用户名: 密码: 验证码:
三峡库区兰陵溪小流域养分的分布、迁移与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区的水土流失和水体富营养化是水库安全的巨大威胁。对三峡库区小流域养分循环过程的研究,有利于了解三峡库区水体富营养化的原因,探索森林植被恢复对养分流失的控制机制、过程和作用。本文选取兰陵溪小流域为研究对象,收集有关历史资料,结合大量实地调查和取样,全面分析了小流域的降雨特征及土壤性质的时空分布,通过对小区尺度、坡面尺度和小流域尺度养分运移过程的连续监测,对比不同尺度下养分运移特征及影响因子,对小流域养分流失的发生过程和控制策略进行了研究和探讨。
     该小流域地处库区干流,为国家退耕还林示范区,2000年退耕还林以来,500 m以上全部分布为林地,500 m以下主要为茶园、板栗和柑橘,农田只占流域面积的2.91 %。居民主要集中在海拔300 m左右的盘山公路附近。本小流域人为干扰严重,在三峡库区具有典型的代表性。
     人类活动的长期干扰会对土壤的理化性质的时空分布产生重要影响。土壤含水量(SWC)和有效磷(AP)的空间分布受人为干扰较少,空间自相关性较强;全磷(TP)和PH成中度的空间自相关,其空间分布在受到结构性因素影响和随机因素的综合影响;土壤铵态氮(NH4+-N)、硝态氮(NO3--N)和总氮(TN)的空间自相关性非常弱,其空间分布受到了非常强烈的人为干扰。土壤PH、AP和TP随土壤沙粒含量的升高而增加,而土壤NH4+-N、NO3--N和TN则是随着土壤沙粒含量的升高而降低。土壤PH、AP和TP含量的分布受土壤沙粒含量影响较大,而各种型态N的敏感性则相对较小。
     地形和土地利用分布格局是小流域的养分分布与运移的主要控制因素。流域土壤的渗透性与地形关系密切,在0-5和5-10 cm层,土壤的初渗速率随着坡度的增加先增加后降低,坡度在20~25°时为最高值,达到10.78mm/min和6.07 mm/min。土壤的初渗速率和稳渗速率都随着坡位的降低而减慢。土壤渗透速率与土壤非毛管孔隙度成极显著的正相关关系,与土壤毛管孔隙度和总孔隙度成显著正相关关系;各土地利用类型土壤NH4+-N、NO3--N和TN的含量都随土层的加深而降低。而AP和TP的垂直分布规律则与坡位有关,处于上坡土壤的AP和TP含量随着土层的加深而增加,中坡土壤的AP和TP含量随土层的增加是先降低后增加,而中下坡土壤的AP和TP含量则是随土层的增加而降低;地形(坡长与坡度)、土地利用类型和用地类型的分布格局都对坡面土壤养分的迁移产生了重要影响,在用地类型单一的茶园坡面,土壤PH、AP和TP都是随坡位的降低而减少,土壤NH4+-N、NO3--N和TN随坡位的降低而增加,而在土地利用复杂的坡面,土壤PH、AP和TP都是随坡位的降低而在整体上也有减少趋势,但会在中坡附近出现了峰值,居民区是磷素的重要“源”景观,而林地对磷表现出较强的拦截吸附能力。土壤N素在下坡位具有显著的累积效应。
     退耕还林之后各土地利用类型的泥沙流失量只有农田的5-20 %,小流域2009年泥沙流失量为279.4 m3。本流域养分流失以N素为主,其中硝态氮占总氮的40-60 %。各养分流失负荷主要受少数几个因子控制,正磷酸盐和总磷的流失负荷主要受灌草盖度和植被总盖度的影响。硝态氮和总氮的流失负荷都随乔木层盖度的增加而减少。
     作为养分的载体,小流域内水的时空特征对养分运移具有明显调控作用。只有当日降雨量达到4.4-10 mm时,各土地利用类型才会有地表径流产生。土壤前期含水量高会使地表径流较早形成峰值,加快养分的流失。高强度降雨是磷素流失的主要降雨类型,主要是以颗粒态随地表径流流失。氮素更容易随地下水流失。正磷酸盐、总磷、铵态氮、硝态氮、亚硝态氮和总氮的流失负荷均与径流量正极显著的线性关系。流域全年总氮和总磷的输出负荷分别为1498.19 kg/a和41.67 kg/a,总氮的流失量要远远高于总磷。
     基于三峡库区退耕还林小流域养分空间分布和运移的基本规律,初步提出了“三带——网状”模式以有效控制三峡库区养分流失。同时认为,鉴于试验地区是国家和地方的新农村建设示范基地,采取“参与式”的生态建设和环境保护策略具有良好的基础,也十分重要。通过“参与式”培训和教育,提高民众的环境保护意识,在发展过程中平衡“经济”和“环保”的关系,有利于从根本上降低养分流失的潜在威胁。
Analyzing consecutive processes and mechanisms of non-point source was helpful to study the forming cause of the eutrophication, and provided the basis for controlling measure in Three Gorges Reservoir Area. Experiments were conducted in a conversion of cropland to forest watershed—Lanlingxi watershed in Three Gorges Reservoir Area. Historical data collection, watershed investigation, rainfall-runoff events monitoring and sampling activities were carried out all along. Temporal and spatial distribution of soil nutrient was analyzed, comparative researches on nutrient transfer via surface runoff at plot-scale, slope-scale and catchment-scale were also discussed. Finally, the controlling suggestions for agricultural non-point source pollution in Three Gorges Reservoir Area were given. The main results were showed as following:
     1. Infiltration was impacted by terrain factor greatly. The soil water infiltration rates showed a single-hump curve with slope gradient, the tip appeared in 20-25°, the peak in layer 0-5 cm and 5-10 cm were 10.78 and 6.07 mm/min, respectively. Initial and stable water infiltration rate both slowed down with decreasing altitude. The correlation between the soil water infiltration rates and non-capillary porosity was very significant positive, the correlation between the soil water infiltration rates and capillary porosity was significant positive, and the total porosity was the same.
