bed. On the basis of alarge quantity of empirical models and theoretical inferences, the constitutive equations of thegas-solid drag coefficient, particle-particle interaction coefficient and solid stress were raisedrespectively to approach the governing equations, which laid the solid foundation for thefollowing numerical simulation.
     The methods of experimental measurement, numerical simulation and theoretical modelverifying were combined to investigate the bubble dynamical behaviors in the fluidized bed.The results show that the mean diameter of35mm     The force property of the separation particle in the fluidized bed is the basis to achieve theefficient separation of the feeding materials by the classification density of the fluidized bed.Based on the analysis of the force on the spheroidal particle moving in the fluidized bed, the load balance equation and basic dynamical formula of the separation particle in the Air DenseMedium Fluidized Bed were established finally. The force measurement device of theseparation particle was self-designed. The experimental measurements of the forces on twospheroidal particles with different particle sizes were conducted in the fluidized beds withdifferent types of medium solids respectively. The results indicate that the forces on theseparation particles moving in the fluidized bed follow the steady variation rules. The variationrelationship between the mean values and standard deviations of the forces and gas velocitycould be represented by the certain standard functions or corrected functions. The remarkablequasi-periodicity laws of the successive forces on the separation particles were further analyzed.The fluctuant ranges of the force frequency and amplitude of the separation particle areobtained finally.
     The force fluctuation data of the separation particle in the fluidized bed was carried out thepiecewise fitting. The dynamical fitting equations of the instantaneous forces were established.On the basis of experimental measurement, numerical simulation and theoretical calculation,the force results of different separation particles were detailedly compared. The results showthat the mean values and fluctuations of the forces on the separation particle are nearly closewith the application with above three approaches. The achievements provide the necessaryprerequisite for seeking for the complex dynamic behavior of the separation particles withdifferent densities in the fluidized bed.
     The3D model of the fluidized bed in accordance with the experimental device wasestablished with the software of ICEM CFD and the meshes were divided accurately. Based onthe numerical calculation model established in the study, the joint methods of experimentalmeasurement and numerical simulation were adopted to carry out the qualitative andquantitative investigation on the bed pressure drop and density distribution. The results showthe variation law of the bed pressure drop and its standard deviation with the gas velocity hasno relationship with the variety of medium solids, which only depends on the value of U/Umf.The study results of the bed density distribution show that1.5Umf≤U≤2.2Umfis the optimaloperation range, which could provide the steady and uniform bed density distributionenvironment. At this moment, the time-average bed densities of different bed heights anddifferent axial directions mainly distribute the range of1.95~2.10g/cm~3, and the standarddeviation of bed density is less than0.20g/cm~3. The achievements have great promotion tocomplete the regulation mechanism of the pressure drops and bed density.
     Based on the experimental and simulation results of the pressure drop and bed density of thefluidized bed, the further numerical simulation of the gas-solid multiphase fluid dynamicalbehaviors in the fluidized bed was carried out. The gas phase and the dense phase of medium solids both keep uniform and steady distribution condition after the stable fluidization. From themacroscopical view, it appears the favorable bed activity, stable sectional pressure drops anduniform bed density distribution of the fluidized bed. From the microcosmic view, it appears thefavorable connectivity of the gas phase in the fluidized bed, and the solid phase mainly presentsthe steady circumfluence, and elevation and subsidence movement trace and velocity variationrules. It not only ensures the steady flow of the fluidized bed, but also provides the stable anduniform bed density environment for the classification of the separation particles. The studyingresults have certain reference and significance on the distributor design of the fluidized bed andthe selection of medium solids.
     Based on the numerical calculation model and the self-designed acquisition system of thebubble movements and force measurement device of the separation particle, the bubbledynamical behavior, the force property of the separation particle, the fluctuation of pressuredrop and bed density distribution, gas phase distribution and movement laws of medium solids,synergistic mechanism of interaction between the medium solids and separation particles werefurther studied in the research. It aims to play the important effort on the basic separationtheories of the fluidization and the improvement and regulation mechanism of the fluidizedclassification equipments.
引文
[1] World Energy Outlook2010. International Energy Agency,2010.
    [2] Energy Science&Technology in China: A Roadmap to2050. China Academy&Sciences,2010.
    [3]陈清如,杨玉芬.21世纪高效干法选煤技术的发展[J].中国矿业大学学报,2001,30(6):527-528.
    [4]陈清如,骆振福.干法选煤评述[J].选煤技术,2003,6:34-41.
    [5]陈清如,杨玉芬.干法选煤的新进展[J].黑龙江矿业学院学报,2000,10(4):1-3.
    [6]陈清如.筛分和重选理论及其应用的新进展[M].徐州:中国矿业大学出版社,1994.
    [7] Chen Q.R., Wei L.B., Luo Z.F.. Development of coal dry beneficiation technology with air dense mediumfluidized bed [C].96’ China-Japan Symposium on Particlnology, Beijing: Tsinghua University Press,1996.
    [8] CHEN Qing-ru, WANG Hai-feng. Clean processing and utilization of coal energy [J]. The ChineseJournal of Process Engineering,2006,6(3):507-511.
    [9] Chen Q.R., Wei L.B.. Coal dry beneficiation technology in China-The State of the Art[J]. ChinaParticuology,2003,1(2):52-56.
