基于核心边界条件的车用柴油机燃烧改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着能源危机加剧和环境污染恶化,节能与减排已成为当今时代的主题。柴油机因热效率高、可靠性好等优点已成为交通运输和电力设施的主要动力,然而,其NO_x和soot排放对环境和人类健康具有重要影响,并且它们之间存在trade-off关系。本文从研究核心边界条件对柴油机燃烧的影响规律的角度出发,通过优化这些核心边界条件使混合气燃烧时尽量避开NO_x和soot生成区域,从而改善柴油机NO_x和soot排放的trade-off。针对煤直接液化柴油低十六烷值、低硫含量、低芳香烃含量和低蒸馏温度的特点,采用煤直接液化柴油替代石化柴油,并优化喷油参数和EGR率进一步改善柴油机NO_x和soot排放的trade-off关系,从而实现高效清洁燃烧。
     本文以一台批产CA6DL2-33E3F柴油机为原型机,采用电控共轨燃油系统替代直列泵燃油系统,对进排气系统、燃烧系统、缸盖等也进行了改造,并安装了关键参数测试设备,从而建立了柴油机燃烧测试系统。
     建立了喷油规律测试试验台,并测量了冲击喷油嘴和传统喷油嘴的喷油规律,试验结果表明:提高喷油压力可以提高最大喷油速率,当循环油量相同时,提高喷油压力可以缩短喷油持续期;最大喷油速率随喷油脉宽增大先升高然后基本保持不变;与传统喷油嘴相比,冲击喷油嘴具有高的喷油速率、短的喷油持续期,这增加了在混合气着火前将循环油量全部喷入缸内的可能性。
     建立了喷雾特性测试试验台并利用Matlab软件编程开发了喷雾照片处理程序,测量了冲击喷油嘴和传统喷油嘴的喷雾宏观参数,试验结果表明:随背压增大,两种喷油嘴的喷雾贯穿距离都减小、喷雾锥角都增大、喷雾投影面积和喷雾体积都减小。随喷油压力增加,两种喷油嘴的喷雾贯穿距离、喷雾锥角、喷雾投影面积和喷雾体积都增大。与传统喷油嘴相比,冲击喷油嘴的喷雾贯穿距离短、喷雾锥角大、喷雾投影面积和喷雾体积小。
     在建立的燃烧测试系统上研究了燃烧系统参数对柴油机燃烧的影响。试验结果表明:为降低NO_x到较低排放水平,必须采用较高EGR率;低压缩比敞口燃烧室比缩口燃烧室更有利于改善缸内混合气的形成质量,从而改善柴油机NO_x和soot排放的trade-off,并且有利于改善HC、CO排放以及BSFC性能;传统喷油嘴更有利于改善柴油机燃烧中NO_x和soot排放的trade-off,这是因为冲击喷油嘴的贯穿距离短于传统喷油嘴,与敞口燃烧室不完全匹配,造成其缸内油气混合相对不均匀;提高喷油压力可改善油气混合过程和缩短喷油持续期,然而,在低负荷时过高喷油压力可能导致缸内局部区域混合气过稀,从而引起不完全燃烧,因此,低负荷时喷油压力不宜过高,高负荷时可以适当提高喷油压力;采用上止点附近的晚喷油策略控制混合气燃烧相位,使柴油机在相对高负荷时可以避免粗暴燃烧。结合低压缩比敞口燃烧室和大量冷却EGR,以及最佳的喷油参数,可以实现较理想的柴油机高效清洁燃烧。
     在优化喷油嘴—燃烧室结构参数、喷油参数和EGR率实现了较理想的高效清洁燃烧以后,针对煤直接液化柴油具有低十六烷值、低硫含量、低芳香烃含量和低蒸馏温度等特点,本文采用煤直接液化柴油替代石化柴油,在柴油机燃烧测试系统上进行了喷油参数和EGR率对柴油机燃烧的影响规律,并优化喷油参数和EGR率来进一步改善柴油机NO_x和soot排放的trade-off。试验结果表明,与石化柴油相比,煤直接液化柴油可使柴油机在低EGR率下实现预混合燃烧模式;煤直接液化柴油的NO_x排放随EGR率的变化率与石化柴油接近,但前者的碳烟排放随EGR率的变化率远小于石化柴油;煤直接液化柴油可进一步改善柴油机NO_x和soot排放的trade-off。
     与原机相比,新机各试验工况NO_x和soot排放同时降低,尤其在25%和35%负荷,NO_x和soot排放下降幅度都超过50%,并且BSFC没有显著升高。而且原机最大增压比达到2.6,满足国Ⅲ排放标准。这可见效果显著。
     本文采用AVL-Fire软件模拟柴油机燃烧过程,计算结果进一步验证了敞口燃烧室更有利于缸内油气混合,从而改善NO_x和soot排放的trade-off。
With the increased energy crisis and the deteriorated environmental pollution, theenergy saving and emissions reduction have become the theme of our times. Diesel engineshave become the main driving force for transportation and power facilities due to thehigher thermal efficiency and better reliability; however, the NO_xand soot emissions fromdiesel engines have an important impact on the environment and human health. Moreover,there is a trade-off relationship between NO_xand soot emissions in the conventionalcombustion mode of diesel engines. In this paper, while the effects of key initialboundaries on the combustion for vehicle diesel engine were investigated firstly, theincylinder mixture formation quality of vehiclediesel engine was improved by optimizingthe key initial boundaries, so that when the mixture burned, it could avoid the NO_xandsoot generation regionsandimprove the trade-off relationship between NO_xand sootemissions. Due to the lower cetane number, lower sulfur and PAH content andlowerdistillation temperature for the CTL (Coal to Liquid) fuel, it was used to substitute forpetroleum diesel fuel, and the fuel injection parameters and EGR rate were optimized tofurther improve the trade-off relationship between NO_xand soot emissions in order toachieve the clean and high-efficiency combustion.
