用户名: 密码: 验证码:
轴向槽道热管传热机理分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国现在正面临着环境污染和能源供应紧张等多重压力,实施节能减排迫在眉睫。热管作为一种高效的传热元件,具有优越的传热特性,一直是航天器热控系统的关键技术,在工程中的应用也日益普及,不仅在余热回收、节能方面取得了显著效果,而且在新能源开发、动力、化学、纺织、生产及生活等各个领域也得到了越来越广泛的应用。
     山东大学所参与的国际合作项目阿尔法磁谱仪(AMS-02)是第一个被送入太空并将进行长期物理实验的大型磁谱仪,未来20年里将对宇宙中基本高能粒子进行精确的长时间的测量,探索暗物质和反物质的存在。山东大学设计的新型“Ω”形槽道热管成功地应用AMS热控系统中,在AMS实际运行过程中,该热管表现良好,使该热控系统成为AMS-02所有子系统中性能最稳定的一个。为了进一步优化其结构和传热性能,有必要对其进行理论分析及实验研究,掌握其传热特性和解释内部传热机理。本文采用实验研究和数值计算相结合的方法对其传热机理进行了分析和实验研究。
     首先,本文使用UDF功能建立了热管计算模型,考虑了工质物性变化的影响,对热管内蒸发和冷凝现象进行模拟。发现热管冷凝段内发生的相变过程为膜状冷凝;蒸发段液池内的相变过程为沸腾换热;热管在高热流密度下运行时,蒸发段内为液膜携带气泡流动的流动型态,以气液混合物的形式一起参与热量传递的循环。模拟计算得到的温度分布和热阻的数值与实验值相符。热管热阻变化曲线随着加热功率的增加呈下降趋势,且越来越平缓。在本文计算范围内,热管的最大传热能力随着工作温度的升高不断增大。
     本文开发了一系列制作工艺,建立了“Ω”形槽道热管的加工制作工艺流程。在开发和完善了清洗流程的同时,引进超声波技术强化槽道表面的清洗效果,解决了微细槽道清洗困难的问题。设计了一套以液氨为计量对象的灌装系统,解决了氨极易气化,在常态下是气液两相共存所造成的不能精确计量的难题,使用高精度的流量计确保热管灌装最终的计量精度可达±0.01g。开发了热管封装技术,提高了封装质量。实践证明,本文建立的热管加工制作工艺能率大大提升热管制作的成功率,热管性能良好。
     本文进一步对轴向槽道热管传热性能进行实验研究。实验台冷却系统采用导热油作为冷却介质,选用的恒温水浴能够提供的冷源温度最低可达-55℃,能够测试热管在低工作温度下的传热特性,实验中测试的热管最低工作温度为-4℃。应用在AMS热控系统中的热管设计工作温度范围为-20~50℃,多数电子设备的常态工作温度保持在0℃附近。而常规热管实验台只能对热管进行工作温度高于常温时的工况进行实验研究,不能全面反映热管在整个设计工作温度范围内的换热特性。因此,本文设计的实验台能够测试的工作温度涵盖了该热管设计工作温度区间的大部分区域。
     对热管的热负荷响应特性进行了测试,结果表明,热管启动和关闭性能良好,在大加热功率、小充液率和热管长度时热管热负荷响应快。分析了热管的稳态温度分布特性,讨论了热管的轴向温度分布受热管工作温度、加热功率,热管倾角及充液率等影响的变化规律,结果表明:热管绝热段温度非常均匀,热管的温度最高点和最低点分别出现在蒸发段和冷凝段与绝热段过渡的部位;加热功率和充液率对热管轴向温差的影响较明显。对热管的逆重力工作的能力进行了测试,结果表明本研究制作的热管具有一定的逆重力工作能力。
     本文对热管蒸发和冷凝换热系数、总热阻及当量导热系数变化规律进行了分析,分别讨论了工作温度、加热功率、热管倾角以及充液率等对上述参数的影响,结果表明:随着加热功率的增加和工作温度的升高,热管的传热效果均得到了提升:热管倾角的变化对蒸发和冷凝两端的影响规律不同,以对热管总热阻和当量导热系数的影响来衡量,存在着一个最佳热管倾角为60°;充液率对蒸发段换热效果的影响程度大于对冷凝段的影响,对热管整体换热效果而言,热管的最佳充液率为120%。讨论了热管长度变化对热管热阻和当量导热系数的影响,结果表明热管蒸发段和冷凝段的长度对热管的整体传热性能起决定性作用。在限定了轴向温差的基础上,调节加热功率和冷源温度,得到了不同工作温度下热管的最大传热能力,工作温度为20℃时热管传热能力达到最大。总体来看,本研究制作的热管热负荷响应快、热阻小,具有良好的等温性。
     最后,在对“Q”形轴向槽道热管进行实验研究的基础上,建立了“Ω”形轴向槽道热管的三维数值模型,并进行了数值计算,讨论了热管传热性能随着热管结构参数槽道窄缝宽度、槽道直径、蒸汽腔直径以及槽道数目等的变化规律。热管结构参数之间存在着相互联系、相互制约的关系,各参数对热管传热性能的影响程度也不相同。分析得到了各参数对热管传热性能影响程度,由大到小的顺序为槽道直径、槽道数目、窄缝宽度和蒸汽腔直径。热管的结构参数应该以要求实现传热量最大化或者热阻最小化为目标来进行选择。
Environment pollution and energy supply has been severe stressed, so it is extremely urgent for energy conservation and emissions reduction. Heat pipes, with its excellent heat transfer performance and technical characteristics, have been applied in the thermal control system of spacecraft all the time. As an efficient heat transfer component, it is becoming more and more popular in the application of engineering, such as new energy development, motive power, chemical, textile, production, especially waste heat recovery and energy saving.