    [10] Chen Q.R., Yang Y., Yu Z.M.. Dry cleaning of coarse coal with air dense medium fluidized bed at10Tons per hour [C]. Eighth Annual International Pittsburgh Coal Conference Proceedings,1991,Pittsburgh, America.
    [11] Chen Q.R., Yang Y., Tao X.X., et al.50t/h coal dry cleaning demonstration plant with air dense fluidizedbed[C]. Fluidization’94Science and Technology Conference Proceedings, Fifth China-JapanSymposium. Beijing: Chemical Industry Press,1994:381-389.
    [12]陶秀祥,陈增强,杨毅等.深床型流化床块煤选矸的实验研究[J].中国矿业大学学报,2001,30(6):573-577.
    [13] LUO Z.F., ZHAO Y.M., TAO X.X.,et al.. Progress in Dry Coal Cleaning Using Air-dense MediumFluidized Beds. Coal Preparation,2003,23(1-2):13–20.
    [14] He Y.Q., Zhao Y.M., Chen Q.R.. Fine particle behavior in air fluidized bed dense medium dryseparator[J]. Coal Preparation,2003,23(1-2):33–45.
    [15] Luo Z.F., Chen Q.R.. Dry beneficiation technology of coal with an air dense medium fluidizedbed[J].International Journal of Mineral Processing,2001,63(3):167-175.
    [16] Luo Z.F., Zhu J.F., Fan M.M.. Low density dry coal beneficiation using an air dense medium fluidizedbed [J]. Journal of China University of Mining&Technology,2007,17(3):306-309.
    [17] LUO Z.F., FAN M.M., ZHAO Y.M., et al. Density-dependent separation of dry fine coal in a vibratedfluidized bed [J]. Powder Technology,2008,187(2):119–123.
    [18]骆振福, FAN Mao-ming,赵跃民等.物料在振动力场流化床中的分离[J].中国矿业大学学报,2007,36(1):27-32.
    [19]骆振福, FAN Mao2ming,陈清如等.振动参数对流化床分选性能的影响[J].中国矿业大学学报,2006,35(2):209-213.
    [20]骆振福.<6mm级煤炭振动流化床分选机理及分选效果的研究[D].中国矿业大学博士论文,1996.
    [21]骆振福,赵跃民.流态化分选理论[M].中国矿业大学出版社,2002.
    [22] KUNII D, LEVENSPIEL,O..Fluidization Engineering [M].Boston: Butterworth-Heinemanm,1991.
    [23] Hoover, H.C., Hoover, L.H. Translation from the First Latin Edition of1556[M].Georgius Agricola, DeRe Metallica,1950, Dover, New York.
    [24] Taggart, A.F. Handbook of Mineral Dressing [M].1945.
    [25] Kellly, E.G., Sporttiswood, D.J.Intorduction to Mineral Processing [M].1982, New York.
    [26] Burt, R.O., Mills, C.. Gravity concentration technology (Developments in Mineral Processing)[M].Elsevier Science Publishing Company,1984.
    [27] Weiss, N.L.. SME Mineral Processing Handbook[M].New York: American Institution of Mining andMetallurgical Engineers,1985.
    [28] Schubert, H.. Aufbereitung fester Stoffe[M]. Stuttgart: Deutscher Verlag fur Grundstoffindustrie. Band II,1996.
    [29] Schennen, H., Jungst, F.. Lehrbuch der Erz-und Steinkohlenaufbereitung [M]. Stuttgart: Verlag vonFerdinand Enke,1913.
    [30] Chapman, W.R., Mott, R.A. The Cleaning of Coal [M].1928.
    [31] Blumel, E..Lehrbuch der Erz-und Steinkohlenaufbereitung [M].1930.
    [32] Mitchell, D.R.. Progress in Air Cleaning of Coal [J]. Transactions of the American Institution of Miningand Metallurgical Engineers,1942,149:116-137.
    [33] Mcculloch, W.C., Llewellyn, R.L., Humphreys, K.K.&Leonard, J.W.. Dry Concentration. Chapter11in:Coal Preparation [M].1968.
    [34] Frankland, S.C.. Dry beneficiation of coal. Report no. coal R063,1995.
    [35] Van HOUWELINGEN J A,de JONG T P R.Dry cleaning of coal: review, fundamentals andopportunities[C]//Proceedings of the Proceedings of the5th European Coal Conference. Brussels:Geologica Belgica,2004:335-343.
    [36] DAVYDOV M V. On development and practical application of pneumatic coal preparation inRussia[C]//Dry separation science and technology. Xuzhou: China University of Mining andTechnology Press,2002:13-23.
    [37] CHAN E W, BEECKMANS J M. Pneumatic beneficiation of coal fines using the counter-currentfluidized cascade [J]. International Journal of Mineral Processing,1982,9(2):157-165.
    [38] DONG X, BEECKMANS J M. Separation of particulate solids in a pneumatically driven counter-currentfluidized cascade [J]. Powder Technology,1990,62(3):261-267.
    [39] BEECKMANS J M, MINH T. Separation of mixed granular solids using the fluidized counter currentcascade principle [J]. The Canada Journal of Chemical Engineering,1977,55(5):493-496.
    [40] LIU Y Z, ZHANG J Y, ZHANG B J. Separation of a binary particle mixture in a vibrating fluidized bedof dense medium [J]. Powder Technology,1998,100(1):41-45.