     In this paper, a diesel engine combustion test bench has been established byreconstructing the key systems of a mass production CA6DL2-33E3F diesel engine. Somedevelopments are as follows:the mechanical in-line fuel system was replaced by the highpressure common rail fuel system. The cylinder head with the intake air swirl ratio of2.1was replaced by the one with the intake air swirl ratio of1.3.The EGR system with theintake air throttle valve was developed to ensure that enough exhaust gas could be inducedinto the intake manifold, and the shell-and-tube heat exchanger was developed to ensurethe induced exhaust gas could be cooled to the target temperature.An exposure portcombustion chamber of low compression ratio and large throat diameter was alsodeveloped. Also, the key parameters test equipments have been installed in the dieselengine combustion test system.
     The fuel injection rate testing bench has been established, and the fuel injection rateof both the impingingspray nozzle and the conventional spray nozzle were measured. Thefuel injection test results showed that the maximum fuel injection rate was increased withthe increased fuel injection pressure, which meant that the fuel injection duration could beshortened by increasing the fuel injection pressure at the same cyclic fuel quantity. Themaximum fuel injection rate first increased and then remained unchanged with theincreased fuel injection pulse width. Compared with the conventional spray nozzle, theimpinging spray nozzle has a higher fuel injection rate and shorter fuel injection duration,which increased the possibility of injecting the cyclic fuel into the cylinder completelyprior to the ignition.
     The spray characteristics testing bench has been established and the spray photoprocessing program has been developed using Matlab codes. The spray photos of both theimpinging spray nozzle and the conventional nozzle wererecorded in the spraycharacteristic testing bench, and the spray photos were processed by the spray photoprocessing program. The spray characteristics test results showed that the spray tippenetration, the spray projected area and the spray volume decreased, and the spray coneangle increased with the incrased back pressure for both the impinging spray nozzle andthe conventional spray nozzle. The spray tip penetration, the spray cone, the sprayprojected area and the spray volume increased with the increased fuel injection pressure forboth the impinging spray nozzle and the conventional spray nozzle. Compared with theconventional spray nozzle, the impinging spray nozzle had shorter spray tip penetration,larger spray cone angle, smaller spray projected area and spray volume.
     The effects of combustion system parameters on combustion for vehicle diesel enginehave been investigated on thenewly-built combustion test bench. The test results showedthat the heavy EGR is necessary to significantly reduce the NO_xemissions. Compared withthe reentrant combustion chamber, the exposure port combustion chamber of lowcompression ratio and large throat diameter can improve the trade-off relationship betweenNO_xand soot emissions, and even improve the HC and CO emissions as well as the BSFC.The conventional spray nozzle was more beneficial for improving the trade-off betweenNO_xand soot emissions than the impinging spray nozzle, because the spray tip penetrationof the impinging spray nozzle was shorter than that of the conventional spray nozzle,which was not well matched with the exposure port combustion chamber, resulting in the heterogeneous mixture in the cylinder.The increased fuel injection pressure can promotethe fuel-air mixing process and shorten the fuel injection duration; however, theexcessively high fuel injection pressure may result in the over-lean fuel-air mixture in thelocal areas at low load, which can lead to the incomplete combustion. Thus, there exists anoptimum fuel injection pressure at low load, and the fuel injection pressure can be raisedappropriately at high load.Thenear TDC late fuel injection strategy was used to control themixture combustion phase, which could prevent the violent combustion of diesel engine atthe relatively high load. The relatively ideal clean and high-efficiency combustion modecan be achieved by combining the exposure port combustion chamber of low compressionratio and heavy EGR as well as the optimal fuel injection parameters.
     After the relatively ideal clean and high-efficiency combustion mode has beenachieved by optimizing the injector-combustion chamber parameters, fuel injectionparameters and EGR rate, when vehicle diesel engine was fuelled with petroleum dieselfuel. Due to the lower cetane number, lower sulfur and PAH content and lower distillationtemperature for the CTL fuel, petroleum diesel fuel was replaced by the CTL fuel.And theeffects of fuel injection parameters and EGR rate on the combustion for vehicle dieselengine have been investigated in the newly-bulit combustion test bench.Moreover, the fuelinjection parameters and EGR rate were optimized in order to further improve thetrade-offrelationship between NO_xand soot emissions.The experimental resultsshowed that thepremixed combustion mode could be realized with lower EGR rate when vehicle dieselengine fuelled with CTL fuel, comparaed to petroleum diesel fuel. The gradient of NO_xemissions with EGR rate for the CTL fuel was nearly the same with that for petroleumdiesel fuel. However, the gradient of soot emissions with EGR rate was much smaller thanthat for petroleum diesel fuel. Moreover, the CTL fuel could indeed improve the trade-offrelationship between the NO_xand soot emissions while petroleum diesel fuel had no sucheffects.
     Compared to original vehicle diesel engine with petroleum diesel fuel, the NO_xandsoot emissions of new vehicle diesel engine fuelled with the CTL fuel were simultaneouslyreduced in all the tested operation conditions. Especially in the25%and35%loads, theNO_xand soot emissions decreased more than50%, while the BSFC was not obviouslydeteriorated. Moreover, the maximum supercharging ratio of original vehicle diesel enginewas2.6, which meets national stage Ⅲ emission standard. Thus, there is a remarkable improvement for the new vehicle diesel engine compared to original vehicle diesel engine.
