柴油机微粒过滤系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足日益苛刻的排放法规,仅凭机内净化措施来减少柴油机的微粒排放是极其困难的。另外,尽管机内净化技术使微粒物的质量排放总量得以削减,但微粒的个数却没有减少,而且生成了粒径更小的排放物。越来越多的研究表明,柴油车排放的小微粒对人体健康危害更大,而未来的法规很可能会对柴油机微粒物排放的数量进行限制。因此越来越多的国家关注机动车的小微粒排放,而微粒过滤器是未来解决小微粒排放问题的最有效措施之一。基于此点,本文围绕柴油机微粒过滤系统进行了如下研究:
     1.柴油机微粒过滤器对柴油机微粒组分特性影响的研究。运用自行设计、制作的柴油机微粒取样器,对未安装过滤器、安装袋滤器、安装陶瓷过滤器三种情况下的柴油机排气微粒进行采集,分析柴油机工况对微粒组分特性的影响,以及微粒中可溶有机组分(SOF-Soluable Organic Fraction)中烷烃和芳香烃等成分的排放特性等。研究结果表明:在相同转速下微粒排放量随负荷的增加而增大。随着负荷的增加,微粒中SOF的百分含量在逐渐减少,不可溶有机成分(IOF-Insoluble Organic Fraction)的百分含量在逐渐增加。SOF的含量从低负荷时的15%到高负荷时的45%左右,其对微粒特性的影响不能忽略。微粒中可溶性有机物SOF中正烷烃的总含量占到了70%~80%;支链烷烃的总含量在2%~22%之间;多环芳香烃的总含量在1%~13%之间。柴油机在不同运行工况下,其排出SOF碳原子数分布稍有不同。另外,袋滤器过滤后微粒中SOF的百分含量比陶瓷过滤器过滤后的略低:袋滤器过滤后微粒SOF中各组分百分含量均在20%以下,各组分过滤比较均匀;陶瓷过滤器过滤后个别工况个别组分的相对含量达到近40%;袋滤器对多环芳香烃的过滤效率要高于陶瓷过滤器。综合来看,袋滤器是一种过滤效果较好的后处理装置。
     2.柴油机排气微粒燃烧特性的分析研究。对采集的柴油机排气微粒,利用热重分析技术,研究了微粒在氧气浓度分别为10%、20%、30%,升温速率分别为10℃/min、20℃/min、30℃/min、40℃/min,微粒质量分别为>5mg、3.5mg~3mg、<1.5mg的燃烧性能。结果表明:微粒的燃烧明显分为挥发份析出(低温段)和固定碳(高温段)的燃烧两个阶段。低温段的失重占总失重的20%左右;高温段的失重占总失重的70%左右,说明微粒燃烧过程主要是固定碳的燃烧。氧气浓度较低的时候,燃烧需要较高的温度;反应温度较低的时候,需要较高的氧气含量。综合起来看,在氧浓度较低时,随着氧气浓度增大,燃烧性能呈现良好的趋势。但同时也表现出,氧气浓度为20%、30%时的情况比较接近,与氧气浓度为10%时的差距比较明显。说明提高空气中氧气浓度对微粒燃烧性能影响不大。另外研究还发现,当氧气浓度在20%、30%时的反应平均活化能为60kJ/mol左右。目前采用燃油添加剂可以使微粒的活化能降低到这个数值,也就是说如果用空气或含氧量更高的气体来做燃烧反应气氛的话,可以满足过滤器被动再生时对微粒活化能的要求。
     3.根据理想流体质点的声传播控制方程,建立了考虑流速、热传导和粘性时,微粒过滤器内的声传播控制方程。以此为基础,利用达西定律求解微粒过滤器相邻单元孔壁的压降,进而建立了微粒过滤器的传播常数和传递矩阵的计算模型。以此模型计算了发动机在特定工况下的插入损失,并和试验测量的数值进行了对比分析,验证了理论分析的正确性。
     4.建立了微粒过滤器气体流动的三维数值模型。以κ-ε紊流模型理论为基础,把过滤单元作为多孔介质,模拟了袋滤器内的排气流动特性,并用FLUENT软件进行求解。最后将数值计算值与试验值进行对比,验证了所建模型的正确性。计算结果表明:在袋滤器内部,压力是层层递减的,而在过滤单元处突然降低,说明过滤单元是产生压力损失的主要原因。另外,入口壁面附近也是产生压力损失比较集中的一个位置。袋滤器结构参数会影响整个袋滤器的压力损失。
     5.设计了适用于固定式柴油机以及公交车等对场地要求不严的设备,利用袋滤器技术来控制微粒排放的固定式卸灰系统,解决了再生难的问题。
Nowadays,it is very difficult to resort to in-cylinder control strategies only to meet the increasingly rigorous laws and regulations for diesel emissions control.In addition,even though the in-cylinder control technology could reduce the total mass of particulate emissions,the number of particles remains almost the same and smaller diesel particles are generated.More and more studies have shown that those smaller diesel particulates are more harmful to human health.And it is quite probable that future laws and regulations will set a limit to the quantity of diesel particulates emissions.Therefore,more and more countries have focused their attention on the control of the number of small particulates emissions.The particulate filter is one of the most effective methods to solve such problems.In this paper,a series of research has been carried out concerning the diesel particulate filter system.
