基于位错理论与GPS速度场的青藏高原南部的形变分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原,它被认为是冈瓦纳大陆与欧亚大陆长期相互作用的结果,是个十分复杂、倍受地球科学家及国内外学者关注的地区。在不同时期下的科学技术水平对该地区的研究和成果产生一定的局限性。现代测量技术的飞速发展,特别是GPS定位技术的出现,使得区域性乃至全球性的实时测量成为可能。随着GPS定位精度的不断改善和提高,GPS技术也就成为实现水平形变监测的重要手段和方法。从而,给大范围的形变场模拟提供可靠的依据和不可缺少的检验资料。在形变场的建立和模拟上,国内外很多学者做了大量的研究和探讨,并用各种不同的模型和方法去解决这一问题。作者在总结前人研究的基础上,根据南部青藏高原的地质地理条件,运用位错理论与GPS速度场,对其进行模拟研究及对比分析,获得了一些有意的结论和认识。
     本文首先综合分析了青藏高原地质构造及背景,在大量实测资料的基础上,建立了不同参考基准的GPS速度场,比较分析了速度场的相同点和差异性,得出了青藏高原块体运动速度的不一致性。
     论文通过对位错理论的学习与分析,结合青藏高原独特的地质地理环境,提出运用位错理论模拟青藏高原南部雅鲁藏布江及其周边地区的优势和可行性。
     在以上理论分析的基础上,对形成青藏高原南部构造格局的雅鲁藏布江缝合带这一条正-右旋走滑断裂带进行分析研究,并运用C++进行程序设计,结合GMT(genedc mapping tools)软件功能及该区域地质、地球物理资料,对青藏高原南部进行解算与模拟,将模拟结果与GPS速度场进行对比和分析,显示出了模拟速度场较好的效果。
     对上述青藏高原南部的模拟速度场进行分析研究,得出了青藏高原南部的总体运动趋势和形变状况。
Tibet Plateau,who is considered the result of reciprocity of Gangwana mainland and Eerasia,is the zone who is quit complicated and is paid attention to by geologist. There is certain limitation to the research and achievement of this area in the scientific and technological level under different periods. Modernly technology of surveying in a full speed development, especially , the appearance of technology-GPS in the earth surveying of space ,makes the real-time measurement of the regionality even global possible.With the rapid improvement of precision of GPS orientation, GPS technology becomes a important method in coming plate deformation monitoring of the regionality even global true.As a result,it is possible to simulate the field of deformation in regionality even global. On setting and d simulating deformation field, a lot of domestic and international scholars have done a large number of research and discussion and Solve this problem with all kinds of model and method. The author, on the basis of the
    thing that forefathers study ,according to the condition of terra and geography in south Tibetan Plateau and using dislocation model and GPS deformation speed field, simulates south Tibetan Plateau.Then the displacements derived by dislocation model are compared with those observed by Global Positioning System(GPS). Ultimately,! gain some important conclusions and derived.
    Analyzing the background of tectonic and geology, On the basis of plentiful datum who are gain by surveying, I set some GPS deformation fields in different reference benchmark and study their sameness and difference on a comparative method.finally,! conclude that each south Tibetan Plateau blocks has a different speed.
    Using dislocation model, paper , studying and analyzing dislocation model on the basis of the especial circumstance of terra and geography, brings forward the advantage and feasibility of simulating south Tibetan Plateau.
    On the basis of above theory, I analyze and study Yalung Zangbo Suture Zone who is a right slip strike faults and control tectonic pattern. Taking advantage of GMT (generic mapping tools) and information of geology and physical geography I have a program using C++ edited to calculate digital of it. At last, south Tibetan Plateau is simulated . As a result, south Tibetan Plateau deformation field comes being. Compared to GPS deformation speed , it shows a good purpose.
    Analyzing and studying south Tibetan Plateau deformation field, I educe collective direction and deformation condition about deformation south Tibetan Plateau.