    [41] SOONG Y, SCHOFFSTALL M R, GRAY M L, etal. Dry beneficiation of high loss-on-ignition fly ash[J]. Separation and Purification Technology,2002,26(2/3):177-184.
    [42] TANAKA Z, SATO H, KAWAI M, OKADA K, TAKAHASHI T. Dry Coal Cleaning Process forHigh-quality Coal [J]. Journal of chemical engineering of Japan,1996,29(2):257-263.
    [43] TANAKA Z, OSHITANI J, KUBO Y, ZUSHI T. Dry coal cleaning in drewboy bath type by dry heavymedium [C]//Dry separation science and technology. Xuzhou: China University of Mining andTechnology Press,2002:73-78.
    [44] KUBO Y, ZUSHI T. Designing points of the fluidized bed type dry coal cleaning system [C]//Dryseparation science and technology. Xuzhou: China University of Mining and Technology Press,2002:79-89.
    [45] OSHITANI J, TANI K, TAKASE K, TANAKA Z. Dry coal cleaning by utilizing fluidized bed mediumseparation (FBMS)[C]//Proceedings of the SCEJ Symposium on Fluidization. Japan,2003:425-430.
    [46] LOCKHART N C. Dry beneficiation of coal [J]. Powder Technology,1984,40(1/3):17-42.
    [47] BEECKMANS J M, STAHL B. Mixing and segragation kinetics in a strongly segregated gas-fluidizedbed [J]. Powder Technology,1987,53(1):31-38.
    [48] BEECKMANS J M, JEFFS A.. Taylor dispersion in fluidized channel flow [J]. Chemical EngineeringScience,1982,37(6):863-867.
    [49] SAHU A K, BISWAL S K, PARIDA A. Development of Air Dense Medium Fluidized Bed TechnologyFor Dry Beneficiation of Coal-A Review [J]. International Journal of Coal Preparation and Utilization,2009,29(4):216-241.
    [50]彭晨,焦红光.空气重介流化床干法选煤技术的历史沿革与发展[J].煤炭工程师,1998,(6):24-25.
    [51] LUO Z F, ZHAO Y M, CHEN Q R, FAN M M, TAO X X. Separation Characteristics for Fine Coal ofthe Magnetically Fluidized Bed [J]. Fuel Processing Technology,2002,79(1):63-69.
    [52] CHEN Q R, LUO Z F, WANG H F, ZHAO Y M, WEI L B. Theory and practice of dry beneficiationtechnology in China [C]//Proceedings of XXIV International Mineral Processing Congress, Beijing,China,2008:1900-1907.
    [53] ZHAO Y M, LUO Z F, CHEN Q R, HE Y Q, CHEN Z Q, LIANG C C, DUAN C L. Development ofDry Cleaning With Fluidized Beds in China [C]//Proceedings of the11th international mineralprocessing symposium, Belek-Antalya, Turkey,2008:639-646.
    [54] Rosensweig, R. E., Lee, W. K.,&Siegell, J. H.. Magnetically stabilized fluidized beds for solidsseparation by density [J]. Separation Science and Technology,1987,22(1):25-45.
    [55] Colberg, R. D.,&Liu, Y. A.. Studies in magnetochemical engineering. V. An experimental study offluidized beds with screen packing and applied magnetic field [J]. Powder Technology,1988,56(4):279–292.
    [56] Liu, Y. A., Wagner, R. G, Pehler, F. A.,&McCord, T. H.. Studies in magnetochemical engineering:PartIV. A fluidized-bed superconducting magnetic separation processes for dry coal desulfurization[J].Powder Technology,1988,56(4):259-277.
    [57] Hamby, R. K.,&Liu, Y. A.. Studies in Magnetochemical Engineering: Part VI. An experimental study ofscreen packed and conventional fluidized beds in axial and transverse magnetic fields[J]. PowderTechnology,1991,64(1–2):103-113.
    [58] Payne, C.Q..Pneumatic concentrating table: US,1068163[P].1913.
    [59] Sutton, H.M., Sutton, W.L., Steele, E.G.. Process of and apparatus for sizing and separating comminutedmaterial: US,1315880[P].1919.
    [60] Delamater, G.R.. Mineral Separator: US,1634898[P].1927.
    [61] T Fraser, H F Yancey. The air-sand process of cleaning coal: US,1534845[P].1925..
    [62] T Fraser, H F Yancey. Artificial storm of air-sand floats coal on its upper surface[J]. Coal Age March4,1926,325-327.
    [63] Douglas, E., Sayles, C.P.. Dry sorting using pneumatically fluidized powders [M]. Am. Inst. Chem. Eng.Symp. Ser.67,1971.
    [64] Douglas, E., Walsh, T.. New type of dry heavy medium gravity separator [J]. Transactions of theInstitution of Mining and Metallurgy,75:226-232.
    [65] Butcher, S.G., Symonds, D.F.. A review of dry cleaning processes. Alberta Coal Mining Research CenterReport CMRC81/21-TMarch1981.
    [66] Eveson, G.F.. Dry cleaning of large or small coal or other particulate materials containing components ofdifferent specific gravities: US,3367501[P].1968.
    [67] Jong, T.P.R.de., Felix, R.A., Dalmijn, W.L.. Dry density separation of4-16mm non-ferrous car scrap[C]//Hoberg, H., von Blottnitz, H.. XX IMPC Vol.V,1997:189-200.