     AVL-Fire software was used to simulate the combustion process of the vehicle dieselengine, the simulation results validated that the exposure port combustion chamber of lowcompression ratio was beneficial forimproving the mixing quality of the cylinder mixture,thus contributing to solving the trade-off between the NO_xand soot emissions.
引文
[1]http://auto.people.com.cn/GB/9051065.html
    [2]http://energy.people.com.cn/GB/12690387.html
    [3] Kagawa J. Health effects of diesel exhaust emissions—a mixture of air pollutants of worldwideconcern[J]. Toxicology181-182(2002)349-353.
    [4] McClellan R.O., Hesterberg T.W. and Wall J.C. Evaluation of carcinogenic hazard of diesel engineexhaust needs to consider revolutionary changes in diesel technology[J]. Regulatory Toxicology andPharmacology63(2012)225-258.
    [5]http://www.green-2012.com/qcyzn/810.html
    [6] http://www.dieselnet.com/standards/eu/hd.php
    [7]车用压燃式、气体点燃式发动机与汽车排气污染排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)(GB17691—2005)[M],中国环境科学出版社,2005.
    [8] http://news.xinhuanet.com/auto/2008-02/15/content_7609678.htm
    [9] http://auto.qq.com/a/20091228/000124.htm
    [10] http://www.gzepb.gov.cn/gzdt/201009/t20100902_64622.htm
    [11]黄佐华.内燃机节能与洁净利用开发与研究的现状与前沿[J].汽车安全与节能学报,2010年,第一卷第2期, P89-97.
    [12] H k M., and AleklettK.A review on coal to liquid fuels and its coal consumption.InternationalJournal of Engine Research.2010;34:848-64.
    [13]Robinson K.K. Reaction engineering of direct coal liquefaction. Energies.2009;2:976-1006.
    [14]Whitehurst D.D. Coal liquefaction fundamentals. ACS: Washington, DC;1980.
    [15]Comolli A.G., LeeT.L.K., Popper G.A., and Zhou P. The Shenhua coal direct liquefaction plant.Fuel Processing Technology.1999;59:207-15.
    [16]Shui H.F., Cai Z.Y., and Xu C.B. Recent advances in direct coal liquefaction. Energies.2010;3:155-70.
    [17]Williams R.H., and Larson E.D. A comparison of direct and indirect liquefaction technologies formaking fluid fuels from coal. Energy for Sustainable Development.2003;7:103-29.
    [18]钱伯章,朱建芳.对中国煤制油的冷静思考[J].炼油技术与工程,2006(7):5-9.
    [19]王真,石玉林,乔信起,庄健,金环年.共轨柴油机燃用煤直接液化柴油的燃烧与排放特性[J].内燃机学报,2012, Vol.30, No.3, P201-206.
    [20]李志光.煤制油技术发展综述[J].中国高新技术企业,2008(23):103-104.
    [21]黄勇成,周龙保,蒋德明.清洁燃料F-T柴油在柴油机中应用的研究[J].内燃机工程,2005,Vol.26, No.5, P18-23.
    [22] Schubert P.F., Russell B.J., Freerks R.L., Devore J. and Fanick E.R. Impact ofultra-cleanFischer-Tropsch diesel fuel on emissions in a light duty passenger car diesel engine[J].SAE Paper2002-01-2725,2002.
    [23] Breda Kegl. Influence of biodiesel on engine combustion and emission characteristics[J]. AppliedEnergy,2011(88):1803-1812.
    [24] Zhu L., Cheung C.S., Zhang W.G. and Huang Z. Combustion, performance and emissioncharacteristics of a DI diesel engine fueled with ethanol-biodiesel blends[J]. Fuel,2011(90):1743-1750.
    [25]楼狄明,石健,赵杰,赵泳生,李博,胡志远.共轨柴油机燃用不同配比生物柴油的性能与排放特性[J].内燃机工程,2009年06期: P21-25.
    [26]申伟.二甲醚发动机发展现状与展望[J].北京汽车,2007, No.3, P36-39.
    [27]周龙保.内燃机学[M].机械工业出版社,1996.6
    [28]童澄教.内燃机排放与净化[M].上海交通大学出版社,1994.6
    [29]李兴虎.汽车排气污染与控制[M].机械工业出版社,1999.9
    [30]李勤.现代内燃机排气污染物的测量与控制[M].机械工业出版社,1998.12
    [31] Dohle U, Eimers-Klose D.清洁柴油机—燃油喷射系统和排气后处理系统的未来发展趋势[J]国外内燃机,2009, Vol.41, No.1, P6-10
    [32] Tim J. Diesel engine emissions and their control. Platinum Metals Review,2008,52,(1),23-37.
    [33] Marshall R.A., Gregory D., Eves B., Peirce G., Taylor T. and Cornish S. Optimising theaftertreatment configuration for NOxregeneration on a lean-NOxtrap[J]. SAE Paper1999-01-3499,1999.
    [34] Naseri M., Chatterjee S., Castagnola M., Chen H.Y., Fedeyko J., Hess H.And Li J. Development ofSCR on diesel particulate filter system for heavy duty applications[J].SAE Paper2011-01-1312,2011.
    [35] Theis J.R., Dearth M., and McCabe R. LNT+SCR catalyst systems optimized for NOxconversionon diesel applications[J].SAE Paper2011-01-0305,2011.