     The alpha magnetic spectrometer02(AMS-02) is an international cooperation project, which aims to explore the dark matter and antimatter in20years. Heat pipes with axial "Ω"-shaped grooves are designed and applied in AMS-02. With the application of those heat pipes, the thermal control system becomes the most stable one of all subsystems. So far, the heat transfer characteristics by theoretical analysis and experimental study of this kind of heat pipe are rarely known. To optimize the heat transfer performance and its structure, it is necessary get better understanding of its heat transfer characteristics and heat transfer mechanism. By adopting both experimental and numerical simulation methods, the heat transfer mechanism in the heat pipe is analyzed.
     By using the UDF, and concerning the changing of fluid property, the simulation of the heat pipe is accomplished. Results show that the phase transition processes in the condensation section and liquid pool in evaporator section are filmwise condensation and boiling especially. Moreover, it is pointed out that under high heat flux condition, the flow pattern in the evaporator section is that bubbles and liquid flow together as a mixture. Besides, the temperature distribution and thermal resistance values from the results of simulation agree well with that of experimental data. The curve of thermal resistance of heat pipe declines with the increase of input power, and becomes more and more flat. Within the scope of the calculations, the maximum heat transfer capacity of heat pipe increases with the working temperature increasing.
     Without the proprietary intellectual property rights and technology support of this heat pipe, quantity production will not be available. So a series of processing technology is developed, and the manufacturing process is built. At the same time, by developing and improving the cleaning process, ultrasonic technology is introduced to improve the cleaning in micro wick. A filling system with liquid ammonia as the measuring object is specially designed, which can avoid the measurement problem caused by the gasification of ammonia, and a flow meter with high sensitivity is used to ensure the filling accuracy of±0.01g. Encapsulating technology of the heat pipe is developed which improves the quality of the encapsulation. It has been proved that the heat pipe processing technologies introduced specially can greatly improve the manufacturing quality. Besides, the heat pipes show good performance with some simple tests.
     Experiment table for heat transfer performances of the grooved heat pipes is built. To test heat transfer performance of heat pipe at low working temperatures, the cooling system is designed by using conduction oil as cooling fluid. Besides, the lowest temperature of cold source is-55℃and the lowest working temperature of heat pipe is-4℃. The working temperature range of heat pipe applied on the AMS is-20~50℃and the operating temperatures of most electronic equipments maintain at near0℃Conventional heat pipe test tables can only make it available to carry out experimental studies with the working temperature is higher than the room temperature. So it is impossible to reflect the heat transfer characteristics of heat pipe in the whole range of working temperature. Most of the working temperatures can be carried out with the experimental table designed especially.
     During the experiments, the characteristic of dynamic response of heat pipe responded to the heat load has been tested. From the experimental data, it can be observed that the performances of startup and shutdown are excellent. In addition, heat pipes with higher heating power, small filling rate and length will respond to heat load changing faster. Furthermore, analysis of the steady state characteristic of the heat pipe is conducted. The distributions of axial temperatures vary with the working temperatures, input powers and heat pipe inclination angles are also demonstrated. Results show that the temperature of adiabatic section is so uniform. The maximum and minimum temperatures of the heat pipes present in transition area between the evaporator section and the adiabatic section and area between the condensation section and the adiabatic section especially. Moreover, input power and filling rate affect the axial temperature differences of heat pipes obviously. Then, the performance of heat pipe working under inverse gravity was researched, which demonstrated the heat pipe can be with a certain ability of work under inverse gravity.
