增压二甲醚发动机燃烧和排放控制试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国汽车工业的发展正面临着日益严峻的能源供应和环境保护双重压力。发展新的清洁能源,尤其是符合我国能源资源特点的汽车代用燃料已迫在眉睫。二甲醚由于其特殊物化特性,能够实现高效低污染燃烧,并改善我国的能源结构,近年来日益受到人们的重视。本文在国家科技部“十五”科技攻关专项“清洁汽车行动计划”的资助下,深入研究了增压二甲醚发动机的燃烧特性和排放特点,并重点研究了二甲醚发动机的排放控制策略。
     本文对D6114ZLQB柴油机进行改造,根据二甲醚的物性特点,专门设计了适合二甲醚的燃料供给和喷射系统。系统研究了燃油系统参数和运转参数对二甲醚发动机性能和排放的影响。试验发现二甲醚燃料温度对发动机动力性能影响显著,温度升高,功率下降明显,应用中必须控制二甲醚燃料的温度。
     比较了二甲醚发动机和柴油机的燃烧、性能和排放特性。和柴油相比,二甲醚的最高爆发压力、最大压力升高率、燃烧噪声均比柴油低。二甲醚扩散燃烧速度比柴油快,燃烧持续期比柴油短。和柴油机相比,二甲醚发动机低速扭矩显著提高, NOX排放显著下降,HC排放下降,CO排放略有升高。在各运转工况下,二甲醚发动机碳烟排放为零。二甲醚发动机排放全面达到欧Ⅲ排放标准,并有较大余量。
     研究了二甲醚中甲醇含量对发动机性能和排放的影响,并测试了非常规排放HCHO。研究表明:随着甲醇比例的增加,发动机油耗率、排温升高,NOX排放降低,HC和CO排放增加,HCHO排放基本呈依次上升的规律,但总体来说,HCHO排放处于很低水平,浓度排放低于15×10-6。试验发现,当甲醇含量高于1.5%时,油耗率增加明显,HC和CO排放显著增大。从性能、排放方面考虑车用二甲醚燃料成分,建议甲醇含量不高于1.5%。为今后车用二甲醚标准的制定奠定了基础。
     为了进一步降低二甲醚发动机的NOX排放,本文研发了适合增压二甲醚发动机的“低压回路”废气再循环系统,研究了EGR率对燃烧和排放性能的影响。研究表明:在所有运转工况下,随着EGR率增大,缸内燃烧压力峰值降低,压力峰值出现的位置延后,着火点延后,预混合燃烧峰值增大,扩散燃烧峰值降低,燃烧持续期增大。随着EGR率增大,发动机排温升高。EGR对油耗率影响比较复杂,低负荷下,适当的EGR量会降低发动机的油耗率。在中高负荷下,EGR的加入会使油耗率增大,经济性恶化。随着EGR率的增加,发动机的NOX排放大幅度下降,高负荷下降幅度更大。HC排放随EGR率增加而上升。EGR率在一定范围内时,EGR率对CO排放影响不大,但当EGR率超过一定范围时,EGR率的增大会引起CO排放急剧升高。EGR率对碳烟排放影响不大,二甲醚发动机碳烟排放保持为零。
     针对采用EGR后二甲醚发动机HC和CO排放升高的问题,本文采用氧化后处理技术,成功的解决了EGR引起HC和CO排放升高的问题。研究表明,经过氧化后处理器,发动机HC和CO排放显著下降,CO排放下降幅度达到90%。在此基础上,本文提出了二甲醚发动机实现超低排放的控制策略,即采用废气再循环技术降低NOX排放,氧化后处理技术降低HC和CO排放。
     研究了掺混LPG对二甲醚发动机燃烧和排放的影响。研究表明:随着LPG含量的增加,滞燃期延长,着火点延后,燃烧持续期缩短。油耗率随LPG含量增大有一个低谷,LPG含量过高或过低都会导致油耗率升高。试验表明,在二甲醚中掺混30%LPG时油耗率最低。LPG对NOX排放影响较复杂,低负荷时,LPG含量增大,NOX排放上升。中高负荷时,随LPG含量增大,NOX排放先增大后减小。LPG含量增大使HC排放略有升高,而导致CO排放迅速增加。
     提出了二甲醚发动机预混合燃烧的实现策略。利用二甲醚蒸汽压高、易于汽化的特点,采取增大柱塞直径以及添加高热值LPG燃料等措施缩短喷射持续期,通过大的废气再循环和推迟喷油技术以及添加低十六烷值的LPG延长滞燃期,使尽可能多的燃料在滞燃期内喷入气缸,着火前形成准均质混合气,扩大预混合燃烧的范围,实现发动机的高效和低排放。试验表明,采用预混合燃烧,二甲醚发动机的油耗率略有改善,NOX排放大幅度下降,800r/min时各负荷下NOX排放下降幅度接近90%。
The development of China’s automotive industry is facing two major constraints: energy security and environment protection. It is an imperative task for China to develop alternative fuels for automobiles with due consideration to the country’s structure of energy supply. DME, with high thermal efficiency and low emission due to its special properties, has in recent years attracted increasingly wide attention and has been considered as an alternative fuel which will contribute to the rationalization of China’s energy structure and the improvement of the environment. Funded by the“Clean Auto Action”, a project sponsored by the Ministry of Science and Technology of China, this paper investigates the characteristics of combustion and emissions of a turbocharged DME engine with special focus on the emission control strategy.