     2. Spatial heterogeneity and spatial dependence were apparent in SWC、pH、AP、TP、NH4+-N、NO3--N and TN, the ratio of random variance(nugget) to total variance (sill) were 6-50 %、50 %、7-50 %、30-50 %、100 %、40-100 % and 63-100 % for them in different seasons, respectively. SWC and AP less involved by human activity, NH4+-N、NO3--N and TN more involved human activity, spatial variability of pH and TP were mainly affected by a co-working of the structural factors with random factors. pH, AP and TP of soil decreased sharply as SWC increased, while NH4+-N、NO3--N and TN of soil increased slowly as SWC increased. pH, AP and TP of soil increased sharply as soil SPC increased, while NH4+-N、NO3--N and TN of soil decreased slowly as SPC increased.
     3. Phosphorus loss decreased after conversion of cropland to forest because of the silt loss considerably reduced as well. Nitrogen loss was the chief form of agricultural non-point pollution in Heigou watershed and nitrate nitrogen accounted for 40-60% of total nitrogen. The order of total phosphorus loss loading of different land use was that: farmland(521.55 g/hm2)>citrus park(80.66 g/hm2)>tea garden (67.30 g/hm2)>bamboo forest(63.58 g/hm2) > chestnut forest(47.16 g/hm2) > woodland (43.78 g/hm2), The order of total nitrogen loss loading of different land use was that: tea garden(2598.99 g/hm2)>farmland(2267.03 g/hm2)> citrus park(1679.7 g/hm2)> bamboo forest(1151.66 g/hm2)>chestnut forest(550.47 g/hm2)> woodland(426.10 g/hm2). Orthophosphate and total phosphorus loss loading were effect by shrub -herbous layer and total coverage. The higher of soil ammonium nitrogen the ammonium nitrogen loss loading was more. Total nitrogen and nitrate nitrogen loss loading decreased with the tree layer coverage increased, slightly related with soil properties.
     4. The soil pH was correlated positively with soil depth. Ammonium nitrogen, nitrate nitrogen and total nitrogen of soil decreased as soil depth increased, exceeding fertilizer application leaded to leaching phenomenon of nitrogen in soil. Distribution characteristics of phosphorus in soil profiles under different land use closely related with slope position. Along the soil depth, available phosphorus and total phosphorus of soil increased at upper slope, increased at beginning and then decreased at middle slope, decreased at lower slope. Terrain factors (slope and slope length), land use type and distribution had important effect on the transfer ability of soil nutrient in slope scale. At single-land-use slope, the higher of slope position the soil PH, available phosphorus and total phosphorus were less, and the soil ammonium nitrogen, nitrate nitrogen and total nitrogen were more. At different-land-use slope, because of residential was the important“sink”landscape and the phosphorus adsorption capacity of woodland was great, soil PH, available phosphorus and total phosphorus decreased at beginning, increased at middle slope, and then decreased again as slope position deceased. Migration and leaching leaded to the accumulation of nitrogen in soil at lower slope.