     Then the variation of the heat transfer coefficients of evaporation and condensation the total thermal resistance and the coefficient of equivalent heat conductivity is discussed, which caused separately by the change of working temperature, input power, inclination angle and filling rate. Results show that with the increasing input power and working temperature, heat transfer ability of heat pipe has been improved. Inclination angle has different influences on the heat transfer performance of the evaporator section and condensation section. There is an optimal heat pipe inclination angle which is60°for the total thermal resistance and the coefficient of equivalent thermal conductivity of heat pipe. Filling rate has a bigger influence on the heat transfer coefficient of evaporator section than that of condensation section. For overall heat transfer performance, the best filling rate is120%. Moreover, the influence of heat pipe length on the thermal resistance and the coefficient of equivalent heat conductivity were discussed. Results show the lengths of evaporator section and condensation section play a decisive role on the overall heat transfer performance. Finally, with a certain axial temperature difference, the maximum heat transfer capacities of the heat pipe under different working temperatures are measured. The maximum heat transfer capability has a peak value when the working temperature is20℃. In conclusion, heat pipes tested in those experiments own excellent dynamic response to the variation of heat load, small heat resistance and good isothermal characteristics.
     Finally, three-dimensional numerical model of the grooved heat pipe is built and simulations are carried out. The effects of structural parameters such as wick slot width, wick diameter, vapor core diameter and groove number are included. Structural parameters of heat pipe have an interrelation and mutual restriction relationship with each other. And the influences of parameters on the heat transfer performance are different. Analyzing the degree of the parameters influencing on heat transfer performance of heat pipe, they are wick diameter, groove number, the slot width and the vapor core diameter. The optimum structural parameters of heat pipe should be determined by the aim of achieving maximizing heat transfer capability or minimizing thermal resistance.
引文
[1]张红,杨俊,庄骏,等.热管能节能技术[M].北京:化学工业出版社,2009.
    [2]徐剑锋,洪荣华,孙志坚.热管在大体积混凝土结构温度控制中的应用研究[J].浙江大学学报,2003,37(5):592-595.
    [3]庞银锁.热管散热技术及其在铁路机车上的应用[J].内燃机车,1998,10:35-37.
    [4]张光玉,张红,徐善东.热管在核电工程中的应用[J].原子能科学技术,1997,31(1):89-96.
    [5]C. Yilde, Y. Bicer, D. Pehlivan. Heat transfer and pressure drop in a heat exchanger with a helical pipe containing in side springs[J]. Energy convers,1997,38 (6):619-624.
    [6]苗兰香.热管空气预热器在北京二热锅炉上的应用[J].华北电力技术,1994,5:32-46.
    [7]X. P. Wu, P. Johnson. Application of heat pipe heat exchangers to humidity control in air-conditioning systems[J]. Applied Thermal Engineering,1997,17 (6):561-568.
    [8]A. Faghri. Heat Pipe Science and Technology[J], Washington, DC:Taylor&Francis,1995.
    [9]曲燕.重力场中轴向槽道热管的传热实验研究[D].山东大学硕士论文,2005.
    [10]辛公明,杜文静,王乃华,等.国际空间站上阿尔法磁谱仪电子设备热系统的研究与设计[J].科学通报,2012,57(5):382-389.
    [11]张程宾,陈永平,施明恒,等.“Ω”形微槽道热管传热性能的实验研究[J].工程热物理学报,2009,9:1534-1536.
    [12]T. P. Cotter. Theory of heat pipes[R]. LOS ALAMOS SCIENTIFIC LAB ALBUQUERQUE NM,1965.
    [13]D. K. Khmstalev, A. Faghri. Heat transfer during evaporation and condensation on capillarygrooved structures of heat pipes[C]. Proc. ASME Winter Annual Meeting, Chicago, 1994.
    [14]D. Khntstalev, A. Faghri. Thermal characteristics of conventional and flat miniature axially grooved heat pipes[J]. J. Heat Transfer,1995,117:1048-1054.
    [15]Y. Kobayashi, S. Ikeda, M. Iwasa. Evaporative heat transfer at the evaporative section of a grooved heat pipe[J]. Journal of Thermophysics and Heat Transfer,1996,10(1):83-89.
    [16]J. M. Ochterbeck, B. H. Kim. Groove Optimization for Axially Grooved Heat Pipes[C]. Proceedings of 1996 4th Int Symposium on Heat Transfer, ISHT. Beijing China, 1996:660-665.
    [17]H. B. Ma, G. P. Peterson. Miniature meniscus radius and capillary heat transport limit micro heat pipes[J]. ASME Journal of Heat Transfer,1998,120(1):227-233.
    [18]H. B. Ma, G. P. Peterson. Miniature meniscus radius and capillary heat transport limitation micro heat pipes[C]. Proceeding of the 1997 ASME International Mechanical Engineering Congress and Exposition, Dalas TX USA,1997:213-220.
    [19]R. Hopkins, A. Faghri, D. Khrustalev. Flat miniature heat pipes with micro capillary grooves[J], J. HeatTransfer,1999,121:102-109.