     1.Research on influences of diesel particulate components of diesel particulate filters.A particulate sampling device has been designed to sample the diesel engine particulates in three cases:base line engine without any filters,engine with bag filter,engine with ceramic filter.The influence of diesel engine operating conditions on the characteristics of particulate components is analyzed,as well as the emission characteristics of alkane and aromatic hydrocarbons in SOF(Soluable Organic Fraction).The research results show that at the same engine speed particulate emissions increase with the increasing engine load.The results also show that with the increase of engine load,the percentage of SOF in particulate decreases gradually,while the percentage of IOF(IOF- Insoluble Organic Fraction) increases gradually.The percentage of SOF increases from 15%to 45%,its influence on particulate characteristic can not be ignored.The total content of n-paraffin hydrocarbon in SOF of particulate ranges from 70%to 80%,and that of branched paraffin is between 2%and 22%;multiring hydrocarbon takes up from 1%to 13%.Under different operating conditions,the number of carbon atom in SOF is distributed slightly different.In addition,the percentage of SOF in particulate is a little smaller with the bag filter than with the ceramic filter.With the bag filter,the percentage of each component in SOF after filtration is all below 20%,relatively evenly filtered.The relatively content of individual component in certain operating mode is nearly 40%after filtered by the ceramic filter.The filtration efficiency of bag filter to multiring hydrocarbon is higher than that of the ceramic filter.In summary,bag filter is a better post-treatment device.
     2.Research on combustion characteristics of diesel particulates. By the use of the thermal gravimetric analysis technique,this paper studies the combustion performances of those collected diesel exhaust particulates under the following conditions:the oxygen content is 10%,20%,30%;heating rate is 10℃/min,20℃/min, 30℃/min,40℃/min;and the particulate mass is more than 5mg, from 3.5mg to 3mg,less than 1.5mg.The experimental results show that the particulate combustion is clearly divided into two stages, volatile matter burning(low-temperature stage) and fixed carbon burning(high-temperature stage ).The weight loss at low-temperature stage takes up about 20%of the total weight loss, and the high-temperature stage about 70%.It shows that the combustion of carbon is the main part of the combustion process. When the oxygen content was lower,the combustion of the particulates needs higher temperature.When reaction temperature is lower,it requires higher oxygen content.In summary,the combustion performance tends upwards with the increase of the oxygen content at low oxygen content.Meanwhile,the results also show that the combustion performance is almost the same when the oxygen content is 20%and 30%.While compared with the performance at 10%oxygen content,the difference is obvious.This indicates that increasing the oxygen content has little effect on the combustion performance of particulates when oxygen content changes from 20%to 30%.The research also finds that average reaction activation energy is about 60kJ/mol when the oxygen content is 20%and 30%,which is equivalent to the value caused by the addition of fuel additives used in ceramic filter.At present,the use of fuel additives can reduce the activation energy of particles to this figure,that is to say,when setting a combustion reaction atmosphere with air or higher-oxygen-content gas,the requirements of passive filter regeneration to the activation energy of particles can be met.