     5. The higher of the antecedent moisture contents of the soil the peak of surface runoff appeared earlier. Phosphorus loss occurred mainly during strong rainfall processe, the particle phosphorus was the dominant form. Nitrogen loss by groundwater occurred more easily than phosphorus loss. There was a good linearity relationship between runoff volume and loss load of orthophosphate, total phosphorus, ammonium-N, nitrate-N, nitrite-N and total nitrogen. The annual total nitrogen and phosphorus exported from Heigou watershed were 1498.19 kg/a and 41.67 kg/a, respectively.
     6. Based on the mechanisms of non-point source in Three Gorges Reservoir Area, the control pattern of source area of controlling key source-reducing surface runoff-intercepting nutrient was presented firstly.
引文
鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000.
    蔡婧,李小平,陈小华.2008.河道生态护坡对地表径流的污染控制.环境科学学报,28(7):1326-1334.
    陈惟财,陈伟琪,张珞平,等.九龙江流域地表水中硝酸盐来源辨析.环境科学,2008,29(6):1484-1487.
    陈吉泉.河岸植被特征及其在生态系统和景观中的作用.应用生态学报,1996,7(4): 439-44.
    陈利顶,傅伯杰.农田生态系统管理与非点源污染控制.环境科学,2000,21(2):98-101.
    陈利顶,张淑荣,傅伯杰,等.流域尺度土地利用与土壤类型空间分布的相关性研究.生态学报,2003,23(12):2497-2505.
    党亚爱,李世清,王国栋,等.黄土高原典型土壤有机碳和微生物碳分布特征研究.自然资源学报,2007,22(6):936-946.
    邓红兵,王青春,王庆礼.河岸植被缓冲带与河岸带管理.应用生态学报,2001,12(6):951-954.
    杜阿朋,何常清,管伟,等.六盘山叠叠沟小流域土壤稳渗速率及其影响因子.林业科学,2009,45(10):25-31.
    冯明磊,胡荣桂,许克翠,等.三峡小流域水体硝态氮含量变化特征及其影响因素研究.环境科学,2008,29(1):13-18.
    傅伯杰,马克明,周华锋,等.黄土丘陵地区土地利用结构对土壤养分分布的影响.科学通报,1998,43(22):2444-2448.
    高超,朱继业,窦贻俭,等.基于非点源污染控制的景观格局优化方法与原则.生态学报,2004,24(1):109-116.
    高超,朱继业,朱建国,等.不同土地利用方式下的地表径流磷输出及其季节性分布特征.环境科学学报,2005,25(11):1543-1549.
    郭旭东,傅伯杰,马克明,等.基于G I S和地统计学的土壤养分空间特征研究——以河北省遵化市为例.应用生态学报, 2000,11(4):557-563.
    郭旭东,傅伯杰,陈利顶,等.河北省遵化平原土壤养分的时空变异特征——变异函数与Kriging插值分析.地理学报,2000,55(5):555-566.
    洪华生,黄金良,张珞平,杜鹏飞.AnnAGNPS模型在九龙江流域农业非点源污染模拟应用.环境科学,2005,26(4):63-69.
    胡敏,姬宝霖,任志勇,等.引洪淤地土壤养分含量与颗粒组成关系分析.人民黄河,2009,31(4):87-89.
    花利忠,贺秀斌,颜昌宙,等.三峡库区大宁河流域AnnAGNPS模型参数评价.水土保持学报,2008,22(4):65-70.
    黄金良,洪华生,杜鹏飞.AnnAGNPS模型在九龙江典型小流域的适用性检验.环境科学学报,2005, 25(8): 1135-1142.
    黄丽,丁树文,董舟,等.三峡库区紫色土养分流失的试验研究.水土保持学报,1998,4(1):8-14.
    黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程.土壤与环境,2001, 10(1):6-10.
    黄志霖,田耀武,肖文发.AGNPS模型机理与预测偏差影响因素.生态学杂志, 2008,27(10):1806-1813.