    [20]L. Lin, A. Faghri. Steady-state performance of a rotating miniature heat pipe[C]. Proceedings of The 1997 32nd Intersociety Energy Conversion Engineering Conference Part 3 (of4), Honolulu HI USA,1997:2295-2301.
    [21]N. Zhu, K. Vafai. Analysis of cylindrical heat pipes incorporating the effects of liquid-vapor coupling and non-darcian transport-a closed form solution[J]. International journal of heat and mass transfer,1999,42:3405-3418.
    [22]Y. H. Yan, J. M. Ochterbeck. Analysis of supercritical startup behavior for cryogenic heat pipe[J]. Journal of Thermophysics and Heat Transfer,1999,13 (1):140-145.
    [23]M. Oomi, T. Fukumoto, T. Sotani. A heat-pipe system for cooling a desktop computer[J]. Adv. Electron, Packaging2,1999:1951-1955.
    [24]S. K. Thamas, R. C. Lykins, K. L. Yerkes. Fully developed laminar flow in trapezoidal grooves with shear stress at the liquid-vapor interface[J]. International journal of heat and mass transfer,2001,44 (18):3397-3412.
    [25]J. K. Seo, S. J. Kim. Mathematical model and thermal optimization of a miniature heat pipe with a grooved wick structure for electronic equipment cooling[C]. Pacific Rim/International Intersociety Electronic Packaging Technical/Business Conference and Exhibition, Kauai HI USA,2001:745-751.
    [26]S. J. Kim, J. K. Seo, K. Do. Analysis and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure[J]. International journal of heat and mass transfer,2003,46 (11):2051-2063.
    [27]Do K H, Sung J, Hwang G. Modeling and thermal optimization of a micro heat pipe with curved triangular grooves[C].2003 International Electronic Packaging Technonical Conferece and Exhibition, Maui HI USA,2003:271-278.
    [28]J. Suh, Y. Park. Analysis of thermal performance in a micro flat heat pipe with axially trapezoidal groove[J]. Tamkang Journal of Science and Engineering,2003,6(4):201-206.
    [29]H. Wang, H. Tsai, H. K. Chen, et al. Capillarity of rectangular micro grooves and their application to heat pipe[J]. Tamkang Journal of Science and Engineering,2005,8 (3): 249-255.
    [30]A. J. Jiao, R. Riegler, H. B. Ma. Thin film evaporation effect on heat transport capability in a grooved heat pipe[J]. Microfluidics and Nanofluidics,2005,1 (3):227-233.
    [31]吴嘉峰,陈永平,施明恒,等.三角形微通道中环状冷凝过程的数值模拟[J].东南大学学报(自然科学版),2007,37(3):423-426.
    [32]L. Frederic, R. Romuald, P. Guillaume. Prediction of the temperature field in flat plate heat pipes with micro-grooves-Experimental validation[J]. International Journal of Heat and Mass Transfer,2008,51:4083-4094.
    [33]张程宾,施明恒,陈永平.“Ω”形轴向槽道热管的流动和传热特性[J].化工学报,2008,59(3):544-550.
    [34]何晓峰,李淑兰,赵宝珠.热管的传热极限与热管尺寸的优化设计[J].河南科学,1997,15(4):423-428.
    [35]李西兵,李勇,许泽川,等.一种矩形沟槽式微热管的建模方法与实验研究[J].中国机械工程,2008,19(1):1847-1852.
    [36]B. Suman, N. Hoda. Effect of variations in thermophysical properties and design parameters on the performance of a V-shaped micro grooved heat pipe[J]. International journal of heat and mass transfer,2005,48 (10):2090-2101.
    [37]B. Suman, P. Kumar. An analytical model for fluid flow and heat transfer in a micro-heat pipe of polygonal shape[J]. International journal of heat and mass transfer,2005,48(21): 4498-4509.
    [38]B. Suman, N. Hoda. On the transient analysis of a V-shaped microgrooved heat pipe[J]. Transactions of the ASME Journal of Heat Transfer,2007,129(11):1584-1591.
    [39]F. Lefevre, M. Lallemand. Coupled thermal and hydrodynamic models of flat micro heat pipes for the cooling of multiple electronic components[J], International journal of heat and mass transfer,2006,49:1375-1383.
    [40]B. Suman. Effects of a surface-tension gradient on the performance of a micro-grooved heat pipe:An analytical study[J]. Microfluidics and Nanofluidics,2008,5 (5):655-667.
    [41]T. Kaya, M. Garcia. Comparative investigation of operational performance characteristics of axially grooved and arterial heat pipes[J]. Heat and Mass Transfer,2008,44(6):739-750.