     Based on the D6114ZLQB diesel engine, a DME fuel supply and injection system was developed to fit in with the special properties of DME. The effect of fuel supply system and operating parameters on the DME engine was investigated. It was found that DME temperature has a great effect on the power of the DME engine. The output power of the DME engine would be reduced with the increase of DME temperature. The fuel temperature should be controlled in order to keep steady power of the DME engine in practical use.
     Combustion, performance and emissions characteristics between the DME engine and a diesel engine were compared. Compared with the diesel engine, the injection delay of DME is longer than that of diesel while ignition delay is shorter than that of diesel. However, the maximum cylinder pressure, maximum pressure rise rate and combustion noises of the DME engine are lower than those of diesel. The combustion velocity of DME is faster than that of diesel, resulting in shorter combustion duration of DME. The maximum torque and power of the DME engine at full load are greater than those of the diesel engine, particularly at low engine speeds. The fuel consumption at low engine speeds is lower than diesel. NOX emissions of the DME engine is decreased remarkably, which is more obvious at high engine speeds. HC emission is reduced while CO emission is increased slightly. The DME engine is smoke free throughout all the operating points of the engine. The emissions of the DME engine are far below the limits of EURO-III.
     The effect of methanol content on performance and emissions characteristic of the DME engine was investigated. HCHO emission of the engine was tested. The experimental results show that fuel consumption and exhaust gas temperature are improved with the increase of methanol content. HC and CO emissions are increased while NOX emission is reduced. HCHO emission is increased with methanol, but it is lower than 15×10-6. It can be found that HC and CO emissions would be increased greatly as the methanol content is higher than 1.5%. Taking into consideration of the performance and emissions of the DME engine, it is recommended that the methanol content should be lower than 1.5%. This will be a scientific basis for setting the DME standard for vehicle in future.
     In order to further reduce the NOX emission of the DME engine, a“low pressure routine”EGR system was developed specifically. The effect of EGR rate on combustion and emissions was investigated. It is found that: At all engine operating points, with the increase of EGR rate, the cylinder pressure is reduced; the position of peak pressure is delayed. Ignition timing is prolonged; the peak of pre-mixed combustion ROHR is increased while the peak of scatter combustion ROHR is reduced. The combustion duration is enlarged and the exhaust gas temperature is increased with EGR rate. The effect of EGR rate on fuel consumption is more complex; the fuel consumption is decreased at low load with EGR while it is increased at medium and high loads with EGR. With the increase of EGR rate, NOX emission of DME engine is significantly reduced, especially at high load, while HC emission is increased. When the EGR rate is lower than a certain value, EGR has little effect on CO emission. When EGR rate is lager than a certain value, it would lead to a sharp increase of CO emission. EGR has little effect on smoke, the smoke of DME engine is still zero with EGR.
     The oxidation catalyst technology was used to solve the problem of HC and CO emissions caused by EGR. It is found that HC and CO emissions are reduced greatly by oxidation catalyst,CO emission is reduced by 90%. The HC and CO emissions of DME engine achieve a very low level. The strategy for ultra-low emission is proposed: EGR technology is taken to reduce NOX emission. Oxidation catalyst technology is taken to reduce HC and CO emissions.
     The effect of LPG content on DME engine was investigated. With the increase of LPG content, ignition delay is prolonged; the combustion duration of blend fuel is reduced especially at low load. LPG had two effects on fuel consumption: fuel consumption would be increased with LPG content for increase of ignition delay. On the other hand, fuel consumption would be decreased with LPG content for shorting combustion duration. The fuel consumption would be reduced firstly then increased for the two effects. It was found that the DME engine achieved better efficiency when the content of LPG in blend fuel was 30%. With the increase of LPG rate, NOX emission is increased at low load, while NOX emission is increased firstly and decreased secondly at medium and high load. HC emission is increased slightly while CO emission is increased greatly with LPG content.