     3.Based on the sound propagation control equation of ideal fluid particle,the equation used in particulate filter is deduced taking flow velocity,thermal conductivity and viscosity into account. On this basis,by using Darcy's law to solve the pressure drop problem of hole wall at neighboring filter unit,the filter propagation constant and the computation model of transfer matrix are set up. Based on this,the insertion loss of engine under specific operating mode is calculated and compared with the measured value,verifying the correctness of the theoretical analysis.
     4.The three-dimensional numerical model of gas flow of particulate filter is set up.On the basis ofκ-εturbulent flow theory,the filtration unit is assumed to be the porous medium and the exhaust flow characteristics in bag filter is simulated and solved with the FLUENT software.The comparison of numerical values and experimental values verifies the correctness of the established model. The calculating results show that the pressure decreases progressively in the bag filter,while decreases abruptly in filtration unit.This indicates that the filtration unit is the main cause of pressure loss.In addition,the neighborhood of the entrance wall surface is another concentrated position of pressure loss.The structural parameters will also affect the whole pressure loss of bag filter.
     5.The stationary particulate-discharging system is designed.It can be applied to stationary diesel engines as well as buses and other equipment with little request to location and which use bag filter to control particulate emissions.The difficult problem of regeneration is solved.
引文
[1]贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述[J].环境科学,2007,V28(6):1169-1177.
    [2]Michael P.Walsh.Motor Vehicle Pollution Control.Platinum Metals Review[J],2000,44(1).
    [3]Jong Hwan Lee,Michael Paratore,David Brown.Evaluation of Cu-based SCR/DPF Technology for Diesel Exhaust Emission Control[C].SAE Paper 2008-01-0072.
    [4]Kevin Hallstrom,Jefferson M.Schiavon.Euro Ⅳ and Ⅴ Diesel Emission Control System Review[C].SAE Paper 2007-01-2617.
    [5]许维达,张红建,柴油机颗粒排放的测量[J].柴油机,1999(4):11-16,36.
    [6]国家环境保护总局,GB17691-1999,压燃式发动机和装用压燃式发动机的车辆排气污染物限值及测试方法,1999.
    [7]David B.Kittelson.Engines and Nanoparticles:a Review[J].Journal of Aerosol Science.1998,V29(6):575-588.
    [8]刘瑞祥.过滤器和EGR同时降低柴油机微粒和NOx排放[D].大连理工大学,2004.
    [9]Yasunori Iwakiri,Hirotaka Kanno,Hiroyuki Koyama.A Study of an Analysis Method for Trace Substances in Vehicle Exhaust Gas[C].SAE Paper 2007-01-0306.
    [10]Minoru Kowada,Koji Hayashi,Koji Shoyama等.满足严格排放标准的Hino低排放技术[J].国外内燃机,2008,4:19-26.
    [11]Walsh M P.Golbal Trends in Diesel Emission Control-A 1999Update[C].SAE Paper 1999-01-007.
    [12]国务院发展研究中心.建设节约型社会与交通节能-国际柴油发展论坛论文集[C].北京,2006.
    [13]刘巽俊.内燃机的排放与控制[M].北京:机械工业出版社,2003.
    [14]李孟良,宋跃华,许心凤,等.重型柴油机国Ⅳ技术路线可行性分析报告[J].汽车情报,2008,23:26-34.
    [15]董尧清,纪丽伟,周岳康.我国中重型车用柴油机实现欧Ⅲ排放法规的技术路径[J].汽车技术,2005,5:1-6.
    [16]刘宜,周校平,乔信起,等.我国柴油机迎接欧Ⅲ排放限值的技术准备[J],内燃机工程,2005,V26(2):54-57.
    [17]国家环境保护总局,GB17691-2001,车用压燃式发动机排气污染物限值及测量方法,2001
    [18]国家环境保护总局,GB17691-2005,车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段),2005
    [19]国家环境保护总局,GB18352.1-2001,轻型汽车污染物排放限值及测量方法(Ⅰ),2001
    [20]国家环境保护总局,GB18352.2-2001,轻型汽车污染物排放限值及测量方法(Ⅱ),2001
    [21]国家环境保护总局,GB18352.3-2005,轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段),2005
    [22]Shi shaoxi.Recent Progress in Combustion Technologies for Automotive Engines[J].Combustion Science and Technology,2001,7(1):1-15.