    [68] Jong, T.P.R.de., Houwelingen, J.A. van, Kuilman, W.. Automatic sorting and control in solid fuelprocessing: opportunities in European perspective[C]. Geologica Belgica,2003.
    [69] Jong, T.P.R.de. Density separation of non-ferrous metals by jigging and fluidization[D]. PhD thesis,Delft University of Technology, Delft,1999.
    [70] Lupton, J.M. Dry separation of solids:US,4857177[P].1989.
    [71] Sampaio C.H., Aliaga W., Pacheco E.T., et al. Coal beneficiation of Candiota mine by dry jigging[J].FuelProcessing Technology,2008,89(2):198-202.
    [72] C.H. Sampaio, C.F. Vilela, G.L. Miltzarek, C.O. Petter, The current status of the Brazilian coal industry[J]. Coal International,1997,245(6):234-239.
    [73] C.H. Sampaio. Untersuchung zur Aufbereitbarkeit feink rniger Steinkohle der Lagerst tte Candiota inBrasilien unter besonderer Berücksichtigung de Sortierung auf Setzmaschinen, Herden und Spiralen[D].Ph.D. thesis, RWTH-Aachen,1987.
    [74] C.H. Sampaio, A. Jablonski, H.V.F. Amaral.. Beneficiation of the coal from Candiota[C].11thinternational coal preparation congress,1990, Tóquio, Jap o.
    [75] C.H. Sampaio, A. Jablonski, J.C. Souza, The coal from Candiota, Brazil[J].Coal International,1996,244(5):221-225.
    [76] Tanaka Z., Song X.Q. Continuous separation of particles by fluidized beds [J]. Advanced PowderTechnol.,1996,7(1):29-40.
    [77] Tanaka, Z., Sato, H., Kawai, M., Okada, K., and Takahashi, T. Dry Coal Cleaning Process forHigh-quality Coal [J]. Journal of chemical engineering of Japan,1996,29(2):257–263.
    [78] Macpherson S.A., Iveson S.M., Galvin K.P.. Density based separations in the Reflux Classifier with anair-sand dense-medium and vibration [J]. Minerals Engineering,2010,23:74-82.
    [79] Prashant D., Xu Z., Szymanski J., Gupta R., Boddez J.. Dry cleaning of coal by a laboratory continuousAir Dense Medium Fluidized Bed separator [C].2010International Coal Preparation Congress,2010,Lexington, America.
    [80] Zhang C., Chen G., Yang T.. An investigation on mercury association in an Alberta sub-bituminous coal[J]. Energy&Fuels,2007,21(2):485-490.
    [81] Weitkamper, L., Wotruba H., Sampaio C.H.. Effective dry density beneficiation of fine coal using a newdeveloped fluidized bed separator [C].2010International Coal Preparation Congress,2010, Lexington,America.
    [82] Weitkamper, L., Sampaio, C.H.. The development of a new air jig for dry coal preparation [C]. XXIIIMPC,2003, Cape Town, South Africa.
    [83]陈清如.空气重介选煤技术[J].矿业科技情报,中国矿业大学科技情报室,1983(3).
    [84] Yang Yi, et al. Dry cleaning of coal with air dense medium fluidized bed[C]. Mining and ScienceTechnology Proceeding of the2th International Symposium on Mining Technology and Science,1991.
    [85]陈清如.干法分选与洁净煤[M].徐州:中国矿业大学出版社,2006.
    [86] Luo Z.F., Chen Q.R.. Effect of fine coal accumulation on dense phase fluidized bed performance[J].International Journal of Mineral Processing,2001,63(2):217-224.
    [87]骆振福,陶秀祥,陈清如等.空气重介流化床低密度选煤的理论与实践[J].中国矿业大学学报,1996:25(3).
    [88] Fan M.M., Chen, Q.R., Zhao Y.M., Luo Z.F..Fine coal (6-1mm) separation in magnetically stabilizedfluidized beds [J]. International Journal of Mineral Processing,2001,63(2):225-232.
    [89] Maoming Fan, Qingru Chen, Yuemin Zhao, Zhenfu Luo, Yuping Guan, Bei Li. Magnetically stabilizedfluidized beds for fine coal separation[J]. Powder Technology,123(2002)208-211.
    [90] Luo, Z., Zhao, Y., Chen, Q., Fan, M.,&Tao, X.. Separation characteristics for fine coal of themagnetically fluidized bed[J]. Fuel Processing and Technology,2002,79(1):63-69.
    [91] Luo, Z., Zhao, Y., Chen, Q., Tao, X.,&Fan, M..Separation lower limit in a magnetically gas-solidtwo-phase fluidized bed[J].Fuel Processing and Technology,2003,85(2-3):173-178.
    [92]骆振福,樊茂明,陈清如.磁场流化床的稳定性研究[J].中国矿业大学学报,2001,30(4):350-352.
    [93]樊茂明,陈清如,赵跃民等.磁稳定流化床干法选煤试验研究[J].选煤技术,2002,(3):6-7.
    [94]骆振福,赵跃民,邢洪波等.磁场流化床分选粒度下限的研究[J].中国矿业大学学报,2002,31(4):335-337.
    [95]宋树磊.空气重介磁稳定流化床分选细粒煤的基础研究[D].中国矿业大学博士论文,2009,7.