    [42]H. D. Kyu, J. K. Sung. V. G. Suresh. A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick[J]. International Journal of Heat and Mass Transfer,2008,51:4637-4650.
    [43]朱旺法,陈永平,张程宾,等.燕尾形轴向微槽热管的流动和传热特性[J].宇航学报, 2009,11:2380 2386.
    [44]CHEN Yongping, ZHU Wangfa et al. Thermal Characteristics of Heat Pipe with Axially Swallow-tailed Microgrooves[J]. Chinese Journal of Chemical Engineering,2010,18(2) 185-193.
    [45]张程宾,施明恒,陈永平,等.基于遗传算法的“Ω”形微槽道热管设计优化[J].工程热物理学报,2008,12:2134-2136.
    [46]C. Zhang, Y. Chen, M. Shi, G. P. Peterson. Optimization of heal pipe with axial "Ω"-shaped micro grooves based on a niched Pareto genetic algorithm (NPGA) [J]. Appl. Therm. Eng, 2009,3340-3345.
    [47]Y. Chen, C. Zhang, M. Shi. Study on flow and heat transfer characteristics of heat pipe with axial "Ω"-shaped microgrooves[J]. International Journal of Heat and Mass Transfer,2009, 52:636-643.
    [48]M. C. Zaghdoudi, C. Tantolin, C. Godet. Experimental and theoretical analysis of enhance flat miniature heat pipe[J]. Journal of Thermophysics and Heat Transfer,2004,18 (4): 430-447.
    [49]S. K. Thomas, V. C. Damle. Fluid flow in axial reentrant grooves with application to heat pipes[J]. Journal of Thermophysics and Heat Transfer,2005,19 (3):395-405.
    [50]A. R. Anand, A. J. Vedamurthy, R. Chikkala S. Analytical and experimental investigations on axially grooved aluminum-ethane heat pipe[J]. Heat Transfer Engineering,2008,29(4): 410-416.
    [51]R. Revellin, R. Rulliere, F. Lefevre. Experimental validation of an analytical model for predicting the thermal and hydrodynamic capabilities of flat micro heat pipes[J]. Applied Thermal Engineering,2009,29(5-6):1114-1122.
    [52]陶汉中,张红,庄骏.槽道吸液芯热管的研究进展[J].化工进展,2010,3(29):403-412.
    [53]Z. Lataoui, Romestant Cyril, Y. Bertin. Experimental investigation on the thermal behaviour and performance of an axially grooved heat pipe[J]. International Journal of Heat and Technology,2008,26 (2):155-162.
    [54]张丽春,马同泽,张正芳,等.燕尾槽微小型热管的实验研究[J].工程热物理学报,2004,25(3):493-495.
    [55]S. H. Moon. Experimental study on the thermal performance of micro-heat pipe with cross-scction of polygon[J]. Microelectronics Reliability,2004,44:315-321.
    [56]吴晓敏,朱竞飞,王维城.小热管强化传热的研究[J].工程热物理学报,2004,25(2)299-301.
    [57]C. Fan, F. Sun, L. I. Yang, et al. Experimental investigation of flat miniature heat pipes with three kinds of micro grooves[J]. Journal of Enhanced Heat Transfer,2004,11 (4): 467-175.
    [58]曹洪振.梯形轴向槽道热管的多热源多热沉传热特性研究[D].山东大学硕士论文,2006.
    [59]L. Chien, M. H. Kuo. Experiments and predications of capillary limits for integrated plat heat pipes[C].2001 National Heat Transfer Conference (NHTC 2001), Anaheim CA USA, 2001:223-231.
    [60]R. Jacolot, C. Romestant, V. Ayel. Visualization and experimental analysis of fluid behavior in grooved heat pipes[J]. Experimental Heat Transfer,2008,21 (3):188-205.
    [61]L. Stephane, L. Frederic, B. Jocelyn. Nucleate boiling in a flat grooved heat pipe[J]. International Journal of Thermal Sciences,2009,48:1273-1278.
    [62]吴嘉峰,陈永平,施明恒,等.三角形微通道流动冷凝的实验研究[J].工程热物理学报,2009,30(5):847-850.
    [63]范春利,曲伟,孙丰瑞,等.重力对微槽平板热管传热性能的影响[J].热能动力工程,2004,19(1):33-37.
    [64]L. Lin, R. Ponnappan, J. Leland. High performance miniature heat pipe[J]. International journal of heat and mass transfer,2002,45 (15):3131-3142.
    [65]J. Zhu, W. Wang, X. Wu. Experiments and comparisons of three miniature heat pipe thermal performance[C]. The international conference on energy and the environment, Shanghai China,2003:731-734.
    [66]苏俊林,李博,矫振伟.微小矩形多槽道平板热管的传热性能[J].吉林大学学报:工学版,2005,35(6):592-595.