    黄志霖,田耀武,肖文发,等.非点源污染模型AnnAGNPS在三峡库区林农复合小流域模拟效果评定.环境科学,2009,30(10):64-71.
    黄志霖,田耀武,肖文发,曾立雄,马德举.三峡库区黑沟流域AnnAGNPS参数空间聚合效应.生态学报,2009,29(12):6681-6690.
    蒋锐,朱波,唐家良,等.紫色丘陵区小流域典型降雨径流氮磷流失特征.农业环境科学学报,2008,27(4):1353-1358.
    靳长兴.论坡面侵蚀的临界坡度.地理学报,1995,50(3):235-239.
    雷咏雯,危常州,李俊华,等.不同尺度下土壤养分空间变异特征的研究.土壤,2004,36(4):376-381.
    孔刚,王全九,樊军.坡度对黄土坡面养分流失的影响实验研究.水土保持学报,2007,21(3):14-19.
    李怀恩.流域非点源污染模型研究进展与发展趋势.水资源保护,1996,2:14-18.
    李丽霞,郝明德,彭令发.长期施肥人工草地土壤养分的剖面变化.水土保持研究,2003,10(1):50-52.
    李强坤,李怀恩,胡亚伟,等.青铜峡灌区氮素流失试验研究.农业环境科学学报,2008,27(2):683-686.
    李庆召,王定勇,朱波.自然降雨条件下紫色土区磷素的非点源输出规律.农业环境科学学报,2004,23(6):1050-1052.
    李裕元,邵明安,郑纪勇,等.降雨强度对黄绵土坡地磷流失特征影响试验研究.农业工程学报,2007,23(4):39-46.
    李宗新,董树亭,王空军,等.不同施肥条件下玉米田土壤养分淋溶规律的原位研究.应用生态学报,2008,19(1):65-70.
    李志博,王起超,陈静.农业生态系统的氮素循环研究进展.土壤与环境,2002,11(2):417-421.
    梁涛,王红萍,张秀梅,等.官厅水库周边不同土地利用方式下氮、磷非点源污染模拟研究.环境科学学报,2005,25(4):483-490.
    刘秉正,李光录,吴发启,等.黄土高原南部土壤养分流失规律.水土保持学报,1995,9(2):77-86.
    刘道平,陈三雄,张金池,等.浙江安吉主要林地类型土壤渗透性.应用生态学报,2007,18(3):95-98.
    刘方,黄昌勇,何滕兵,等.不同类型黄壤旱地的磷素流失及其影响因素分析.水土保持学报,2001,15(2) :37-40.
    刘吉平,吕宪国,杨青,等.三江平原环型湿地土壤养分的空间分布规律.2006, 43(2):247-256.
    刘仁燕,冯明磊,林杉,等.三峡库区小流域水体硝态氮含量及于土地利用的关系.自然资源学报,2008,23(5):886-894.
    刘世梁,郭旭东,连纲,等.黄土高原土壤养分空间变异的多尺度分析——以衡山县为例.水土保持学报,2005,19(5):105-108.
    陆安详,赵云龙,王纪华,等.不同土地利用类型下氮、磷在土壤剖面中的分布特征.生态学报,2007,27(9):3923-3929.
    陆海明,尹澄清,王夏晖,等.华北半干旱区2个农业流域地表氮素流失特征的对比研究.环境科学,2008,29(10):2689-2695.
    罗春燕,涂仕华,庞良玉,等.降雨强度对紫色土坡耕地养分流失的影响.水土保持学报,2009,23(4):24-28.
    吕唤春.千岛湖流域农业非点源污染及其生态效应的研究.博士学位论文,浙江大学,2002.
    毛战坡,彭文启,尹澄清,等.非点源污染物在多水塘系统中的流失特征研究.农业环境科学学报,2004,23(3):530-535.
    毛战坡,尹澄清,单宝庆,等.农业非点源污染物在水塘景观系统中的空间变异性研究.水利学报,2006,37(6):727-734.
    潘成忠,上官周平.黄土半干旱区坡地土壤水分、养分及生产力空间变异.应用生态学报,2004,15(11):2061-2066.
    秦明周.美国土地利用的生物环境保护工程措施-缓冲带.水土保持学报,2001,15(1): 119-121.
    任丽萍,宋玉芳,许华夏,等.旱田养分淋溶规律即对地下水影响的研究.农业环境保护,2001,20(3):133-136.