     The strategy of pre-mixed combustion for DME was proposed. Taking advantage of the characteristic of high vapor pressure and good spraying of DME, Methods such as enlarging plunger diameter and blending a certain LPG in DME were taken to shorten combustion duration. Methods such as cooled-EGR technology, lagging fuel supply timing and blending LPG were taken to increase ignition delay. All those measures were taken to achieve premixed combustion. More DME was injected into cylinder in ignition delay, forming mixed gas before ignition, enlarging the scope of pre-mixed combustion. The concept of DME engine with high performance and ultra-low emission was accomplished. It is found that the DME engine kept high efficiency and NOX emission is significantly decreased. NOX emission is reduced by 90% at the speed of 800r/min.
引文
[1] 吴宗鑫,陈文颖. 以煤为主多元化的清洁能源战略. 清华大学出版社,2001(5).
    [2] 倪维斗,靳晖,李政,郑洪. 二甲醚经济与中国的能源环境. 节能与环保,2002(6).
    [3] 黄震,乔信起,张亮. 中国能源安全与环境保护之路-二甲醚. 2003 国际 DME 论坛.
    [4] BP世界能源统计 2006.2006
    [5] Feng Fei.; Growth of China’s Auto Industry Vs Oil Supply,Oil Security. Industry Department of DRC,China. 2005.
    [6] 魏善镇. 内燃机低污染化. 柴油机设计与制造,1999(1)
    [7] Rodt S., Future Diesel Exhaust gas legislation for passenger cars, light-duty commercial vehicles, and heavy duty vehicles- Updating of limit values for diesel vehicles-, Federal Environmental Agency, Berlin, 2003.7.18
    [8] 车用压燃式、气体点燃式发动机与汽车排气污染排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)(GB17691—2005),中国环境科学出版社,2005
    [9] 郑尊清,许斯都. 柴油机燃料的发展. 小型内燃机. 1998,27(6)
    [10] 马凤娟,汽车代用燃料及其应用前景,航空技术与民品,1999,7,P29~31
    [11] 刘元鹏. 代用燃料汽车的研究与发展,交通部公路科学研究所,汽车研究与开发,2000,4,P15~19
    [12] 张进华. 中国代用燃料汽车发展现状和展望. 全国清洁汽车行动协调领导小组办公室.2006
    [13] M. Gambino, R.Cericola, P. Corbo et al, Carbonyl Compounds and PAH Emissions from CNG Heavy-Duty Engine, ASME Fall Tech. Conf., Waterloo, Iowa, Oct. 4-7,1992
    [14] Kichiro Kato, Kohei Igarashi, Michihiko Masuda and et al, Development of Engine for Natural Gas Vehicle, SAE 1999-01-0574
    [15] Gebert K., Beck N.J., Barkhimr R.L.and et al, Development of Pilot Fuel Injection System for CNG Engine, SAE Paper 961100
    [16] D-Y. Wu, R. D. Matthews, E. T. Popova and et al, The Texas Project, Part 4 - Final Results: Emissions and Fuel Economy of CNG and LPG Conversions of Light-Duty Vehicles, SAE 982446
    [17] W. Shiells and P. Garcia, Experience with the Operation of Heavy Vehicle Engines Dedicated to the Use of CHN and LPG Fuels, Proc. First Intl. Conference and Exhibition on Natural Gas Vehicles, Sydney, Australia, 1988
    [18] Insu Kim, Daeyup Lee and Shinichi Goto, Combustion Process Modeling using a Mechanism in an LPG Lean Burn SI Engine, SAE 1999-01-3481
    [19] Barry R. Lutz, Rudolf H. Stanglmaier and Ronald D. Matthews and et al, The Effects of Fuel Composition, System Design, and Operating Conditions on In-System Vaporization and Hot Start of a Liquid-Phase LPG Injection System, SAE 981388