    [96] FAN, M.M., CHEN, Q.R., and ZHAO, Y.M. Fundamentals of a Magnetically Stabilized Fluidized Bedfor Coal Separation[J]. Coal Preparation,2003,23(1-2):47–55.
    [97] Zhang Xinxi, Duan Chaohong, Yang Yufen. The effect of microwave and ultrasonic Pre-treatment andother factors on triboelectrostatic separation process [C]. Dry separation science and technology, FirstInternational Symposium On Dry Coal Cleaning: China University of Mining and Technology Press,2002:263-267.
    [98] Wang Haifeng, Chen Qingru, Zhang Xinxi, et al. Effect of chemical conditioning on thetriboelectrification of coal and mineral particles[J]. Mining Science and Technology,2010,20(3):421-424.
    [99]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [100]李友荣.直接数值模拟(DNS)的应用现状[C].第十四届全国计算流体力学会议,2009,南昌.
    [101]王玲玲.大涡模拟理论及其应用综述[J].河海大学学报,2002,32(3).
    [102]陈斌,郭锦烈,杨晓刚.圆柱绕流的离散涡数值模拟[J].自然科学进展,2002,12(9):964-969.
    [103] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory description [M]. Boston:Academic Press,1994.
    [104] Brandani, S., Zhang, K.. A new model for the prediction of the behaviour of fluidized beds[J]. PowderTechnology,2006,163(1-2),80-87.
    [105] Coroneo, M., Montante, G., BASCHETTI, M.G., Paglianti, A.. CFD modelling of inorganic membranemodules for gas mixture separation [J]. Chemical Engineering Science,2009,64(5):1085-1094.
    [106] Dawes, J.E., Hanspal, N.S., Family, O.A.. Three-dimensional CFD modelling of PEM fuel cells: Aninvestigation into the effects of water flooding [J]. Chemical Engineering Science,2009,26(12):2781-2794.
    [107] Eesa, M., Barigou, M.. CFD investigation of the pipe transport of coarse solids in laminar power lawfluids [J]. Chemical Engineering Science,2009,64(2):322-333.
    [108] Gu, T., Chew, Y.M.J., Paterson, W.E., Wilson, D.I.. Experimental and CFD studies of fluid dynamicgauging in duct flows [J]. Chemical Engineering Science,2009,64(2):219-227.
    [109] Ng, B.H., Ding Y.L., Ghadiri, M.. Modelling of dense and complex granular flow in high shear mixergranulator-A CFD approach [J]. Chemical Engineering Science,2009,64(16):3622-3632.
    [110] Rrtkovich, N., Chan, C.C.V., Berube, P.R., Nopens, I.. Experimental study and CFD modelling of atwo-phase slug flow for an airlift tubular membrane [J]. Chemical Engineering Science,2009,64(16):3576-3584.
    [111] Papadikis, K., Gu, S., Bridgwater, A.V.. CFD modelling of the fast pyrolysis of biomass in fluidised bedreactors. Part B: Heat, momentum and mass transport in bubbling fluidised beds [J]. ChemicalEngineering Science,2009,64(5):1036-1045.
    [112] Lan, X., Xu, C., Wang, G., Wu, L., Gao, J.. CFD modeling of gas–solid flow and cracking reaction intwo-stage riser FCC reactors [J]. Chemical Engineering Science,2009,64(17):3847-3858.
    [113] Gupta, R., Fletcher, D.F., Haynes, B.S.. On the CFD modelling of Taylor flow in microchannels [J].Chemical Engineering Science,2009,64(12):2941-2950.
    [114] Lappalainen, K., Manninen, M., Alopaeus, V.. CFD modeling of radial spreading of flow in trickle-bedreactors due to mechanical and capillary dispersion [J]. Chemical Engineering Science,2009,64(2):207-218.
    [115] Chu K.W., Wang B., Yu A.B., Vince A..CFD-DEM modelling of multiphase flow in dense mediumcyclones [J]. Powder Technology,2009,193:235-247
    [116] Allen, M.P., Tildesley, D.J.. Computer Simulation of Liquids[M].Oxford University Press,1980,Oxford.
    [117] Bokkers, G.A., van Sint Annaland, M., Kuipers, J.A.M.. Mixing and segregation in a bidispersegas-solid fluidized bed: a numerical and experimental study[J]. Powder Technology,2006,140(3):176-186.
    [118] Cooper, S., Coronella, C.J.. CFD simulations of particle mixing in a binary fluidized bed[J]. PowderTechnology,2005,151(1-3):27-36.
    [119] Feng, Y.Q., Xu, B.H., Zhang, S.J., Yu, A.B., Zulli, P.. Discrete particle simulation of gas fluidization ofparticle mixtures[J]. A.I.Ch.E. Journal,2004,50(8):1713-1728.
    [120] Huilin, L., Gidaspow, D.. Hydrodynamics of binary fluidization in a riser: CFD simulation using twogranular temperatures[J]. Chemical Engineering Science,2003,58(16):3777-3792.
    [121] Huilin, L., Yurong, H., Gidaspow, D., Lidan, Y., Yukun, Q.. Size segregation of binary mixture of solidsin bubbling fluidized beds[J]. Powder Technology,2003,134(1-2):86-97.
    [122] Mikami, T., Kamiya, H., Horio, M.. Numerical simulation of cohesive powder behavior in a fluidizedbed[J]. Chemical Engineering Science,1998,53(10):1927-1940.