    [36] Roecker R., Zhan R. and Stanglmaier R.H. Feasibility investigation of a high-efficiency NOxafterment system for diesel engines[J]. SAE Paper2007-01-3983,2007.
    [37] Theis J. and Gulari E. A LNT+SCR system for treating the NOx emissions from a diesel engine[J].SAE Paper2006-01-0210,2006.
    [38] Murayama T., Aoyagi Y., Kobayashi M., Adachi T., Shimada K., Suzuki H., Goto Y. and Sato Y.Effective usage of LNT in high boosted and high EGR rate of heavy duty diesel engine[J]. SAEPaper2010-01-1066,2010.
    [39] Scarnegie B., Miller W.R., Ballmert B., Doelling W. and Fischer S. Recent DPF/SCR resultstargeting US2007and Euro4/5HD emissions[J]. SAE Paper2003-01-0774,2003.
    [40]Gekas I., Vressner A. and Johansen K. NOxreduction potential of V-SCR catalyst inSCR/DOC/DPF configuration targeting Euro VI limits from high engine NOxlevels[J]. SAE Paper2009-01-0626,2009.
    [41]Lakkireddy V.R., Mohammed H. and Johnson J.H. The effect of a diesel oxidation catalyst and acatalyzed particulate filter on particle size distribution from a heavy duty diesel engine[J]. SAEPaper2006-01-0877,2006.
    [42]Watanabe T., Kawashima K., Tagawa Y., Tashiro K., Anoda H., Ichioka K., Sumiya S. and Zhang G.New DOC for light duty diesel DPF system[J]. SAE Paper2007-01-1920,2007.
    [43] Flotho A. and Stein J. How to realize the future limits of exhaust emissions of MD/HD enginesaccording to the Chinese Regulations[C]. The Beijing2006Forum on Sustainable Development ofInternal Combustion Engine and the2nd International Forum of Automotive Power Train in China,Beijing,2006.
    [44] Reverencic I. Emission development of Euro4and beyond-Alternative strategies with exhaust gasaftertreatment[C].The Beijing2006Forum on Sustainable Development of Internal CombustionEngine and the2nd International Forum of Automotive Power Train in China, Beijing,2006.
    [45]董尧清,吴乐欣,刘永祥,王一江.中重型车用柴油机实施欧Ⅳ排放的技术路径[J].汽车技术,2007年第3期, P1-4.
    [46]Moser FX, Sams T, Dreisbach R.超低排放是重型柴油机未来的关键[J].国外内燃机,2005年第六期,P44-49.
    [47]Ladommatos N., Abdelhalim S.M., Zhao H. and Hu Z.The Dilution, Chemical, and Thermal Effectsof Exhaust Gas Recirculation on Diesel Engine Emissions-Part2: Effects of Carbon Dioxide[J].SAE Paper Number:961167;1996.
    [48]Ladommatos N., Abdelhalim S.M., Zhao H. and Hu Z.The Dilution, Chemical, and Thermal Effectsof Exhaust Gas Recirculation on Diesel Engine Emissions-Part3: Effects of Water Vapour[J]. SAEPaper Number:971659;1997.
    [49]Ladommatos N., Abdelhalim S.M. and Zhao H. The effects of exhaust gas recirculation on dieselcombustion and emissions[J]. Int. J. Engine Res.1(2000)107-126.
    [50]Neely G., Sasaki S., Huang Y., Leet J. and Stewart D. New diesel emission control strategy to meetUS Tier2emissions regulations[J]. SAE Paper2005-01-1091,2005.
    [51] Kook S., Bae C., Miles P.C., Choi D., and Pickett L.M. The influence of charge dilution andinjection timing on low-temperature diesel combustion and emissions[J]. SAE Paper2005-01-3837,2005.
    [52] Dec J.E. Soot distributions in a DI diesel engine using2-D imaging of laser-induced incandescence,elastic scattering, and flame luminosity[J]. SAE Paper920115. SAE Transactions,101(4),101-112.
    [53] Dec J.E. A conceptual model of DI diesel combustion based on laser-sheet imaging[J]. SAE Paper970873, SAE Transactions,106(3),1319-1348.
    [54] Dec J.E. and Canaan R.E. PLIF imaging of NO formation in a DI diesel engine[J]. SAE Paper980147, SAE Transactions,107(3),176-204.
    [55] Dec J.E. and Coy E.B. OH radical imaging in a DI diesel engine and the structure of early diffusionflame[J]. SAE Paper960831, SAE Transactions,105(3),1127-1148.
    [56] Dec J.E. and Espey C. Ignition and early soot formation in a DI diesel engine using multiple2-Dimaging diagnostics[J]. SAE Paper950456, SAE Transactions,104(3),853-875.
    [57] Dec J.E. and Espey C. Chemiluminescence imaging of autoignition in a DI diesel engine[J]. SAEPaper982685, SAE Transactions,107(3),2230-2254.
    [58] Musculus M. Effects of the in-cylinder environment on diffusion flame lift-off in a DI dieselengine[J]. SAE Paper2003-01-0074,2003.
    [59] Musculus M. On the correlation between NOxemissions and the diesel premixed burn[J]. SAEPaper2004-01-1401,2004.
    [60] Musculus M. Multiple simultaneous optical diagnostic imaging of early-injection low-temperaturecombustion in a heavy-duty diesel engine[J]. SAE Paper2006-01-0079,2006.
    [61] Singh S. Experimental investigation of multi-mode diesel engine combustion and validation ofadvanced combustion modes[D].Ph.D Dissertation (2006), Department of Mechanical Engineering,University of Wisconsin-Madison.