    [20] M. P. Poonia, A. Ramesh and R. R. Gaur, Effect of Intake Air Temperature and Pilot Fuel Quantity on the Combustion Characteristics of a LPG Diesel Dual Fuel Engine,SAE 982455
    [21] Daeyup Lee, Joseph Shakal, Shinichi Goto and et al, Observation of Flame Propagation in an LPG Lean Burn SI Engine, SAE 1999-01-0570
    [22] Daeyup Lee, Shinichi Goto, Hidekazu Honma and et al, Chemical Kinetic Study of a Cetane Number Enhancing Additive for an LPG DI Diesel Engine, SAE 2000-01-0193
    [23] Shinichi Goto, Daeyup Lee, Yoshitaka Wakao and et al, Development of an LPG DI Diesel Engine using Cetane Number Enhancing Additives, SAE 1999-01-3602
    [24] 边耀璋, LPG/柴油双燃料发动机应用特性的研究, 天然气汽车,1998 No.2,P78~82
    [25] A. V. Sita Rama Raju, A. Ramesh and B. Nagalingam, Effect of Intensified Swirl and Squish on the Performance of a Lean Burn Engine Operated on LPG, SAE 2000-01-1951
    [26] Mitsunori Ishii, Shizawa, Eiji Inada and et al, Experimental Studies on a Natural Gas Vehicle, SAE 942005,1994
    [27] Andrea Unich, Reda M., Bata and donald W. Lyons, Natural Gas: A Promising Fuel for I.C.Engines, SAE 930929]
    [28] Ron Matthews et al, CNG Compositions in Texas and the Effects of Compositions of Emissions, Fuel Economy and Driveability of NGVs, SAE Paper 962097
    [29] K.H. Gluck, E. Lox, A. Schafer Sindlinger, Catalyst Development for Stoichiometric and Lean Burn Natural Gas Engines, SAE 942419
    [30] Ezio Vermigllo, Tim Jenkins, Mark Kieliszewski and et al, Ford’s SULEV Dedicated Natural Gas Truck, SAE 971662
    [31] 仇恒东,韩宝明,于雷等, LPG/汽油双燃料汽车实时尾气排放比较研究,安全与环境学报,2006 年 2 月,Vol.6(1)
    [32] 谢晓敏,马志义,刘生全. 交通运输工程学报. 2003 年 6 月,Vol.3(2).
    [33] 杜爱明,陈礼潘,周毅等. 汽油/LPG 两用燃料汽车排放控制,汽车工程,2003年 5 月,Vol.25(5), P447~450
    [34] 2001.7Deborah D, Pittman, Jay Talladay and Seth Valentine, Cedarville College Ethanol Vehicle Challenge Testing Results, SAE 1999-01-0610
    [35] F. G. Kremer and A. Fachetti. Alcohol as Automotive Fuel-Brazilian Experience, SAE 2000-01-1965
    [36] Forrest Jehlik, Mark Jones and Paul Shepherd, Development of a Low-Emission, Dedicated Ethanol-Fuel Vehicle with Cold-Start Distillation System, SAE 1999-01-0611
    [37] 降连葆,甲醇燃料汽车的技术发展及在我国富煤省区的示范应用,2003 年 7 期,P36~39
    [38] 吴小虎,我国发展甲醇汽车前景分析,汽车与社会,2003 年 2 月,P17~20
    [39] 金萍,俞小莉,严兆大,甲醇(M100)在汽油机上的应用研究,浙江大学学报,1997 年 9 月,第 5 期,P655~661
    [40] 张红光,潘奎润等. 车用 492M 甲醇发动机的试验研究,北京工业大学学报,2005年 9 月,Vol.31(5)
    [41] 谭满志, 郭英男,黄为钧等, 乙醇柴油着火促进剂对发动机排放的影响,车用发动机,2006 年 4 月,Vol.162(2),P6~8
    [42] 吕兴才, 张武高, 杨剑光, 黄震. 十六烷值改进剂对乙醇-柴油发动机放热率与排放的影响[J]. 燃烧科学与技术 , 2005,(01)
    [43] 吕兴才, 李德钢, 杨剑光, 张武高, 黄震. 柴油机燃用乙醇柴油燃料的燃烧与排放特性[J]. 汽车工程 , 2004,(02)
    [44] 许锋, 杜宝国, 吴卫兵, 孙秀峰, 隆武强. 在柴油机上燃用乙醇柴油的试验研究[J]. 车用发动机 , 2003,(02)
    [45] 何邦全; 王建昕; 乙醇/柴油/甲酯混合燃料的燃烧与排放特性,内燃机学报,2005年 7 月,P343~347
    [46] Wagner et al, Effects of soybean Oil Esters on the Performance, Lubrication, and Wear of Diesel Engines, SAE Paper 841385
    [47] X. Montagne, Introduction of Rapeseed Methyl Ester in Diesel-Fuel—The French National Program, SAE Paper 962065
    [48] Kevin Schmidt, The Effect of Biodiesel Fuel Composition on Diesel Combustion and Emissions, SAE Paper 961086