    [23]Seokhwan Lee,Seungmook Oh,Young Choi.Performance and Emission Characteristics of an SI Engine Operated with DME Blended LPG Fuel[J].Fuel,2009,V88(6):1009-1015.
    [24]T.Daho,G.Vaitilingom,O.Sanogo.Optimization of the Combustion of Blends of Dmestic Fuel Oil and Cottonseed Oil in a Non-Modified Domestic Boiler[J].Fuel,2009,V88(7):1261-1268.
    [25]Zehra(?)ahin,Orhan Durgun.Multi-zone Combustion Modeling for the Prediction of Diesel Engine Cycles and Engine Performance Parameters[J].Applied Thermal Engineering,2008,V28(17-18):2245-2256.
    [26]J.R.Serrano,F.J.Arnau,V.Dolz,A.Tiseira,et al.A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling[J].Energy Conversion and Management,2008,V 49(12):3729-3745.
    [27]Junjun Ma,Xingcai L(u|¨),Libin Ji,et al.An Experimental Study of HCCI-DI Combustion and Emissions in a Diesel Engine with Dual Fuel[J].International Journal of Thermal Sciences,2008,V47(9):1235-1242.
    [28]H.Yasar,H.S.Soyhan,H.Walmsley,et al.Double-Wiebe Function:An Approach for Single-zone HCCI Engine Modeling[J].Applied Thermal Engineering,2008,V28(11-12):1284-1290.
    [29]Miguel Torres Garcia,Francisco Jose Jimenez-Espadafor Aguilar,Tomas Sanchez Lencero.Experimental study of the performances of a modified diesel engine operating in homogeneous charge compression ignition(HCCI) combustion mode versus the original diesel combustion mode[J].Energy,2009,V34(2):159-171.
    [30]Hatim Machrafi,Simeon Cavadias,Philippe Gilbert.An experimental and numerical analysis of the HCCI auto-ignition process of primary reference fuels,toluene reference fuels and diesel fuel in an engine,varying the engine parameters[J].Fuel Processing Technology,2008,V89(11):1007-1016.
    [31]潘跃,吴子文.柴油机涡轮增压中冷技术及对排放控制分析农业[J].农业装备与车辆工程,2008,1:48-49.
    [32]Takashi Shirakawa,Hiroyuki Itoyama,Hiromichi Miwa.Study of strategy for model-based cooperative control of EGR and VGT in a diesel engine[J].JSAE Review,2001,V22(1):3-8.
    [33]Walter Knecht.Diesel engine development in view of reduced emission standards[J].Energy,2008,V33(2):264-271.
    [34]Roshan Sena Wijetunge,John G.Hawley,N.D.Vaughan.Application of Alternative Egr and Vgt Strategies to a Diesel Engine[C].SAE Paper 2004-01-0899.
    [35]Tomaz.Katrasnik,Vladimir Medica,Ferdinand Trenc.Analysis of the Dynamic Response Improvement of a Turbocharged Diesel Engine Driven Alternating Current Generating Set[J].Energy Conversion and Management,2005,V46(18-19):2838-2855.
    [36]张立军,李径定.燃油品质对柴油机颗粒及多环芳烃形成影响的研究[J].内燃机工程.2000,V21(4):35-38.
    [37]云非.燃油品质及其对发动机排放的影响分析[J].北京汽车.2008(2):19-22.
    [38]Pi-Qiang Tan,Zhi-Yuan Hu,Di-Ming Lou.Regulated and Unregulated emissions from a light-duty diesel engine with different sulfur content fuels[J].Fuel.2009,V88(6):1086-1091.
    [39]Kouremenos D A,Hountalas D T,Kouremenos A D.Experimental Investigation of the Effects of Fuel Composition on the Formation of Pollutants in Direct Injection Diesel Engines[C].SAE Paper 1999-01-0189.
    [40]王新军,王军,干奇银,等.柴油机电控技术的发展[J].农业装备技术.2008,V34(6):20-23.