    单保庆,尹澄清,于静,等.降雨-径流过程中土壤表层磷迁移过程的模拟研究.环境科学学报,2001,21(1):7-12.
    孙孝龙,蒋文举,王克勤,等.抚仙湖尖山河小流域山地典型地类非点源污染特征与分析.环境科学学报,2009,29(7):1534–1541.
    唐艳凌,章光新.流域单元景观格局与农业非点源污染的关系.生态学杂志,2009,28(4):740-746.
    田耀武,黄志霖,曾立雄,等.DEM格网尺度对AnnAGNPS预测山地小流域径流和物质输出的影响.环境科学学报,2009,29(4):846-853.
    汪涛,朱波,武永锋,等.不同施肥制度下紫色土坡耕地氮素流失特征.水土保持学报,2005,19(5):65-69.
    王飞儿,吕唤春,陈英旭,等.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测.农业工程学报,2003,19(6):281-284.
    王洪杰,李宪文,史学正,等.不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系.水土保持学报,2003,17(2):44-48.
    王洪杰,史学正,李宪文,等.小流域尺度土壤养分的空间分布特征及其与土地利用的关系.水土保持学报,2004,18(1):15-19.
    王辉,王全九,绍明安.表层土壤容重对黄土坡面养分随径流迁移的影响.水土保持学报,2007,21(3):10-14.
    王辉,王全九,绍明安.前期土壤含水量对黄土坡面氮磷流失的影响及最优含水量确定.环境科学学报,2008,28(8):1571-1578.
    王克勤,宋泽芬,李太兴,等.抚仙湖一级支流尖山河小流域的面源污染物贡献特征.环境科学学报,2009,29(6):1321– 1328
    王良民,王彦辉.2008.植被过滤带的研究和应用进展.应用生态学报,19(9):2074-2080.
    王鹏程,肖文发,张守攻,等.三峡库区主要森林植被类型土壤渗透性能研究.水土保持学报,2007,21(6):50-55.
    王淑英,路萍,王建立,等.不同研究尺度下土壤有机质和全氮的空间变异特征——以北京市平谷区为例.生态学报,2008,28(10):4957-4954.
    王夏晖,尹澄清,单宝庆.农业流域“汇”型景观结构对径流调控及磷污染物截留作用研究.环境科学学报,2005,25(3):293-299.
    王晓燕,秦福来,欧洋,等.基于SWAT模型的流域非点源污染模拟——以密云水库北部流域为例.农业环境科学学报,2008,27(3):1098-1105.
    王瑄,郭月峰,高云彪,等.坡度、坡长变化与水土流失量之间的相关性研究.中国农学通报,2007,23(9):611-614.
    王政权.地统计学及在生态学中的应用.北京:科学出版社,1999.
    魏秀国,沈承德,孙彦敏,等.珠江水体悬浮物碳稳定同位素组成与流域土壤侵蚀研究.沉积学报,2008,26(1):151-157.
    肖文发,李建文,于长青,等.长江三峡库区陆生动植物生态.重庆:西南师范大学出版社,2000,5-11.
    徐英,陈亚新,史海滨,等.土壤水盐空间变异尺度效应的研究.农业工程学报,2004,20(2): 1-5
    杨艳丽,史学正,于东升,等.区域尺度土壤养分空间变异及其影响因素研究.地理科学,2008,28(6):789-794.
    尹澄清.内陆水-陆地交错带的生态功能及其保护与开发前景.生态学报,1995,15(3):331-335.
    尹澄清,毛战坡.用生态工程技术控制农村非点源水污染.应用生态学报,2002,13(2):229-232.
    张慧文,马剑英,陈发虎,等.乌鲁木齐市雅玛里克山污水灌溉土壤肥力的空间变异研究.干旱区资源与环境,2008,22(8):185-191.
    张洪,单保庆,尹澄清.六叉河小流域不同景观结构中径流磷形态差异分析.环境科学学报,2008,28 (3):550-557.
    张建春.2001.河岸带功能及其管理.水土保持学报,12(15):143-146.
    张建杰,李富忠,胡克林,等.太原市农业土壤全氮和有机质的空间分布特征及其影响因素.生态学报,2009,29(6):3163-3172.
    张雷燕,刘常富,王彦辉,等.宁夏六盘山地区不同森林类型土壤的蓄水和渗透能力比较.水土保持学报,2007,21(1):95-98.