    [49] Kauman K.R et al, Sunflower Methyl Esters for Direct Injected Diesel Engine, Transactions of the ASAE, 2706,1984
    [50] Alfuso et al, The Effects of Methyl-Ester of Rapeseed Oil on Combustion and Emissions of DI Engines, SAE Paper 932801
    [51] 朱庆云,天然气合成柴油发展现状及发展,国际石油经济,2005 年 9 月,Vol.13(9),P53~57
    [52] 武涛; 黄震; 张武高; 新型代用燃料天然气合成油的研究进展,车用发动机,2006年 6 月,Vol.163(3),P6~9
    [53] 杨帅; 张振东; 应启戛; 周毅; 李秀元; GTL柴油作为柴油机清洁代用燃料可行性分析, 汽车工程,2007 年 1 月,Vol,29(1)
    [54] 汪贵,朱天阁,诸林. 天然气合成油技术发展现状与展望. 化工时刊,2006 年 5 月,Vol20(5),P52~55
    [55] Vahid Motevalli and Kartik Venkat Bulusu, Overview of Hybrid Electric Vehicle Safety and the Potential for Hydrogen Ignition by Static Electricity, SAE 2000-01-1538
    [56] Venki Raman, The Hydrogen Fuel Option for Fuel Cell Vehicle Fleets, SAE 1999-01-0529
    [57] Yasuo Nakajima, Kimitaka Yamane, Toshio Shudo and et al, Research and Development of a Hydrogen-Fueled Engine for Hybrid Electric Vehicles SAE 2000-01-0993
    [58] Theo Fleisch,Chris McCarthy,Arun Basu,Carl Udovich,Pat Charbonneau,Warren Slodowske,Svend-Erik Mikkelsen,Jim McCandless. Demonstration of ULEV Emission on a Navistar Diesel Engine Fueled with Dimethyl Ether. SAE Paper 950061.
    [59] S C Sorenson,Svend-Erik Mikkelsen. Performance and Emissions of a 0.273 Liter Direct Injection Diesel Engine Fueled with Neat Dimethyl Ether. SAE Paper 950064.
    [60] Paul Kapus,Wolfgang Cartellieri. ULEV Potential of a DI/TCI Diesel Passenger Car Engine Operated on Dimethyl Ether. SAE Paper 952754.
    [61] Rasmus Christensen,S C Sorenson,Michael G Jensen,Ken Friis Hansen. EngineOperation on Dimethyl Ether in a Naturally Aspirated. DI Diesel Engine,SAE Paper 971665.
    [62] S Kajitani,Z L Chen,M Konno,K T Rhee. Engine Performance and Exhaust Characteristics of Direct-injection on Diesel Engine Operated with DME. SAE Paper 972973.
    [63] 张光德,黄震.二甲醚燃料喷射过程的试验研究.内燃机学报,2003,Vol.20,NO.5
    [64] 黄震,乔信起,童澄教. 低污染二甲醚燃料发动机燃烧方式研究. 上海汽车980102.
    [65] Zhou Longbao, Wang Hewu, Jiang Deming, Huang Zuohua. Study of performance and combustion characteristics of a DME-fueled light-duty direct-injection diesel engine. SAE Paper 1999-01-3669
    [66] Shuichi Kajitani , Mitsuharu Oguma , Tomoya Mori. DME Fuel Blends for Low-Emission, Direct-Injection Diesel Engines. SAE Paper 2000-01-2004.
    [67] Xu Sidu,Yao Mingfa,Xu Junfeng. An Experimental Investigation on the Spray Characteristics of Dimethyl Ether (DME). SAE Paper 2001-01-0142,SP-1608.
    [68] 亢茂青,任兆鑫. 二甲醚(DME)的制备及应用. 合成化学,1994,Vol.2,NO.4
    [69] 韩凌. 二甲醚生产技术与市场状况. 煤化工,2000(8)
    [70] 常雁红,韩怡卓,王心葵. 二甲醚的生产、应用及下游产品的开发. 天然气化工,2000,Vol.25,NO.3
    [71] 梁轶. 二甲醚的生产技术及其应用. 贵州化工,2001,Vol.26,NO.1
    [72] 逄进,马亮. 二甲醚的制造及其燃烧应用. 煤气与热力,2002,Vol.22,NO.3
    [73] 邢春发,冯俊. 天然气转化制备合成气工艺进展. 江西化工,2002(1)
    [74] 张海涛,房鼎业. 合成气直接制二甲醚研究进展. 化工进展
    [75] 张光德. 含氧燃料发动机的研究. [博士学位论文], 上海交通大学,2002
    [76] 王贺武. 直喷柴油机燃用二甲醚时性能和燃烧特性的试验与理论研究[博士学位论文],西安交通大学,2001
    [77] Karpuk M E,Cowley S W. On Board Dimethyl Ether Generation to Assist Methanol Engine Cold Starting. SAE Paper 881678.