    [67]P. Chen, X. Liu, Y. Tang, Z. Wan, Y. Liu. Research on ploughing-extrusion process mechanism of multi/micro dimensional grooves inside cylindrical micro heat pipe[J]. Journal of Harbin Institute of Technology:New Series,2005,12 (S2):1-4.
    [68]S. Kang, D. Huang. Novel micro heat pipe[C]. The 36th Intersociety Energy Conversion Engineering Conference IECEC, Savannah GA USA,2001:1131-1136.
    [69]S. Kang, D. Huang. Fabrication of star groove and rhombus grooves micro heat pipe[J]. Journal of Micromechanics and Micro Engineering,2002,12 (5):525-531.
    [70]S. Kang, S. Tsai, H. Chen. Fabrication and test of radial grooved micro heat pipes[J]. Applied Thermal Engineering,2002,22 (14):1559-1568.
    [71]陶汉中,张红,庄骏.槽道热管压扁度对传热的影响[J].北京化工大学学报,2007,34(1):62-66.
    [72]方书起,赵凌,史启辉,等.螺旋槽重力热管强化传热实验研究[J].化学工程,2008,36(6):19-21.
    [73]Y. Tang, P. Chen, X. W. Wang. Experimental investigation into the performance of heat pipe with micro grooves fabricated by Extrusion-ploughing process[J]. Energy Conversion and Management,2010,51:1849-1854.
    [74]M. Cao, Y. Cao, W. K. Jones. Ceramic miniature heat pipes and liquid changing method[J]. ASME HTD,2000,336:429-434. L. Chien, M. H. Kuo. Experiments and predications of capillary limits for integrated plat heat pipes[C].2001 National Heat Transfer Conference (NHTC 2001), Anaheim CA USA,2001:223-231.
    [75]Y. X. Wang, G. P. Peterson. Capillary evaporation in microchanneled polymer films[J]. Journal of Thermophysics and Heat Transfer.2003,17 (3):354-359.
    [76]S. Launay, V. Sartre, M. Lallemand. Experimental study on silicon micro heat pipe arrays[J]. Applied Thermal Engineering,2004,24 (2-3):233-243.
    [77]C. Gillot, A. Lai, M. Ivanova. Experimental study of a flat silicon heat pipe with microcapillary grooves[C]. Itherm 2004 ninth Intersociaty Conference on Thermal and Thermo-Mechanical Phenomena in Electronic Systems, Las Vegas NV USA,2004:47-51.
    [78]Z. H. Liu, J. G. Xiong, R. Bao. Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface[J]. International Journal of Multiphase Flow,2007,33:1284-1295.
    [79]C. Hsu, S. Kang, T. Hou. Performance testing of micro loop heat pipe[J]. Tamkang Journal of Science and Engineering,2005,8(2):123-132.
    [80]W. H. Lee. A pressure iteration scheme for two-phase flow modeling[M]. In T. N. Veziroglu (Ed.), Multiphase transport fundamentals, reactor safety, applications, Washington, DC: Hemisphere Publishing,1980:407-431.
    [81]M. Ghajar, J. Darabi, Jr N Crews. A hybrid CFD-mathematical model for simulation of a MEMS loop heat pipe for electronics cooling applications[J]. Journal of Micromechanics and Microengineering,2005,15 (2):313-321.
    [82]M. Ghajar, J. Darabi, J. N. Crews. A hybrid CFD-mathematical model for simulation of a MEMS loop heat pipe[C].2004 ASME International Mechanical Engineering Congress and Exposition IMECE, Anaheim CA United State,2004:225-232.
    [83]M. Ghajar, J. Darabi. Simulation of steady state surface temperature response of a novel micro loop heat pipe to various heat Loads[C].2005 ASME Summer Heat Transfer Conference HT, San Francisco CA USA,2005:663-640.
    [84]N. Thuchayapong, A. Nakano, et al. Effect of capillary pressure on performance of a heat pipe:Numerical approach with FEM[J]. Applied Thermal Engineering,2012,32:93-99.
    [85]B. Suman, S. De, S. DasGupta. Transient modeling of micro-grooved heat pipe[J]. International journal of heat and mass transfer,2005,48:1633-1646.
    [86]B. Suman. A steady state model and maximum heat transport capacity of an electrohydrodynamically augmented micro-grooved heat pipe[J]. International journal of heat and mass transfer,2006,49:3957-3967.
    [87]陈永平,吴嘉峰,施明恒,等.矩形微通道中环状冷凝的三维数值模拟[J].化工学报,2008,59(8):1923-1929.
    [88]姚峰,陈永平,张程宾,等.“Ω”形轴向槽道热管的启动特性[J].工程热物理学报,2011,12:2117-2119.