    [41]王军,张幽彤,王洪荣,等.共轨柴油机缸压反馈电控技术[J].农业机械学报.2008,V39(8):9-13.
    [42]Svensson K I,Richards M J,Mackrory A J.Fuel Composition and Molecular Structure Effects on Soot Formation in Direct-Injection Flames Under Diesel Engine Conditions[C].SAE Paper 2005-01-0381.
    [43]Mehdi Abarham,John Hoard,Dennis Assanis,et al.Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers[C].SAE Paper 2009-01-1939.
    [44]谈建,王斌,左承基.汽油机机油消耗量的试验与分析[J].内燃机与动力装置.2006,5:4-7
    [45]Subramanian,N.Neduzchezhain.Production and analysis of bio-diesel from non-edible oils-A review[J].Renewable and Sustainable Energy Reviews, 2009,V13(4): 825-834.
    
    [46] Ertan Alptekin, Mustafa Canakci. Determination of the density and the viscosities of biodiesel-diesel fuel blends[J]. Renewable Energy. 2008, V33(12): 2623-2630.
    
    [47] Kono N, Suzuki Y, Takeda Hiroshi. Effects of Driving Conditions and Fuel Properties on Diesel Emissions[C]. SAE Paper 2005-01-3835.
    
    [48] Sarento G. Nickolas, Andrea D. White, Adam J. Kotrba, et al. Integrated Engine, Emissions, and Exhaust Aftertreatment System Level Models to Simulate DPF Regeneration[C]. SAE Paper 2007-01-3970.
    
    [49] Satoshi Hiranuma, Shinichi Saito, Minehiro Murata, et al. Aftertreatment System for Commercial Diesel Engine: Basic System Layout using NOx Catalyst and DPF[C]. SAE Paper 2008-01-2491.
    
    [50] Stommel P. Backes R, Luders H. Applications for the Regeneration of Diesel Particulate Traps by Combining Different Regeneration Systems[C]. SAE Paper 970470.
    
    [51] Bach E, Zikoridse G, Sandig R, et al. Combination of Different Regeneration Methods for Diesel Particulate Traps[C]. SAE Paper 980541.
    
    [52] Ajay K. Gantawar. A Study of the Regeneration Characteristics of Silicon Carbide and Cordierite Diesel Particulate Filters Using a Copper Fuel Additive[C]. SAE 970187.
    
    [53] Campenon T, Wouters P, Blanchard G. Improvement and Simplification of DPF System Using a Ceria-based Fuel-borne Catalyst for Diesel Particulate Filter Regeneration in Serial Applications[C]. SAE Paper 2004-01-0071.
    
    [54] Thorsten Boger. Regeneration Strategies for an Enhanced Thermal Management of Oxide Diesel Particulate Filters[C]. SAE Paper 2008-01-0328.
    [55]张春润,姜大海,资新运等.柴油机排气微粒捕捉器燃气再生技术的研究[J].内燃机学报,2002,20(5):391-394.
    [56]Chiew L,Kroner P,Ranalli M.Diesel Vaporizer:An Innovative Technology for Reducing Complexity and Costs Associated with DPF Regeneration[C].SAE Paper 2005-01-0671.
    [57]宁智,江玮.柴油机微粒捕捉器电加热再生控制系统及控制策略的研究[J].机械工程学报,2004,40(5):106-110.
    [58]宁智,资新运,张春润等.汽车柴油机排气微粒后处理系统的开发及研究[J].内燃机工程,2001,22(1):25-29.
    [59]Richard D,Nixdorf,Johney B,et al.Microwave-Regenerated Diesel Exhaust Particulate Filter[C].SAE Paper 2001-01-0903.
    [60]Y.Zhang-Steenwinkel,L.M.van der Zande,H.L.Castricum,et al.Microwave-assisted in-situ regeneration of aperovskite coated diesel soot filter[J].Chemical Engineering Science,2005,60(3):797-804.
    [61]Hawker P,Huthwohl G,Henn J,et al.Effect of a Continuously Regenerating Diesel Particulate Filter on Non-Regulated Emissions and Particulate Size Distribution[C].SAE Paper 980189.