    [78] Green C J,Cockshutt N A,King L. Dimethyl Ether as a Methanol Ignition Improver: Substitution Requirements and Exhaust Emissions Impact. SAE Paper 902155.
    [79] Karpuk M E,Wright J D,Dippo J L,Jantzen D E. Dimethyl Ether as an Ignition Enhancer for Methanol-Fueled Diesel Engines. SAE Paper 912420.
    [80] T Myrayama,T Chikahiro,J Guo,M Mayano. A Study of a Compression Ignition Methanol Engine with Converted Dimethyl Ether as an Ignition Improver. SAE Paper 922212.
    [81] J Guo,T Chikahisa,T Murayama,M Miyano. Improvement of Performance and Emissions of a Compression Ignition Methanol Engine with Dimethyl Ether. SAE Paper 941908.
    [82] Paul Kapus , Herwig Ofner. Development of Fuel Injection Equipment and Combustion System for DI Diesels Operated on Dimethly Ether. SAE Paper 950062.
    [83] H.Ofner and D.W.Gill. Dimethyl Ether as Fuel for CI Engines-A New Technology and its Enviormental Potential, SAE Paper 981158
    [84] Chen,L., et al., Engine Performance and Exhaust Gas Characteristics of a Compression Ignition Engine Operated with DME Blended Gas Oil Fuel, SAE Paper982538,1998
    [85] M Alam,O Fujita,K Ito,S Kajitani,M Oguma,H Machida. Performance of NOX Catalyst in a DI Diesel Engine Operated with Neat Dimethyl Ether. SAE Paper 1999-01-3599.
    [86] Mitsuharu Oguma, Shinichi Goto. Research and Development of a Medium Duty DME Truck, NSFC/JSPS Workshopin AIST, Tsukuba, Japan March 7, 2006
    [87] 张光德, 黄震, 乔信起, 二甲醚发动机的燃烧与排放研究,汽车工程,第 25 卷,第 2期, 2003 年 2 月.
    [88] 张光德,黄震. 绿色能源二甲醚发动机的研究开发. 柴油机. 2003,(2)
    [89] 宋钧,黄震,乔信起,王万利等. 二甲醚发动机的新型可控预混合燃烧. 科学通报. 2003,48(6)
    [90] 王贺武,周龙保. 含氧燃料剂对柴油机性能和排放的影响. 内燃机学报,2001,Vol.19,NO.1
    [91] 王贺武,周龙保. 直喷式柴油机燃用二甲醚排放特性的研究. 内燃机学报,2000,Vol.18,No.1
    [92] 王贺武,周龙保,陈鸿雁,蒋德明. 柴油机燃用二甲醚的燃烧特性. 燃烧科学与技术,2000 年第 3 期.
    [93] H W Wang, Z H huang, Investigation on emission characteristics of a compression ignition engine with oxygenated fuels and exhaust gas recirculation. Proc. Instn Mech. Engrs, Part D, Journal of Automobile Engineering, 2000, Vol 214,P503~508
    [94] 尧命发. 柴油机燃用二甲基醚应用基础研究[博士学位论文]. 天津大学,1999
    [95] 尧命发,许斯都。直喷式柴油机燃用二甲基醚(DME)试验研究。燃烧科学与技术,2002,Vol.8,NO.3
    [96] 尧命发,许斯都,胡春明. 二甲基醚燃烧过程及其优化的数学模拟研究(II). 燃烧科学与技术,2001(3)
    [97] 尧命发,许斯都,金萍. 二甲基醚(DME)喷雾混合特性的研究. 内燃机学报,2001 年第 5 期.
    [98] Robert W. Carling, Curpreet Stingh. Overview of Engine Combustion Research at Sandia National Laboratories. SAE paper 1999-01-2246.