    章明奎,方利平.砂质农业土壤养分积累和迁移特点的研究.水土保持学报,2006,20(2):46-49.
    张乃明,余杨,洪波,等.滇池流域农田土壤径流磷污染负荷影响因素.环境科学,2003,24(3):155-157.
    张伟,陈洪松,王克林,等.典型喀斯特峰丛洼地坡面土壤养分空间变异分析研究.农业工程学报,2008,24(1):68-75.
    张维理,徐爱国,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在的问题分析.中国农业科学,2004,37(7):1026-1033.
    张亚丽,李怀恩,张兴昌,等.近地表土壤水分条件对黄土坡面溶质径流迁移的影响.自然资源学报,2009,24(4):743-751.
    张亚丽,李怀恩,杨素勤,等.模拟降雨条件下黄土坡地土壤溶质迁移特征试验研究.水土保持学报,2009,23(4):113-117.
    张玉铭,毛任钊,胡春胜,等.华北太行山前平原农田土壤养分的空间变异性研究.应用生态学报,2004,15(11):2049-2054.
    赵良菊,消洪浪,郭天文,等.甘肃省灌漠土土壤养分空间变异特征.干旱地区农业研究,2005,23(1):70-75.
    中华人民共和国环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    中华人民共和国环境保护部.长江三峡工程生态与环境监测公报.2009,http://www.mep.gov.cn,
    中华人民共和国环境保护部.长江三峡工程生态与环境监测公报.2010,http://www.mep.gov.cn,
    朱波,汪涛,徐泰平,等.紫色丘陵典型小流域氮素迁移及其环境效应.山地学报,2006,24(5):601-606.
    朱元骏,绍明安.黄土高原水蚀风蚀交错带小流域坡面表土砾石空间分布.中国科学D辑,2008,38(3):375-383.
    Abu-Zreig, M, Rudra R P, Whiteley H R, et al. Phosphorus removal in vegetated filter strips. Journal of Environmental Quality, 2003, 32: 613–619.
    Adekalu K O, Olorunferni I A, Osunbitan J A. Grassmulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigerria. Bioresource Technology, 2007, 98: 912-917.
    Ahearn D S, Sheibley R W, Dahlgren R A, et al. Land use and land cover influence on water quality in the last free-flowing river draining the western Sieera Nevada, California. Journal of hydrology, 2005, 313: 234-247.
    Almasri M N, Kaluarachchi J J. Modeling nitrate contamination of groundwater in agricultural watersheds. Journal of hydrology, 2007, 343: 211-229.
    Arabi M, Govindaraiu R S, Hantush M M. A probabilistic approach for analysis of uncertainty in the evalution of watershed management practices. Journal of hydrology, 2007, 333: 459-471.
    Arora K, Mickelson S K, Baker J L. Effectiveness of vegetated buffer strips in seducing pesticide transport in simulated runoff. Transaction of the ASAE, 2003, 46(3): 635-644.
    Argent R M, Mitchell V G. Development and adoption of a simple nonpoint source pollution model for Port Phillip bay, Australia. Environment Management. 2003, 32(3): 360-372.
    Basnyat P, Teeter, L D, Lockaby B G, et al. The use of remote sensing and GIS in watershed level analyses of non-point source pollution problems. Forest Ecology and Management, 2000, 128: 65–73.
    Baginska B, Milne-Home W, Cornish P S. Modeling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST. Environ Modell Softw, 2003, 18(8): 801-808.
    Bernhardt E S, Palmer M A , Allan J D et al. Synthesizing U.S. river restoration efforts. Science, 2005, 308:636–637.
    Bhuyan S J, Koelliker J K, Marzen L J. An integrated approach for water quality assessment of a Kansas watershed, Environ Modell Softw, 1997, 18(5): 473-484.
    Borin M, Vianello M, Morari F, et al. Effectiveness of buffer strips in removing pollutants in runoff from a cultivated field in North-East Italy. Agriculture, Ecosystem & Environment, 2005, 105(1-2): 101-114.
    Boyd P M, Baker J L, Mickelson S K, et al. Pesticide Transport with surface runoff and subsurface drainage through a vegetative filter strip. Transactions of the ASAE, 2003, 45(3): 675-684.
    Braskerud B C. Factors affecting phosphorus retention in small constructed wetlands treating agricultural non-point source pollution. Ecological engineering, 2002, 19: 41-61.