    [62] Hildingsson L., Persson H., Johansson B., Collin R., Nygren J., Richter M., Alden M., Hasegawa R.and Yanagihara H. Optical diagnostics of HCCI and low-temperature diesel using simultaneousPLIF of OH and formaldehyde[J]. SAE Paper2004-01-2949,2004.
    [63] Lachaux T. and Musculus M. In-cylinder unburned hydrocarbon visualization duringlow-temperature compression-ignition engine combustion using formaldehyde PLIF[J]. Proceedingsof the Combustion Institute,31(2007),2921-2929.
    [64] Lachaux T., Musculus M., Singh S. and Reitz R.D. Optical diagnostics of late-injectionlow-temperature combustion in a heavy-duty diesel engine[J].Journal of Engineering for GasTurbines and Power,130(3),(2008),032808.
    [65] Musculus M., Lachaux T., Pickett L.M. and Idicheria C.A. End-of-injection over-mixing andunburned hydrocarbon emissions in low-temperature-combustion diesel engines[J]. SAE Paper2007-01-0907,2007.
    [66] Kim D., EkotoI., Colban W.F. and Miles P.C. In-cylinder CO and UHC imaging in a light-dutydiesel engine during PPCI low-temperature combustion[J]. SAE Paper2008-01-1602,2008.
    [67] Aceves S.M. and Flowers D.L. A detailed chemical kinetic analysis of low temperature non-sootingdiesel combustion[J]. SAE Paper2005-01-0923,2005.
    [68] Ogawa H., Li T., Miyamoto N., Kido S.And Shimizu H. Dependence of ultra-high EGR and lowtemperature diesel combustion on fuel injection conditions and compression ratio[J]. SAE Paper2006-01-3386,2006.
    [69] Jacobs T.J. and Assanis D.N. The attainment of premixed compression ignition low-temperaturecombustion in a compression ignition direct injection engine[J]. Proceedings of the CombustionInstitute31(2007),2913-2920.
    [70] AsadU. and Zheng M. Efficacy of EGR and boost in single-injection enabled low temperaturecombustion[J]. SAE Paper2009-01-1126,2009.
    [71] Zheng M., Mulenga M.C., Reader G.T., Wang M., Ting D. and Tjong J. Biodiesel engineperformance and emissions in low temperature combustion[J]. Fuel87(2008),714-722.
    [72]赵新顺,曹会智,温茂禄,孙协胜. HCCI技术的研究现状与展望[J].内燃机工程,2004年,第25卷第4期, P73-77.
    [73] Onishi S., Jo S., Shoda K., Jo P. and Kato S. Active thermo-atmosphere combustion (ATAC)-A newcombustion process for internal combustion engines[J]. SAE Paper Number:790501;1979.
    [74] Noguchi M., Tanaka T. and Takeuchi Y. A study on gasoline engine combustion by observation ofintermediate reactive products during combustion[J]. SAE Paper Number:790840;1979.
    [75] Najt P. and Foster D. Compression-ignited homogeneous charge combustion[J]. SAE PaperNumber:830264;1983.
    [76] Thring R. Homogeneouscharge compression ignition (HCCI) engine[J]. SAE Paper Number:892068;1989.
    [77] Yoshinaka T., Nakagome K. and Niimura K. Emission characteristics of premixed lean dieselcombustion with extremely early staged fuel injection[J]. SAE Paper Number:961163;1996.
    [78] Water B. and Gatellier B. Development of the high power NADITMconcept using dual mode dieselcombustion to achieve zero NOxand particulate emissions[J]. SAE Paper2002-01-1744,2002.
    [79] Reveille B., Kleemann A., Knop V. and Habchi C. Potential of narrow angle direct injection dieselengines for clean combustion:3D CFD analysis[J]. SAE Paper2006-01-1365,2006.
    [80] Yokota H., Kudo Y., Nakajima H., Kakegawa T. and Suzuki T. A new concept for low emissiondiesel combustion[J]. SAE Paper Number:970891;1997.
    [81] Pierpont D.A. and Montgomery D.T. and Reitz R.D. Reducing particulate and NOxusing multipleinections and EGR in a D.I. diesel[J]. SAE Paper Number:950217;1995.
    [82] Lu Y., Yu W. and Du W. Using multiple injection strategies in diesel PCCI combustion: potential toextend engine load, improve trade-off of emissions and efficiency[J].SAE Paper2011-01-1396,2011.
    [83] Kanda T., Hakozaki T., Uchimoto T., Hatano J., Kitayama N. and Sono H. PCCI operation withearly injection of conventional diesel fuel[J]. SAE Paper2005-01-0378,2005.
    [84]Jacobs T.J. Simultaneous reduction of nitric oxide and particulate matter emissions from alight-duty diesel engine using combustion development and diesel oxidation catalyst[D]. Ph.DDissertation (2005), University of Michigan.
    [85] Okude K., Mori K., Shiino S. andMoriya T. Premixed compression ignition(PCI) combustion forsimultaneous reduction of NOxand soot in diesel engine[J]. SAE Paper2004-01-1907,2004.
    [86] Kimura S., Ogawa H., Matsui Y. and Enomoto Y. An experimental analysis of low-temperature andpremixed combustion for simultaneous reduction of NOxand particulate emissions in directinjection diesel engines[J]. International Journal of Engine Research.2002,3:249-259.
    [87]Kimura S., Aoki O., Ogawa H. and Muranaka S. New Combustion Concept for Ultra-CleanandHigh-Efficiency Small DI Diesel Engines[J]. SAE Paper No.1999-01-3681
    [88] Sasaki S., Ito T. and Iguchi S. Smoke-less rich combustion by low temperature oxidation in dieselengines[C].9th Aachen Colloquium Automobile and Engine Technology2000,767(2000).