引文
1
    
    
    [1] Armi jo, R., P. Tapponnier, and J. L. Mericer, and T. L. Han, Quaternary extension in Southern Tibet: Field observation and tectonic implications, J. Geophys. Res.,91, 13,803-13,1872, 1986
    [2] Armi jo, R., P. Tapponnier, and T. L. Han, Late Cenozoic right lateral Strike-slip faulting in southern Tibet, J. Geophys. Res.,94, 2787-2838.1989
    [3] Ben-Menahem, A., S. J. Singh, and F. Solomon Deformation of an homogeneous earth model by finite dislocations, Rev. Geophys. Space Phys., 8, 591~563, 1970
    [4] Ben-Menahem, A., S. J. Singh, and F. Solomon Static Deformation of a spherical earth model by internal dislocations, Bull. Seism. Soc. Am., 1969, 59, 813~853
    [5] Cogan, M. K. Nelson, W. Kidd, C. Wu, And p. I. Team, Shallow structure of the YadongGulu rift, southern Tibet, from rerraction analysis of Project INDEPTH common midpoint data, Tectonics, 17,46 61,1998
    [6] England P, Housemen G. Finite strain calculations of continental deformation, 2, Comporison with the India-Asia collision zone. J. Geophys Res, 91:3664-3676,1986
    [7] Ishii, H. and A. Takagi Theoretical study on the crustal movements. Part Ⅰ. The influence of surface topography(two-dimensional SH-torque source), Sci Rep. Tohoku Univ. Serv. 5, Geophys, 19, 77~94, 1967
    [8] Ishii, H. and A. Takagi, Theoretical study on the crustal movements. Part Ⅱ. The influence of of horizontal discontinuity, Sci Rep. Tohoku Univ. Ser. 5, Geophys, b, 19, 95~106, 1967
    [9] Iwasaki, T. and R. Sato, Strain field in a semi-infinite medium due to an inclined rectangular fault, J. Phys. Earth, 27, 285~314,1979
    [10] Nolnar, P. and Q. Deng, Faulting associated with large earthquakes
    
    and the average rate of deformation in centeral and eastern Asia, J. Geophys. Res., 89, 6203-6227, 1984
    [11] Molnar, P. and H. Lyon-Caen, Fault plane solution of earthquakes and the active tectonies of the Tibetan Plateau and its margins, Geophys. J. Int.,99, 123-153, 1989
    [12] Molnar p, rapponnier p. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189:419-426,1975
    [13] McGinley, J. R. A comparison of observed permanent tilts and strain due to earthquakes with those calculated from displacement discolations in elastic earth model, Ph.D. Thesis, California Institute of Technology, Pasadena, California, 1969
    [14] Okada, Y., Surface Deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82,1018~1040, 1985
    [15] Ramsay, J. C., shear zone geometry: a review. J. Struct. Gcol. Vol. 2, pp. 83-99, 1980
    [16] Sato, R., Crustal deformation due to dislocation in amulti-layered medium. J. Phys. Earth, 19, 31~46,1971