    [62]Baik D S,Oh S G,Han Y C.The effect and Behavior of Continuous Regeneration DPF for HD Diesel Engine[C].SAE Paper 2004-01-3041.
    [63]杨极,程钊.柴油发动机尾气排放后处理技术的研究进展[J].内燃机,2007,4:45-48.
    [64]Debora Fino.Diesel Emission Control:Catalytic Filters for Particulate Removal[J].Scinece and Technology of Advanced Materials,2007,8:93-100.
    [65]苏庆运,刘卫国,陈觉先等.NO_2连续再生柴油机微粒过滤器的试验研究[J].内燃机学报,2001,19(5):443-446.
    [66]Kazutake Ogyu,Tomokazu Oya,Kazushige Ohno,et al.Study on Catalyzed-DPF for Improving the Continuous Regeneration Performance and Fuel Economy[C].2007-01-0919.
    [67]Spurk P,Pfeifer M,Setten B,et al.Examination of Engine Control Parameters for the Regeneration of Catalytic Activated Diesel Particulate Filters in Commercial Vehicles[C].SAE Paper 2003-01-3177.
    [68]Mayer A,Lutz T,L(a|¨)mmle C,et al.Engine Intake Throttling for Active Regeneration of Diesel Engine[C].SAE Paper 2003-01-0381.
    [69]Martirosyan,K.S,Chen,K,Luss,D.Behavior Features of Soot Combustion in Diesel Particulate Filter[J],Chemical Engineering.Science.2009.
    [70]Saurabh Mathur,John Johnson,Jeffrey Naber,et al.Experimental Studies of an Advanced Ceramic Diesel Particulate Filter[C].2008-01-0622.
    [71]高昭,肖福明,陆辰等.柴油车用尾气微粒过滤器自动控制系统[J].山东大学学报(工学版),2004,34(5):30-34
    [72]Fuming Xiao,Chen Lu,Xichao Zhang,et al.Development of Diesel Particulate Filters for Qingdao Urban Buses[C].SAE Paper 2004-01-3042.
    [73]Verdier S,Rohart E,Larcher O.Innovative Material for Diesel Oxidation Catalysts,with High Durability and Early Light-Off[C].SAE Paper 2005-01-0476.
    [74]Floerchinger P,Ortiz M G,Ingram-Ogunwumi R S.Comparative Analysis of Different Heavy-Duty Diesel Oxidation Catalysts Configurations[C].SAE Paper 2004-01-1419.
    [75]Klein H,Lox E,Kreuzer T,et al.Diesel Particulate Emissions of Passenger Cars-New Insights Into Structural Changes During the Process of Exhaust Aftertreatment Using Diesel Oxidation Catalysts[C].SAE Paper 980196.
    [76]Day J P,Floerchinger P.Principles for the Design of Diesel Oxidation Catalysts[C].SAE Paper 2002-01-1723.
    [77]杜愎刚,朱会田,许力.车用柴油机排放控制现状与技术进 展[J].内燃机工程,2004.V25No.3:71-74.
    [78]Bevan,Karen E.and William Taylor.Simulated Performance of a Diesel Aftertreatment System for U.S.2010 Application[C],SAE Paper,2006-01-3551.
    [79]Kelly K,Kelly D W,Reddoch T W.Reducing Soot Emissions From Diesel Engines Using One Atmosphere Uniform Glow Discharge Plasma[C].SAE Paper 2003-01-1183.
    [80]蔡忆昔,赵卫东,李小华等.低温等离子体降低柴油机颗粒物排放的试验[J].农业机械学报,2008,V28(1):1-5,10.
    [81]Chao J O,Hwang J W,Jung J Y,et al.Reduction of the Particulate and Nitric Oxide from Diesel Engine Using a Plasma Chemical Hybrid System[J],Physics of Plasmas,2001,4,1403-1410.
    [82]Wright J T,Kukla P M.A Novel Electrostatic Method of Ultrafine PM Control Suitable for Low Exhaust Temperature Applications[C].SAE Paper 2003-01-0771.
    [83]Wang X,Gao X,Rong H.Experimental Investigation on Electrostatic DPF[C].SAE Paper 2001-01-0194.