    [89] Akihama K., Takatori Y., Inagaki K., Sasaki S. and Dean A.M. Mechanism of the smokeless richdiesel combustion by reducing temperature[J]. SAE Paper2001-01-0655,2001.
    [90]Alriksson M., Rente T. and Denbratt I. Low soot, low NOxin a heavy duty diesel using high levelsof EGR[J]. SAE Paper (2005),2005-01-3836.
    [91] Kamimoto T. and Bae M. High combustion temperature for the reduction of Particulate in dieselengines[J]. SAE Paper880423,1988.
    [92] Hasegawa R. and Yanagihara H. HCCI combustion in DI engine[J]. SAE Paper,2003-01-0745,2003.
    [93] Splitter D., Kokjohn S., Rein K., Hanson R., Sanders S. and Reitz R.D. An optical investigation ofignition processes in fuel reactivity controlled PCCI combustion[J].SAE Paper2010-01-0345,2010.
    [94] Hanson R., Kokjohn S., Splitter D. and Reitz R.D. An experimental investigation of fuel reactivitycontrolled PCCI combustion in a heavy-duty engine[J]. SAE Paper2010-01-0864,2010.
    [95] Splitter D., Reitz R.D. and Hanson R. High efficiency, low emissions RCCI combustion by use of afuel additive[J]. SAE Paper2010-01-2167,2010.
    [96]Msahiko F., Kohei I., Motoshi K. and Michihiko T. Effect of combustion chamber shape on tumbleflow, squsih-generated flow and burn rate[J]. JSAE Review,2002,23(3):291-296.
    [97]Takashi K., Jin K. Improvement of combustion and exhaust gas emission in a passgenger car dieselengine by modification of combustion chamber design[J]. SAE Paper2006-01-3435,2006.
    [98] Inagaki K., Mizuta J., Fuyuto T., Hashizume T., Ito H., Kuzuyama H., Kawae T. and Kono M. Lowemissions and high-efficiency diesel combustion using highly dispersed spray with restrictedin-cylinder swirl and squish flows[J]. SAE Paper2011-01-1393,2011.
    [99] Miao X., Zhang G., Ju Y., Wang X., Hong J., Zheng J., Qiao X. and Huang Z. Study on premixedcombustion in a diesel engine with Ultra-multihole nozzle[J]. Journal of Combustion.doi:10.1155/2011/471648.
    [100] Lechner G.A., Jacobs T.J., Chryssakis C.A., Assanis D.N. and Siewert R.M. Evaluation of anarrow spray cone angle, advanced injection timing strategy to achieve partially premixedcompression ignition combustion in a diesel engine[J]. SAE Paper2005-01-0167,2005.
    [101] Walter B and Gatellier B. Near zero NOxemissions and high fuel efficiency diesel engine: theNADITMconcept using dual mode diesel combustion[J]. Oil and Gas Science and Technology,2003,58(1):101-114.
    [102] Jung Y. and Bae C. Improvement of premixed compression ignition combustion using variousinjector configurations[J]. SAE Paper2011-01-1357,2011.
    [103] Genzale C.L. Optimizing combustion chamber design for low-temperature diesel combustion[D].Ph.D Dissertation (2009), University of Wisconsin-Madison.
    [104] Benajes J., Molina S., Rudder K., Maroteaux D. and Hamouda H. The use of micro-orificenozzles and swirl in a small HSDI engine operating at a late split-injection LTC regime[J].Proc InstMech Eng Part D: J Auto Eng220(2006)1807-1817.
    [105] Choi Dae., Miles P.C., Yun H. and Reitz R.D. A parametric study of low-temperature,late-injection combustion in a HSDI diesel engine[J]. JSME International Journal, Series B,2005,48(4):656-664.
    [106] Cong S., McTaggart-Cowan G. and Garner C. Effects of fuel injection parameters on lowtemperature diesel combustion stability[J]. SAE Paper2010-01-0611,2010.
    [107] Alriksson M., Gjirja S. and Denbratt I. The effect of charge air and fuel injection parameters oncombustion with high levels of EGR in a HDDI single cylinder diesel engine[J].SAE Paper2007-01-0914,2007.
    [108] Sakai A., Takeyama H., Ogawa H.And Miyamoto N. Improvements in premixed chargecompression ignition combustion and emissions with lower distillation temperaturefuels[J].International Journal of Engine Research.2005,6:433-442.
    [109] Beatrice C., Avolio G., Giacomo N.D. and Guido C. Compression ratio influence on theperformance of an advanced single-cylinder diesel engine operating in conventional and lowtemperature combustion mode[J].SAE Paper2008-01-1678,2008.
    [110]Laguitton O., Crua C., Cowell T., Heikal M.R. and Gold M.R. The effect of compression ratio onexhaust emissions from a PCCI diesel engine[J]. Energy Conversion and Management48(2007):2918-2924.
    [111] Alriksson M. and Denbratt I. Low temperature combustion in a heavy duty diesel engine usinghigh levels of EGR[J]. SAE Paper2006-01-0075,2006.
    [112] Kimura S., Aoki O., Kitahara Y. and Aiyoshizawa E. Ultra-clean combustion technologycombining a low-temperature and premixed combustion concept for meeting future emissionstandards[J]. SAE Paper2001-01-0200,2001.
    [113] Ojeda W.D., Bulicz T., Han X., Zheng M. and Cornforth F. Impact of fuel properties on diesel lowtemperature combustion[J]. SAE Paper2011-01-0329,2011.