    [89]B. Xiao, A. Faghri. A three-dimensional thermal-fluid analysis of flat heat pipes[J]. International journal of heat and mass transfer,2008,51(11):3113-3126.
    [90]R. Ranjan, J. Y. Murthy, S. V. Garimella, U. Vadakkan. A numerical model for transport in flat heat pipes considering wick microstructure effects[J]. International journal of heat and mass transfer,2011,54:153-168.
    [91]R. Sonan, S. Harmand, J. Pelle, D. Leger, M. Fakes. Transient thermal and hydrodynamic model of flat heat pipe for the cooling of electronics components[J]. International journal of heat and mass transfer,2008,51:6006-6017.
    [92]S. Harmand, R. Sonan, M. Fakes, H. Hassan. Transient cooling of electronic components by flat heat pipes[J]. Applied Thermal Engineering,2011,31:1877-1885.
    [93]G. Y. Lu, J. Wang, Z. H. Jia. Experimental and numerical investigation on horizontal oil-gas flow[J]. Journal of Hydrodynamics,2007,19 (6):683-689.
    [94]K. Ekambara, R. S. Sanders, K. Nandakumar. CFD simulation of bubbly two-phase flow in horizontal pipes[J]. Chemical Engineering Journal,2008,144 (2):277-288.
    [95]S. C. K. De Schepper, G. J. Heynderickx, G. B. Marin. CFD modeling of all gas-liquid and vapor-liquid flow regimes predicted by the Baker chart[J]. Chemical Engineering Journal,2008,138:349-357.
    [96]S. C. K. De Schepper, G. J. Heynderickx, G. B. Marin. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker[J]. Computers and Chemical Engineering,2009,33:122-132.
    [97]A. P. Kryukov, V. Y. Levashov. About evaporation-condensation coefficients on the vapor-liquid interface of high thermal conductivity matters[J]. International journal of heat and mass transfer,2011,54 (13):3042-3048.
    [98]Z. Y. Liu, B. Sunden, J. L. Yuan. Vof modeling and analysis of filmwise condensation between vertical parallel plates[J]. Heat Transfer Research,2012,43 (1):47-68.
    [99]J. D. Li. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers[J]. International journal of heat and mass transfer, 2013,57:708-721.
    [100]L. M. Pan, Z. W. Tan, D. Q. Chen, L. C. Xue. Numerical investigation of vapor bubble condensation characteristics of subcooled flow boiling in vertical rectangular channel[J]. Nuclear Engineering and Design,2012,248:126-136.
    [101]H. L. Wu, X. F. Peng, P. Ye, Y. E. Gong. Simulation of refrigerant flow boiling in serpentine tubes[J]. International journal of heat and mass transfer,2007,50:1186-1195.
    [102]Z. Yang, X. F. Peng, P. Ye. Numerical and experimental investigation of two phase flow during boiling in a coiled tube[J]. International journal of heat and mass transfer,2008,51: 1003-1016.
    [103]黄梅,杨震,王补宣.蛇形管内汽液泡状流与传热的数值模拟[J].化工学报,2011,62(12): 3345-3351.
    [104]J. Legierski, B. Wie_cek, G. Mey. Measurements and simulations of transient characteristics of heat pipes[J]. Microelectronics Reliability,2006,46:109-115.
    [105]Shoeib Mahjoub, Ali Mahtabroshan. Numerical simulation of a conventional heat pipe[J]. World Academy of science, Engineering and Technology,2008:117-122.
    [106]B. Gavtash, K. Hussain, M. Layeghi, S. S. Lafmejani. Numerical Simulation of the Effects of Nanofluid on a Heat Pipe Thermal Performance[J]. World Academy of Science, Engineering and Technology,2012,68:549-555.
    [107]A. Alizadehdakhel, M. Rahimi, A. A. Alsairafi. CFD modeling of flow and heat transfer in a thermosyphon[J]. International Communications in Heat and Mass Transfer,2010,37: 312-318.
    [108]A. P. Annamalai, v. Ramalingam. Experimantal investigation and computational fluid dynamics analysis of a air cooled condenser heat pipe[J]. THERMAL SCIENCE,2011,15 (3):759-772.
    [109]Z. R. Lin, S. F. Wang, Ryo. Shirakashi, L. Wi. Zhang. Simulation of a miniature oscillating heat pipe in bottom heating mode using CFD with unsteady modeling[J]. International journal of heat and mass transfer,2013,57:642-656.
    [110]ANSYS Inc. ANSYS FLUENT Theory Guide[K]. U. S. A,2011.
    [111]J. U. Brackbill, D. B. Kothe, C. Zemach. A Continuum Method for Modeling Surface Tension[J]. J. Comput. Phys.,1992,100:335-354.