    [99] Lin, Cherng-Yuan, Wang, Kuo-Hua. Diesel engine performance and emission characteristics using three-phase emulsions as fuel. Fuel, Volume: 83, Issue: 4-5, March, 2004
    [100] Kim, D. S., Kim, M. Y., Lee, C. S. Effect of premixed gasoline fuel on the combustion characteristics of compression ignition engine. Energy&Fuels, 2004, 18 (4)
    [101] Nakagome,K. Combustion and Emission Characteristics of Premixed Lean Diesel Combustion Engine. SAE Paper 970898.
    [102] Hrada A. The Effects of Mixture Formation on Premixed Lean Diesel Combustion. SAE Paper 980553.
    [103] Keiichi Nakagome, Naoki Shimazaki, Keiichi Niimura, Shinji Kobayashi. Combustion and emission characteristics of premixed lean diesel combustion engine. SAE Paper 970898
    [104] Hisashi Akagawa. Approaches to Solve Problems of the Premixed Lean Diesel Combustion. SAE Paper 1999-01-0183.
    [105] Y Takeda , N Keiichi. Emission Characteristics of Premixed Lean DieselCombustion with Extremely Early Stage Fuel Injection. SAE Paper 961163.
    [106] Iwazaki Kouji, Amagai Kenji, Arai Masataka. Improvement of fuel economy of an indirect injection (IDI) diesel engine with two-stage injection. Energy 30 (2005)
    [107] 方俊华. 柴油机燃用甲缩醛的可控预混合燃烧研究. [博士学位论文],上海交通大学,2004
    [108] 李孝禄. 二冲程发动机预混合压缩着火燃烧的研究. [博士学位论文],上海交通大学,2005
    [109] 宋 均. 二甲醚发动机预混合燃烧数值模拟与实验研究. [博士学位论文],上海交通大学,2003
    [110] 金萍,尧命发,许斯都. DME 作为柴油机引燃剂的试验研究. 河北工业大学学报,2000 年第 1 期.
    [111] 李德刚. 二甲醚 HCCI 燃烧研究, [博士学位论文], 上海交通大学,2005
    [112] 李德钢,吕兴才,张武高,黄震。乙醇混合燃料压燃式发动机的性能研究 。《农业机械学报》,2005.2,p135-137
    [113] 李德钢,黄震,乔信起,彭小圣,罗马吉 。进气中加入 CO2 和压缩比对二甲醚燃料均质压燃燃烧影响的研究。《上海交通大学学报》,2005.2,p0169-0172
    [114] Sorenson, Dimethyl Ether in Diesel Engines-Progress and Perspectives . Journal of Engineering for Gas Turbines and Power. 2001, Vol.123, 652~658S.
    [115] 吕兴才,黄震,李孝禄,代用燃料二甲醚的研究现状与前景,车用发动机,2003,146(4),39~42
    [116] 吴宁. 二甲醚(DME)燃料对发动机可靠性能的影响研究. [硕士学位论文],上海交通大学,2005
    [117] D6114ZLQB 柴油机使用说明书 上海柴油机厂
    [118] 肖宗成等,“进气温度对车用柴油机排放性能的影响”,吉林大学学报( 工学版),2005,Vol.35,NO.3,P263~266
    [119] 梁燕波,童景山. 液体燃料替代物—二甲基醚(DME)热力学性质的研究. 化学工程,2003,31(1):60~62.
    [120] 张煜盛,徐春,石宇等. 二甲基醚喷雾混合过程的计算研究, 华中科技大学学报(自然科学版), Vol. 32 ,No. 5, 2004 年 5 月,81~83.
    [121] 何学良,李疏松. 内燃机燃烧学. 机械工业出版社,1990
    [122] 石俊伟,张惠明等,“车用直喷式柴油机喷嘴参数对排放影响的研究” ,小型内燃机与摩托车 2004.3
    [123] 梁荣光等,“合理设计柴油机喷油嘴结构的研究”,内燃机工程,1996.3
    [124] 梁荣光. 柴油机喷雾贯穿的研究. 内燃机工程, 1991,Vol.113,NO.3
    [125] 周龙保主编. 内燃机学. 机械工业出版社,1999(6)
    [126] Susumu Kohtetsu, EGR Technologies for a Turbocharged and intercooled Heavy-Duty Diesel Engine , SAE paper 970340
    [127] Baert, R.S.G, Beckman, D.E., and Verbeek, R.V., “New EGR technology retains HD diesel economy with 21st century emissions”, SAE Paper 960848
    [128] M. Dürnholz, G. Eifler, and H. Endres Exhaust-Gas Recirculation - A Measure to Reduce Exhaust Emissions of DI Diesel Engines SAE Paper 920725
    [129] C. Arcoumanis and A. Nagwaney Effect of EGR on Spray Development, Combustion and Emissions in a 1.9L Direct-Injection Diesel Engine SAE Paper 952356
    [130] Zelenka, P., Aufinger, H., Reczek, W., and Cartellieri, W. “Cooled EGR - A keytechnology for future efficient HD diesels”, SAE Paper 980190
    [131] Rui Chen, Nesa Milovanovic. A computational study into the effect of exhaust gas recycling on homogeneous charge compression ignition combustion in internal combustion engines fuelled with methane. International Journal of Thermal Sciences 41(2002) 805-813.