    [114] Warey A., Hardy J.P., Hennequin M., Tatur M., Tomazic D. and Cannella W. Fuel effects on lowtemperature combustion in a light-duty diesel engine[J]. SAE Paper2010-01-1122,2010.
    [115]尧命发,刘海峰.均质压燃与低温燃烧的燃烧技术研究进展与展望[J].汽车工程学报,2012,2(2):79-90.
    [116] Kook S., Bae C., Miles P.C., Choi D., Bergin M. and Reitz R.D. The effect of swirl ratio and fuelinjection parameters on CO emission and fuel conversion efficiency for high-dilution,low-temperature combustion in an automotive diesel engine[J]. SAE Paper2006-01-0197,2006.
    [117] Lu P.H., Han J.S., Lai M.C., Henein N.A and Bryzik W. Combustion visualization of DI dieselspray combustion inside a small-bore cylinder under different EGR and swirl ratios[J]. SAE Paper2001-01-2005,2005.
    [118] Genzale C.L., Reitz R.D. and Wickman D.D. A computational investigation into the effects ofspray targeting, bowl geometry and swirl ratio for low-temperature combustion in a heavy-dutydiesel engine[J]. SAE Paper2007-01-0119,2007.
    [119] Henein N.A., Bhattacharyya A., Schipper J., Kastury A. and Bryzik W. Effect of injection pressureand swirl motion on diesel engine-out emissions in conventional and advanced combustionregimes[J]. SAE Paper2006-01-0076,2006.
    [120] Miles P.C. The influence of swirl on HSDI diesel combustion at moderate speed and load[J]. SAEPaper2000-01-1829,2000.
    [121] Bergstrand P. and Denbratt I. The effects of leaner charge and swirl on diesel combustion[J]. SAEPaper2002-01-1633,2002.
    [122]朱玲玉.浅析涡流技术与直喷式燃烧室的结构型式对柴油机排放的影响[J].内燃机与动力装置,2010,1:48-51.
    [123] Zheng M., Reader G.T. and Hawley J.G. Diesel engine exhaust gas recirculation—a review onadvanced and novel concepts[J]. Energy Conversion and Management,2004,45:883-900.
    [124] Simio L.D., Gambino M. and Iannaccone S. A study of different EGR routes on a heavy dutystoichiometric natural gas engine[J]. SAE Paper2009-24-0096,2009.
    [125] Nieuwstadt M.J., Kolmanovsky I.V. and Moraal P.E. Cordinated EGR-VGT control for dieselengines: and experimental comparison[J]. SAE Paper2000-01-0266,2000.
    [126]罗小青,黄云奇.增压中冷柴油机节流式EGR控制系统试验研究[J].农机化研究,2010年第7期, P217-221.
    [127]王兴海,谢程宁,宁智.基于GT-Power的进气节流EGR系统对柴油机性能影响的分析[J].内燃机,2007年8月第4期, P17-20.
    [128]王泓利,邓康耀,朱义伦.文丘里管排气再循环系统在涡轮增压柴油机上的应用研究[J].内燃机学报,2002,20(2), P129-132.
    [129]杨帅,刘牮,常国锋,周毅.引射式EGR系统文丘里管内流动数值模拟分析[J].内燃机工程,2011,32(3),P64-67.
    [130]祝勇,马朝臣,张学文.增压柴油机引射式EGR系统文丘里管内流动的研究[J].内燃机学报,2002,20(6), P546-550.
    [131]郑伟,张振东,薛光明.柴油机多级并联文丘里管进气系统[J].车用发动机,2012年2月第1期, P19-22.
    [132]方祖华,李桂华,上官平.增压直喷柴油机EGR系统结构方案及关键技术[J].内燃机,2003年12月第6期, P15-17.
    [133]龚英丽.基于EGR和低温燃烧概念的柴油机燃烧过程研究[博士学位论文],天津大学,2008.
    [134]向飞,罗马吉.废气再循环(EGR)冷却器设计的现状与发展[J].中国水运,2009,9(7),P147-149.
    [135]古国栋.柴油发动机废气再循环系统(EGR)热交换器仿真模拟与结构设计,[硕士学位论文],华中科技大学,2007.
    [136]Takashi K, Jin K. Improvement of combustion and exhaust gas emission in a passenger car dieselengine by modification of combustion chamber design[J]. SAE Paper2006-01-3435,2006.
    [137] Cursente V., Pacaud P. and Gatellier B. Reduction of the compression ratio on a HSDI dieselengine: combustion design evolution for compliance the future emission standards[J]. SAE Paper2008-01-0839,2008.
    [138] MacMillan D., Rocca A.L., Shayler P.J., Murphy M. and Pegg I.G. The effect of reducingcompression ratio on the work output and heat release characteristics of a DI diesel under cold startconditions[J]. SAE Paper2008-01-1306,2008.
    [139] Sayin C. and Gumus M. Impact of compression ratio and injection parameters on the performanceand emissions of a DI diesel engine fueled with biodiesel-blended diesel fuel[J]. Applied ThermalEngineering2011,31(16):3182-3188.
    [140] Parlak A., Yasar H. and Sahin B. Performance and exhaust emission characteristics of a lowercompression ratio LHR diesel engine[J]. Energy Conversion and Management2003,44:163-175.
    [141] Bae C. and Kang J. Diesel spray development of VCO nozzles for high pressuredirect-injection[J]. SAE Paper2000-01-1254,2000.