    [17] Segall, P. and D. F. Mcrigue, Vertical displacements from a dip slip fault beneath surface topography, Abstract Chapman Conference on Vertical crustal Motion: Measurement and modeling, AGU, Washington D. C., 1984
    [18] Steketee, J. A., On Volterra' s dislocation in a semi-infinite elastic medium, Can. J. Phys., 36, 192-205, 1958
    [19] Sibson, R. H., Fault rocks and fault mechamism. J. Struct Soc. London, Vo1.133, pp. 191-213,1977
    [20] Tapponnier, P. and P. Molnar, Active faulting and Cenozoic tectonic of tile Yiau shah. Mongolia, and Baykal regions, J. Geophys. Res., 84, 3425-3459,1979
    [21] Takemoto, S., Effects of local inhomogeneities on tidal strain measurements, Bull. Disis. Prev. Res. Inst., Kyoto Univ. 33,15-46,1981
    
    
    [22] Tapponier, P., G. Peltzer, and R. Armi jo, On the mechanics of the collision between India and Asia. In M. P. Coward and A. C. Ries leds.,Collision Tectonics. pp. PL. 115 157. Geol. Soc. Spec. Pulb. 1986
    [23] Zhao W L, Margan W J. Uplife of the Tibetan Plateau. Tectonics, 4:359-369, 1985
    [24] 杨志强.南部西藏地壳形变测量与地球动力学分析研:[博士学位论文].长安大学,2003
    [25] 陈运泰,林邦慧,林中洋等.根据地面形变的观测研究1966年邢台地震的震源过程,地球物理学报,Vol.18,No.164~180,1975
    [26] 潘裕生.青藏高原的形成与隆升.地学前缘,1999,3:153~163
    [27] 申重阳,王琪,吴云等.川滇菱型块体主要边界运动模型的GPS数据反演研究.地球物理学报,Vol.45,No.3,352~361,2002
    [28] 张永志.青藏高原东北缘断层活动变形的模拟研究.地球物理学报,2004
    [29] 刘志飞,王成善,李祥辉.西藏南部雅鲁藏布江缝合带的沉积-构造演化.同济大学学报(自然科学版),2000
    [30] 姚正煦,周伏洪,薛典军,刘振军,张永军.雅鲁藏布江航磁异常带性质及其意义.物探与化探,2001
    [31] 崔作舟,尹周勋,高恩元,卢德源,傅维洲.亚东-格尔木岩石圈地学断面综合研究,青藏高原速度结构和深部构造.地质专报(五),No.15,1992
    [32] 常承法,潘裕生,郑锡澜等.青藏高原地质构造.北京:科学出版社,1982
    [33] 徐宝文,巴登珠,张宜智.雅鲁藏布江巨型构造带地质特征初步探讨.地质出版社,1982
    [34] 昊功建等.青藏高原“亚东-格尔木地学断面”综合地球物理调查与研究.地球物理学报,1991,34,No.5,552~562.
    [35] 青藏高原地质文集编委会.青藏高原地质文集(1),地质出版社,1982
    [36] 青藏高原地质文集编委会.青藏高原地质文集(8),地质出版社,1983
    [37] 青藏高原地质文集编委会.青藏高原地质文集(17),地质出版社,1985
    [38] 申重阳,甘家思,朱思林,等.点位错引起的单层密度变化.地壳形变与地震,1997,17(1):1~9
    
    
    [39] 汪一鹏.青藏高原活动构造基本特征.活动断层研究,1998
    [40] 许才军.青藏高原地壳运动模型与构造应力场.测绘出版社,1994
    [41] 刘增乾.青藏高原大地构造与形成演化.地质出版社,1990
    [42] 杨志强等.GPS监测青藏板块运动数据的GAMIT/GLOBK处理方法及有关问题.西安工程学院学报,1999,Vol.21 No.2
    [43] 杨元喜等.地壳形变分析模型.解放军测绘学院学报,1992,No.2
    [44] 吴云,申重阳,乔学军,周硕愚,邓千金.GPS观测成果在地震研究中的初步运用.2000年GPS年会论文集
    [45] 黄立人.GPS观测结果变形分析的参考框架及其合理性.测绘学报,2000
    [46] 刘志飞,王成善,李祥辉.西藏南部雅鲁藏布江缝合带的沉积-构造演化.同济大学学报,1997
    [47] 姚正煦,周伏洪,薛典军,刘振军,张永军.雅鲁藏布江航磁异常带性质及其意义.物探与化探,2001
    [48] 周伏洪,姚正煦,薛典军,刘振军,张永军.航磁概查对青藏高原一些地质问题的新认识.物探与化探,2001
    [49] 李廷栋.青藏高原地质科学研究的新进展.地质通报,2002
    [50] 曹圣华,袁建芽,唐峰林,谢国刚,邹爱建.青藏高原区1:25万区调构造调研的若干问题.江西地质,2001
    [51] 张培震,王琪等.青藏高原现今构造变形特征与GPS速度场。地学前沿,2002,2:442~448
    [52] 崔军文.青藏高原岩石圈形变及其动力学。北京:地质出版社,1992
    [53] 曾融生等.青藏高原及其邻区的地震活动和震源机制以及高原物质东流的讨论.地质学报,14(增刊):534-546,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700