    [132] Naoki Shimazaki, Hirokazu Hatanaka, and Katsuhiko Yokota “A Study of Diesel Combustion Process Under the Condition of EGR and High-Pressure Fuel Injection with Gas Sampling Method “ SAE Paper 960030
    [133] N. Ladomatos, S.M. Adelhalim, H. Zhao, and Z. Hu, “The dilution, chemical, and thermal effects of exhaust gas recirculation on diesel engine emissions. SAE Paper 961165
    [134] Baert, R.S.G., Beckman, D., and Veen, A., “EGR technology for lowest emissions”, Paper C517/034, Int. Seminar on Application of Powertrain and Fuel Technologies to meet Emissions Standards for the 21st century, IMechE,June, London (1996).
    [135] David L. Mitchell, John A. Pinson, and Thomas A. Litzinge “The Effects of Simulated EGR via IntakeAir Dilution on Combustion in anOptically Accessible DI Diesel Engine” SAE Paper 932798
    [136] 刘世元,杜润生. 汽油车进行废气再循环时的参数优化试验研究,内燃机工程,1998,Vol.19,NO.4
    [137] 武得钰,史久明,周龙保. 用废气再循环控制汽油机 NOX 排放的实验研究.内燃机工程,1990,(Vol.11),NO.1
    [138] 王立新,周龙保,张玉银. 废气再循环降低柴油机 NOX 排放的实验研究及其微机控制系统设计,内燃机工程,1993,Vol.14,NO.4
    [139] 林学东,刘巽俊,王霆. 排气再循环对增压柴油机排放特性的影响,汽车技术,1997(1)
    [140] 曹东海. 车用增压柴油机 EGR 系统实验研究. [硕士学位论文],吉林大学,2001
    [141] 王天灵. 中小功率汽油机应用 EGR 的排放控制技术研究. [博士学位论文],吉林大学,2000
    [142] 王忠. 排气再循环对柴油机工作过程参数、性能和排放的影响. 内燃机学报, 2002(5) p387-p390;
    [143] 高国珍,卢致俊. 4JBL 柴油机 NOX 模型预测与实测数据对比分析,小型内燃机,1999,Vol.28, NO.1
    [144] 吴君华,黄震,王天灵,陶毅. 用于增压柴油机 EGR 系统的文丘里管的试验研究. 车用发动机,2004, NO.3,P41~44.
    [145] 祝勇. 采用 Cooled-EGR 控制增压柴油机排放的研究.[博士学位论文],北京理工大学,2002
    [146] 王泓亮,邓康耀,朱义伦,易海生. 文曲利管废气再循环系统在涡轮增压柴油机上的应用研究. 内燃机学报,2002,Vol.20,NO.2 P129~132
    [147] 吴君华.车用增压柴油机 VNT 和 EGR 系统匹配试验研究[硕士学位论文],吉林大学],2003
    [148] 王天灵, 李骏, 吴君华, 王占峰. 废气再循环降低增压柴油机排放的试验研究. 汽车技术,2005,NO.12, P12~15
    [149] 王天灵, 李骏, 吴君华, 王占峰. EGR 和 VNT 的匹配对增压柴油机排放的影响. 吉林大学学报(工学版),2006,Vol.36,NO.4 ,P493~496
    [150] 魏名山,马朝臣,柴油机排气微粒控制技术的发展,汽车技术,2001.10, P4~8
    [151] 邱卓丹,张洪涛. 柴油机微粒排放后处理技术的研究现状及发展趋势,小型内燃机和摩托车,2005 年 2 月,Vol.34(1),P24~27
    [152] 裴梅香,林赫,黄震.柴油机排气后处理技术及发展方向. 小型内燃机和摩托车,2003.2
    [153] 黄震等, 二甲醚可控预混合燃烧系统 国家发明专利号 ZL00119436.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700