    [123] Patil, D.J., van Sint Annaland, M., Kuipers, J.A.M.. Critical comparison of hydrodynamic models forgas-solid fluidized beds-Part I: bubbling gas-solid fluidized beds operated with a jet[J]. ChemicalEngineering Science,2005,60(1):57-72.
    [124] Peirano, E., Delloume, V., Johnsson, F., Leckner, B., Simonin, O.. Numerical simulation of the fluiddynamics of a freely bubbling fluidized bed: influence of the air supply system[J]. Powder Technology,2002,122(1):69-82.
    [125] Sun, J., Battaglia, F.. Hydrodynamic modeling of particle rotation for segregation in bubblinggas-fluidized beds[J]. Chemical Engineering Science,61:1470-1479.
    [126] Zhou, H., Flamant, G., Gauthier, D.. DEM-LES simulation of coal combustion in a bubbling fluidizedbed-Part II: coal combustion at the particle level[J]. Chemical Engineering Science,2004,59(20):4205-4215.
    [127] Hoomans B P B, Kuipers J A M, Briels W J, et al..Discrete particle simulation of bubble and slugformation in a two-dimensional gas-fluidized bed: a hard-sphere approach[J]. Chemical EngineeringScience,1996,51:99-108.
    [128] Arastoopour, H., Wang C.-H., Weil S.A. Particle-particle interaction force in a dilute gas-solid system[J]. Chemical Engineering Science,1982,37(9):1379-1386.
    [129] Syamlal, M. Multiphase Hydrodynamics of gas-solid flow [D]. PhD thesis, Illinois Institute ofTechnology,1985.
    [130] Syamlal, M. and O’Brien T. J.. Simulation of granular layer inversion in liquid fluidized beds [J].International journal of multiphase flow,1988,14(4):473-481.
    [131] Syamlal, M., Rogers W., O’Brien T.J.. MFIX Documentation, Theory Guide,1993.
    [132] Gidaspow, D. Hydrodynamics of fluidization and heat transfer: Supercomputer Modeling [J]. AppliedMechanics Reviews,1986,39(1):1-22.
    [133] Gidaspow, D. Multiphase flow and fluidization: Continuum and kinetic theory descriptions [M].Academic Press Inc,1994, California, America.
    [134] Gidaspow, D., Ding, J., Jayaswal, U.K.. Multiphase Navier-Stokes equation solver [C]. NumericalMethods for Multiphase Flow, ASME,1990, New York, FED,91:47-56.
    [135] Gidaspow, D. and Ettehadieh, B.. Fluidization in two-dimensional beds with a jet.2. hydrodynamicmodeling[J]. Industry and Engineering Chemistry Fundamentals,1983,22:193-201.
    [136] Gidaspow, D. and Syamlal, M.. Solid-gas critical flow[C]. American Institute of Chemical Engineersannual winter meeting,1985, Chicago, USA.
    [137] Gidaspow, D., Syamlal, M., Seo, Y.. Hydrodynamics of fluidization of single and binary size particles:Supercomputer Modeling [C]. Fluidization V: Proceedings of Fifth Engineering Conference onFluidization,1986,1-8.
    [138] O’Brien, T.J. and Syamlal, M.. NIMPF: A nonisothermal multiparticle fluidized-bed hydrodynamicmodel[C]. Numerical Methods for Multiphase Flow, ASME,1990, FED,91:65-72.
    [139] Patel, M.K. and M.Cross. The modeling of fluidized beds for ore reduction[C]. Numerical methods inlaminar and turbulent flow, Taylor, Gresho, Sani and Hauser,1989,2051-2068, Pineridge Press.
    [140] Kozanoglu, B., Levy, E.K., Ulge, T., et al. Particle settling rates in bubbling fluidized beds [C].Fluidization VIII: Proceedings of the8th Engineering Foundation Conference on Fluidization,1995,New York, America.
    [141] Rasul, M.G.. Segregation potential in fluidized beds [D]. PhD thesis, University of Queensland,Brisbane, Australia,1996.
    [142] Mathiesen, V. An experimental and computational study of multiphase flow behavior in circulatingfluidized beds [D].PhD thesis, Norwegian University of Science and Technology, Porsgrunn,1997.
    [143] Witt, P.J.. Development of a numberical model of the flow processes in a fluidised bed[D]. PhD thesis,Swinburne University of Technology, Hawthorn,1997.
    [144] Bouillard, J. X., Lyczkowski, R.W., Gidaspow D.. Porosity distributions in a fluidized bed with animmersed obstacle [J]. AIChE Journal,1989,35:908-922.
    [145] Ding, J., Gidaspow, D.. A bubbling fluidization model using kinetic theory of granular flow [J]. AIChEJournal,1990,36:523-538.
    [146] Pain, C.C., Mansoorzadeh, S.; De Oliveira, C.R.E.. A study of bubbling and slugging fluidized bedsusing the two-fluid granular temperature model [J]. International Journal of Multiphase flow,2001,27(3):527-551.
    [147] Peirano, e., Delloume, V., Johnsson, F., Leckner, B., Simonin, O.. Numerical simulation of the fluiddynamics of a freely bubbling fluidized bed: influence of the air supply system [J]. Powder technology,2002,122:69-82.
    [148] Goldschmidt,M.. Hydrodynamic modeling of fluidized bed spray granulation[D].PhD Dissertation.University of Twente,2001.