    [84]黄伟建,黄伟力,王飞.柴油机排放污染物控制技术与装置[J].中国农机化,2003,6:30-33.
    [85]郭猛超,姜大海,王琛等.柴油机排放控制技术发展综述[J].内燃机.2008,2:7-10.
    [86]黄定华,李孟良.柴油车颗粒物排放控制技术研究[J].北京汽车,2008,2:23-25.
    [87]宁智,刘双喜,资新运等,柴油机排气微粒旋流净化技术的初步研究[J],内燃机学报,2000,18(2):141-144.
    [88]刘双喜,宁智.利用旋风分离方法捕集柴油机微粒的研究[J],小型内燃机,2000,29(1):17-21.
    [89]张素宁,杨润生,邵天章等.柴油机排放控制新技术[J],移动电源与车辆,2004,2:37-40.
    [90]王建昕,傅立新,黎维彬.汽车排气污染治理及催化转换器[M].北京:化学工业出版社,2000.
    [91]黄飞.柴油机微粒过滤器的试验研究[D].山东大学,2007.
    [92]王志鳞,邹道忠,严燕萍.上海市大气颗粒有机污染物的测定[J].上海环境科学,1995,V14(7):34-37.
    [93]傅若农,常永福.气相色谱和热分析技术[M].北京:国防工业出版社,1989。
    [94]黄文轩,韩长宁.润滑油与燃料添加剂手册[M].北京:中国石化出版杜,1994:58-65,108-117.
    [95]杨燕红,傅家谟,盛国英等.珠江三角洲一些城市水体中微量有机污染物的初步研究[J].环境科学学报,1998,V18(3):271-277.
    [96]朱天乐,王建昕,傅立新等.柴油机排气后处理技术[J].车用发动机.2002,6:1-5.
    [97]刘江唯,刘忠长,刘巽俊.车用直喷柴油机微粒排放中SOF 的来源分析[J].汽车技术,2003,2:22-24.
    [98]王天友,Eric Lim Khim Song,林漫群等.燃油催化微粒捕集器微粒捕集与强制再生特性的研究[J].内燃机学报.2007,V25(6):527-531.
    [99]龚金科,王曙辉,李林科等.气流特征对柴油机微粒捕集器微波再生的影响研究[J].内燃机学报.2008,V26(3):248-254.
    [100]刘振海.热分析导论[M].北京:化学工业出版社.1991.
    [101]李余增.热分析[M].北京:清华大学出版社.1987.
    [102]宁智,资新运,欧阳明高.柴油机排气微粒捕捉器再生条件及分析[J].燃烧科学与技术.2002,V8(1):80-83.
    [103]Shen Boxiong,Liu Dechang,Lu Jidong.Study on Ignition and Combustion of Petroleum Coke[J].Petroleum Processing Petrochemicals.2000,31(10):60-64.
    [104]龚金科,赖天贵,刘孟祥等.柴油机微粒捕集器过滤材料与再生方法分析与研究[J].内燃机.2004,6:1-4.
    [105]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001.
    [106]何柞铺,赵玉芳.声学理论基础[M].北京:国防工业出版 社,1981.
    [107]E.Dokumaci.Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modeling of automobile catalytic converters[J].Journal of Sound and Vibration,1995,182(5):799-808.
    [108]E.Dokumaci.On transmission of sound in circular and rectangular narrow pipes with superimposed mean flow[J].Journal of Sound and Vibration.1998,V210(3):375-389.
    [109]Gao Wenzhi,Song Chonglin,Lu Jianguo,et al.Propagation and Attenuation Characteristics of Diesel Particulate Filter[J].Transaction of Tianjin University.2005,V11(4):278-282.
    [110]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社.1999.
    [111]杜广生.工程流体力学[M].北京:中国电力出版社,2007.8.
    [112]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [113]韩占忠,王敬,兰小平.FLUENT:流体工程仿真计算机实例与应用[M].北京:北京理工大学出版社,2004.6.
    [114]Zelenka P,TelfordC,PyeD,et al.Development of a Full-Flow Burner Dpf System for Heavy-Duty Diesel Engines[C].SAE Paper 2002-01-2787.
    [115]李兴虎.汽车排气污染与控制[M].北京:机械工业出版社.1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700