    [142] Wakisaka Y. and Azetsu A. Effect of fuel injection rate shaping and injection pressure onintermittent spray combustion[J]. SAE Paper2000-01-2793,2000.
    [143]缪雪龙.柴油机超多喷孔预混合燃烧研究[博士学位论文],上海交通大学,2009.
    [144] Han J.S., Wang, T.C., and Lai, M.C. Common Rail Diesel Fuel Injection System Dynamics andSpray Characterization[C].12th Annual conference of ILASS, Indianapolis, IN, May1999.
    [145] Lai M.C., Wang T., Xie X., Han J.S., Henein N., Schwartz E. and Bryzik W. Microscopiccharacterization of diesel sprays at VCO nozzle exit[J]. SAE Paper No.982542,1998
    [146] Ryu J., Kim H. and Lee K. A study on the spray structure and evaporation characteristic ofcommon rail type high pressure injector in homogeneous charge compression ignition engine[J].Fuel2005,84,2341-2350.
    [147] Kim H.J, Park S.H. and Lee C.S.A study on the macroscopic spray behavior and atomizationcharacteristics of biodiesel and dimethyl ether sprays under increased ambient pressure[J]. FuelProcessing Technology2010,91,354-363.
    [148] Roisman I.V., Araneo L. and Tropea C. Effect of ambient pressure on penetration of a dieselspray[J]. International Journal of Multiphase Flow2007,33,904-920.
    [149]Delacourt E., Desmet B. and Besson B. Characterisation of very high pressure diesel sprays usingdigital imaging techniques[J]. Fuel2005,84,859-867
    [150]Wang X.G., Huang Z.H., Kuti O.A., Zhang W. and Nishida K. Experimental and analytical studyon biodiesel and diesel spray characteristics under ultra-high injection pressure[J]. InternationalJournal of Heat and Fluid Flow2010;31:659-66.
    [151]Ladommatos N., Abdelhalim S.M., Zhao H. andHu Z. Effects of EGR on heat release in dieselcombustion[J]. SAE Paper980184, Society of Automotive Engineers Inc., Warrendale, PA (1998).
    [152]Alriksson M., Gjirja S. and Denbratt I. The effect of charge air and fuel injection parameters oncombustion with high levels of EGR in a HDDI single cylinder diesel engine[J]. SAE Paper2007-01-0914;2007.
    [153]Jacobs T., Assanis D. and Filipi Z. The impact of exhaust gas recirculation on performance andemissions of a heavy-duty dieselengine[J]. SAE Paper2003-01-1068,2003.
    [154]Tsujimura T. and Goto S. Study on improvement of combustion and effect of fuel property inadvanced diesel engine[J]. SAE Paper2010-01-1117,2010.
    [155]Lee S.W., Park S. and Daisho Y.An experimental study of the effects of combustion systems andfuel properties on the performance of a diesel engine[J]. Proc Inst Mech Eng Part D: J Auto Eng218(2004)1317-1323.
    [156]王丁丁,王铁,冯星,邓永慧,汪恒,廖文蓉,史伟奇.甲醇柴油发动机循环变动与排放的关系研究[J].车用发动机,2012(5):77-80.
    [157]黄松本,梁纶慧.柴油机循环变动率的研究[J].内燃机学报,1989,7(2):171-176.
    [158]黄贤龙,罗福强,李占成,庄兵.增压柴油机燃烧循环变动分析[J].车用发动机,2006(1):19-21.
    [159]何中兵,胡志远,谭丕强,楼狄明.轿车柴油机燃用生物柴油的循环变动特性[J].车用发动机,2011(1):65-69.
    [160]李占成,罗福强,黄贤龙,庄兵.增压中冷柴油机循环变动特性及影响因素分析[J].小型内燃机与摩托车,2007,36(3):11-14.
    [161]李兴虎,蒋德明,沈惠贤.火花点火发动机压力循环变动的评价方法研究[J].内燃机学报,2000(2):171-174.
    [162]Heywood JB. Internal combustion engine fundamentals[M]. New York: McGraw-Hill,1988.
    [163]郑建军,黄佐华,王金华,王彬,宁德忠,张英佳.直喷式天然气发动机不同压缩比下燃烧循环变动规律[J].内燃机学报,2011,29(2):97-104.
    [164]汤东,沈飞,刘胜吉,尹必峰.生物柴油掺烧率对非道路用柴油机燃烧循环变动特性的影响[J].内燃机工程,2009,30(5):12-16,21.
    [165]LiuA.B. and Reitz R. D.Modeling the Effects of Drop Drag and Break-up onFuel Sprays[J].SAEPaper930072,1993.
    [166]Dukowicz J. K. Quasi-Steady Droplet Change in the Presence of Convection. Informal Report LosAlamos Scientific Laboratory, LA7997-MS,1979.
    [167]Zeldovich Y.B., Sadovnikov P.Y. and Frank-Kamenetskii D.A. Oxidation of Nitrogen inCombustion [J].Translation by M. Shelef, Academy of Sciences of USSR, Institute of ChemicalPhysics, Moscow-Leningrad,1947.
    [168]Fang Q., Huang Z., Zhu L., Zhang J. and Xiao J. Study on low nitrogen oxide and low smokeemissions in a heavy-duty engine fuelled with dimethyl ether[J]. Proc Inst Mech Eng Part D: J AutoEng225(2012)779-786.
    [169] Kitamura T., Ito T., Senda J. and Fujimoto H. Mechanism of smokeless diesel combustion withoxygenated fuels based on the dependency of the equivalence ratio and temperature on soot particleformation[J]. International Journal of Engine Research, Vol.3, No.4,223-247,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700