    [149] Van Wachem, B., Schouten, J.C., van den Bleek, C.M., Krishna,R., Sinclair,J.L.. Comparative analysisof CFD models of dense gas-solid systems [J]. AIChE Journal,2001,47(5):1035-1051.
    [150] Van Wachem, B.. Derivation implementation and validation of computer simulation models forgas-solid fluidized beds [D]. PhD Dissertation, University of Delft,2000.
    [151] Ibsen, C.H..An experimental and computational study of gas-particle flow in fluidized reactors [D].PhD Dissertation, Aalborg University Esbjerg,2001.
    [152] Cranfield, R.R., Geldart, D.. Large particle fluidization [J]. Chemical Engineering Science,1974,29:935-947.
    [153] Gamwo, I.K., Soong, Y., Lyczkowski, R.W.. Numerical simulation and experimental validation of solidflows in a bubbling fluidized bed [J]. Powder Technology,1999,103:117-129.
    [154] Fan L.T., Tojo, K., Chang C.C.. Modeling of shallow fluidized bed combustion of coal particles[J].Ind.Eng.Chem.Process Des.Dev.,1979,18(2):333-337.
    [155] Kuipers, J.A.M., van Swaaij, W.P.M.. Application of computational fluid dynamic to chemical reactionengineering [J]. Rev. in Chemical Engineering,1997,13(3):1-118.
    [156] Moon, S.J., Sundaresan, S., Kevrekidis I.G.. Coarse-grained computations of demixing in densegas-fluidized beds [J]. Physical Review E,2007,75(5):1309-1314.
    [157] Gobin, H., Neau, O., Simonin, J., Llinas, V., et al. Fluid dynamic numerical simulation of a gas phasepolymerization reactor [J]. International Journal for Numerical Methods in Fluids,2003,43:1199-1220.
    [158] Mansoori, Z., Saffar-Avval, M., Basirat Tabrizi, et al. Modeling of heat transfer in turbulent gas-solidflow[J]. International Journal for Heat Mass Transfer,2002,45:1173.
    [159] Mansoori, Z., Saffar-Avval, M., Basirat Tabrizi, et al. Thermo-Mechanical modeling of turbulent heattransfer in gas-solid flows including particle collisions [J]. International Journal for Heat Fluid Flow,2002,23:792.
    [160]李静海,欧阳洁,高士秋等.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社,2005.
    [161] Wang W., Li J.H.. Simulation of gas-solid two-phase flow by a multi-scale CFD approach-Extension ofthe EMMS model to the sub-grid level [J]. Chemical Engineering Science,2007,62:208-231.
    [162] Tsuji, Y., Kawaguchi, T.., Tanaka, T..Discrete particle simulation of two dimensional fluidized bed [J].Powder Technology,1993,77:79-87.
    [163] A.A. Al-Zahrani, M.A. Daous. Bed expansion and average bubble rise velocity in a gas-solid fluidizedbed [J]. Powder Technology,1996,87:255-257.
    [164] Laverman J.A., Roghair I., van Sint Annaland M., Kuipers J.A.M. Experimental study on solids mixingand bubble behavior in a pseudo-2D, freely bubbling, gas-solid fluidized bed using PIV and DIA [C]//6th International Conference on Multiphase Flow. Leipzig, Germany.2007.
    [165] B.M. Halvorsen, B. Arvoh. Minimum fluidization velocity, bubble behavior and pressure drop influidized beds with a range of particle sizes [J]. Computational Methods in Multiphase Flow,2009,63:227-238.
    [166] D. Harrison, L. S. Leung. Bubble formation at an orifice in a fluidized bed [J]. Nature,1961,199:433-434.
    [167] Asegehegn, T.W., Krautz, H.J. Numerical study of bubble hydrodynamics for gas-solid fluidized bedswith and without horizontal tubes [C]//2010ECI Conference on The13th International Conference onFluidization-New Paradigm in Fluidization Engineering..2010.
    [168] K. Viswanathan, D. Subba Rao. Measurement of bubble size in fluidized bed [J]. Ind. Eng. Chem.Process Des. Dev.,1984,23:573-576.
    [169] Caicedo, G.R., Marques, J.J.P., Ruiz, M.G., Soler, J.G. A study on the behavior of bubbles of a2Dgas-solid fluidized bed using digital image analysis [J]. Chemical Engineering and Processing,2003,42(1):9-14.
    [170] Horio, M., Nonaka, A. A generalized bubble diameter correlation for gas-solid fluidized beds [J].A.I.Ch.E. Journal,1987,33(11):1865-1872.
    [171] Dimitrts, T. Argyriou, Harvey L.List, Reuel Shinnar. Bubble growth by coalescence in gas fluidizedbeds [J]. A.I.Ch.E. Journal,1971,17(1):122-130.
    [172] Lim, K.S., Agarwal, P.K. Bubble velocity in fluidized beds: The effect of non-vertical bubble rise on itsmeasurement using submersible probes and its relationship with bubble size [J]. Powder Technology,1992,69(3):239-248.
    [173] Mori, S., Wen, C.Y. Estimation of bubble diameter in gaseous fluidized beds [J]. A.I.Ch.E.Journal,1975,21(1):109-115.
    [174] Van Lare, C.E.J., Piepers, H.W., Schoonderbeek, J.N., Thoenes, D. Investigation on bubblecharacteristics in a gas fluidized bed [J]. Chemical Engineering Science,1997,52(5):829-841.