    [112]T. B. Anderson, R. Jackson. A Fluid mechanical description of fluidized beds[J].I & EC Funda,1967,6:527-534.
    [113]R. M. Bowen. Theory of mixtures[J]. In A. C. Eringen editor Continuum Physics Academic Press, New York,1976:1-127.
    [114]L. Schiller, Z. Naumann. Z. Ver. Deutsch[M]. Ing.,1935.
    [115]S. A. Morsi, A. J. Alexander. An Investigation of particle trajectories in two-phase flow systems[J]. J. Fluid Mech.,1972,55 (2):193-208.
    [116]ANSYS Inc. ANSYS FLUENT User's Guide[K]. U. S. A,2011.
    [117]ANSYS Inc. ANSYS CFX-Solver Modeling Guide[K]. U. S. A,2011.
    [118]Y. Zhang, A. Faghri, B. Shafii. Capillary blocking in forced convective condensation in horizontal miniature channels[J]. J. Heat Transfer,2001,123 (3):501-511.
    [119]L. Wang, B. Sunden. Numerical simulation of two-phase fluid flow and heat transfer with or without phase change using a volume-of-fluid model[J]. ASME Int. Mechanical Engineering Congress and Exposition,2004,260:455-462.
    [120]C. Aghanajafi, K. Hesampour. Heat transfer analysis of a condensate flow by VOF method[J]. J. Fusion Energy, vol.2006,25:219-223.
    [121]W. Nusselt. Die Oberflachenkondensation des Wasserdampfes[J]. Z. Verein Deutscher Ingenieure,1916,60:541-575.
    [122]R. Silver, H. Simpson. The condensation of superheated steam[J]. Proc. Conf. at the National Engineering Laboratory East Kilbride, Glasgow,1961.
    [123]M. Knudsen. The kinetic theory of gases:Some Modern Aspects[M]. London, England: Methuen and Co., Ltd,1945.
    [124]R. W. Schrage. A Thermal study of interface mass transfer[J]. New York:Columbia University Press,1953:160-256.
    [125]D. Lide. CRC handbook of chemistry and physics[M]. Florida:CRC Press,2003:124-156.
    [126]A. Faghri, Y. Zhang. Transport phenomena in multiphase system[J], San Diego:Academic Press,2006:450-501.
    [127]R. Marek, J. Straub. Analysis of the evaporation coefficient and the condensation coefficient of water[J]. International Journal of Heat and Mass Transfer,2001,44:39-53.
    [128]T. Hibiki, M. Ishii. One-group interfacial area transport of bubbly flows in vertical round tubes[J]. International Journal of Heat and Mass Transfer,2000,43:2711-2726.
    [129]T. Hibiki M. Ishii. Interfacial area concentration in steady fully-developed bubbly flow[J]. International Journal of Heat and Mass Transfer,2001,44:3443-3461.
    [130]T. Hibiki, M. Ishii. Interfacial area concentration of bubbly flow systems[J]. Chemical Engineering Science,2002,57:3967-3977.
    [131]T. Hibiki, T. Lee, J. Lee, M. Ishii. Interfacial area concentration in boiling bubbly flow systems[J]. Chemical Engineering Science,2006,61:7979-7990.
    [132]M. Ishii, S. Kim, J. Uhle. Interfacial area transport equation:model development and benchmark experiments[J]. International Journal of Heat and Mass Transfer,2002,45: 3111-3123.
    [133]郭雷.微细通道流动沸腾换热机理及实验研究[D].山东大学博士论文,2011:71-78.
    [134]云和明.细通道单相流动和传热特性的研究[D].山东大学博士论文,2007:49-52.
    [135]焦波,邱利民.重力热管蒸发段气液分布形式与换热能力分析[J].低温工程,2010,4:24-27.
    [136]李亭寒,化诚生.热管设计与应用[M].北京:化学工业出版社,1987.
    [137]郑威.小型轴向槽道热管制备工艺研究及实验性能分析[D].山东大学硕士论文,2007,13-16.
    [138]W. D. Munzel. Compatibility tests of various heat pipe working fluids and structural materials at different temperatures[J].3RD International heat pipe conference,1978.
    [139]J. E. Eniner, G. L. Fleischman, E. E. Luedke. Heat pipe materials compatibility[S]. NASA CR-135069,1976.
    [140]E. D. Waters, P. P. King. Compatibility evaluation of all Ammonia-Aluminum-stainless steel heat pipe[J]. ASME.70-HT/SPT-15.
    [141]W. D. Munzel. Life tests of artery heat pipe for low temperature range[J].2nd Intentional heat pipe conference,1976.
    [142]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [143]于涛.重力热管的制造及传热性能测试[D].山东大学硕士论文,2008,59-60.
    [144]吴永生,方可人.热工测量及仪表(第二版)[M].北京:中国电力出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700