    [175] Choi, J.H., Son, J.E., Kim, S.D. Bubble size and frequency in gas fluidized bed [J]. Journal of ChemicalEngineering of Japan,1988,21(2):171-178.
    [176] Wu, B.Y., Shepperson, J., Van der Lee, L., Bellehumeur, C., Kantzas, A. Hydrodynamics of gas-solidsbubbling fluidized beds using polyethylene resin [C]//2007ECI Conference on The12th InternationalConference on Fluidization-New Horizons in Fluidization Engineering. Vancouver, Canada.2007.
    [177] H. De Lasa, S. L. P. Lee, M. A. Bergougnou. Bubble measurement in three-phase fluidized beds using au-shaped optical fiber [J]. The Canadian Journal of Chemical Engineering,1984,62(2):165-169.
    [178] Dale C. Gyure, David E.Colough. State estimation of bubble frequency and velocity in a bubblingfluidized bed [J]. Chemical Engineering Communication,1986,46(4&6):365-383.
    [179] G.A.Bokkers, J.A. Laverman, M. van Sint Annaland, et al. Modelling of large-scale dense gas-solidbubbling fluidized beds using a novel discrete bubble model,2006,61(17):5590-5602.
    [180]陶秀祥,丁玉,骆振福.高密度浓相流化床内气泡行为的研究[J].中国矿业大学学报,2003,32(6):601-607.
    [181]陶秀祥,赵跃民,丁玉等.高密度浓相流化床中气泡的兼并与分裂特性[J].化学反应工程与工艺,2005,21(1):37-42.
    [182]徐守坤,管玉平,陈清如.空气重介质流化床气泡行为及其对分选的影响[J].中国矿业大学学报,2001,30(3):268-271.
    [183] Rios, G.M., Dang Tran, K., Masson, H.. Free object motion in a gas fluidized bed [J]. ChemicalEngineering Communications,1986,47(4-6):247-272.
    [184] Lim, K.S., Agarwal, P.K.. Circulatory motion of a large and lighter sphere in a bubbling fluidized bedof smaller and heavier particles [J]. Chemical Engineering Science,1994,49(3):421-424.
    [185] Hoffmann, A.C., Janssen, L.P., Prins, J.. Particle segregation in fluidized binary mixtures [J]. ChemicalEngineering Science,1993,48(9):1583-1592.
    [186] Rees, A.C., Davidson, J.F., Hayhurst, A.N.. The rise of a buoyant sphere in a gas fluidized bed [J].Chemical Engineering Science,2005,60:1143-1153.
    [187] Soria-Verdugo, A., Garcia-Gutierrez, L.M.., Sanchez-Delgado, S., et al. Circulation of an objectimmersed in a bubbling fluidized bed [J]. Chemical Engineering Science,2011,66:78-87.
    [188] Soria-Verdugo, A., Garcia-Hernando, N., Almendros-Ibanez, J.A., et al. Motion of a large object in abubbling fluidized bed with a rotating distributor [J]. Chemical Engineering and Processing: ProcessIntensification,2011,50:859-868.
    [189] Nguyen, T.H., Grace, J.R.. Forces on objects immersed in fluidized beds [J]. Powder Technology,1978,19:255-264.
    [190] Daniels, T.C.. Measurement of the drag on immersed bodies in fluidised beds[J].Chemistry andMaterials Science, Rheologica Acta,1965,4:192-197.
    [191]韦鲁滨,边炳鑫,陈清如.运动物体在浓相流化床中的受力[J].中国矿业大学学报,2000,39(5):480-483.
    [192] Y.M. Zhao, X.J. Liu, K.L. Liu, et al. Fluidization Characteristics of a Gas-Paigeite-Powder Bed to beUtilized for Dry Coal Beneficiation [J]. International Journal of Coal Preparation and Utilization,2011,31:149-160.
    [193] D. Tao, A. Sobhy, Q. Li, et al. Dry Cleaning of Pulverized Coal Using a Novel Rotary TriboelectrostaticSeparator (RTS)[J]. International Journal of Coal Preparation and Utilization,2011,31:187-202.
    [194] D.P. Patil, B.K. Parekh. Beneficiation of Fine Coal Using the Air Table [J]. International Journal ofCoal Preparation and Utilization,2011,31:203-222.
    [195] B. Zhang, H. Akbari, F. Yang, et al. Performance Optimization of the FGX Dry Separator for CleaningHigh-Sulfur Coal [J]. International Journal of Coal Preparation and Utilization,2011,31:161-186.
    [196] A.K. Sahu, Alok Tripathy, S.K. Biswal, et al. Stability Study of an Air Dense Medium Fluidized BedSeparator for Beneficiation of High-Ash Indian Coal [J]. International Journal of Coal Preparation andUtilization,2011,31:127-148.
    [197] Ma, D., G. Ahmadi. A Thermodynamical Formulation for Dispersed Multiphase Turbulent Flows[J].International Journal of Multiphase Flow,1989,16:323.
    [198] Boemer, A., H. Qi, U. Renz. Modelling of Bubble Eruption in a Fluidized Bed with the EulerianApproach[C].28thIEA-FBC Meeting,1994, Kitakyushu, Japan,1-22.
    [199]刘大有.二相流体动力学[M].北京:高等教育出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700