    Brian R S. A model of wetland vegetation dynamics in simulated beaver impoundments. Ecological Modeling, 1998, 112: 195-225.
    Burt T P, Matchett L S, Goulding K W T, et al. Denitrification in riparian buffer zones: the role of floodplain hydrology. Hydrological Processes, 1999, 13:1451-1463.
    Cambardella C A, Moorman T B, Novak J M, et al. Field-scale variability of soil properties in central Lowa soils. Soil science society American journal, 1994, 58: 1501-1511.
    Caruso B S. Comparative analsis of New Zealand and US approaches for agricultural nonpoint source pollution management. Environment Management. 2000, 25(1): 9-21.
    Castelle A J, Johnson A W, Conolly C. Wetland and stream buffer size requirements: A review. Journal of Environmental Quality, 1994, 23: 878–882.
    Casey R E, Taylor M D, Klaine S J. Mechanisms of nutrient attenuation in a subsurface flow riparian wetland. Journal of Environmental Quality, 2001, 30(5): 1732-1737.
    Chang H J. Spatial analysis of water quality trends in the Han river vasin, South Korea. Water research, 2008, 42: 3285-3304.
    Charbonneau R, Kondolf G M. Land use change in California, USA: Nonpoint source water quality impacts. Environment Management, 1993, 17: 453-460.
    Chow T L, Rees H W. Effects of coarse-fragment content and size on soil erosion under simulated rainfall. Canadian Journal of Soil Science, 1995, 75(2): 227-232
    Cinnirella S, Buttafuoco G, Pirrone N. Stochastic analysis to assess the spatial distributiong of groundwater nitrate concentrations in the Po catchment (Italy). Environmental pollution, 2005, 133:569-580.
    Clausen R G, Lockaby B G, Rummer B. Changes in production and nutrient cycling across a wetness gradient within a floodplain forest. Ecosystems, 2001, 4:126–138.
    Cookson W R, Rowarth J S, Cameron K C. The effect of sutumn applied 15N-labelled fertilizer on nitrate leaching in a cultivated soil during winter. Nutrient Cycling in Agroecosystems, 2000, 56(7): 99-107
    Correll D L, Jordan T E, Weller D E. Nutrient flux in a landscape: effects of coastal land use and terrestrial community mosaic on nutrient transport to coastal waters. Estuaries, 1992, 15: 431–442.
    Correll D L. The role of phosphorus in the eutrophication of receiveing water: a review. Journal of Environment Quality, 1998, 27: 261-266.
    Correll D L. Principles of planning and establishment of buffer zones. Ecological Engineering, 2005, 24: 433–439.
    Curt M D, Aguado P, Sachez G, et al. Nitrogen isotoperations of synthetic and organic sources of nitrate water contamination in Spain. Water, Air, and Soil Polltion, 2004, 151(1-4): 135-142.
    De Graaf R M, Rudis D D. Herpe to faunal species composition and relative abundance among three New England forest types. Forest Ecology and Management, 1990, 32:155-165.
    Deninis L C, Keith L, Timothy R E. Gis-based modeling of non-point in the vadose zone. Soil and Water Conservation, 1998, 53(1): 34-38
    Dillaha, T. A., R. B. Reneau, S. mostaghimi, and D. Lee. Vegetative filter strips for agricultural nonpoint source pollution control. Transactions, American Society of Agricultuaral Engineers, 1989, 32:513-519.
    Dixon B. Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. Journal of hydrology, 2005, 309: 17-38.
    Dorioz J M , Wang D, Poulenard J, et al. The effect of grass buffer strips on phosphorus dynamics—A critical review and synthesis as a basis for application in agricultural landscapes in France. Agriculture Ecosystem Environment, 2006, 117: 4–21.
    Dosskey M G, Helmers M J, Eisenhauer D E, et al. Assessment of concentrated flow through riparian buffers. Journal of Soil and Water Conservation, 2002, 57(6): 336-343.
    Doyle A T. Use of riparian and upland habitats by small mammals. Journal of Mammol, 1990, 71:14-23. Duda A M, Johnson R A. Cost-effective targeting of agricultural non-point source pollution control. J. Soil Water Conserv, 1985, 40(1): 108-111.
    EPA. Environmental indicators of water quality in the United States. EPA 841-R-96-002. US Environmental Protection Agency, Washington, DC. 1996.
    Easton Z M, Fuka D R, Walter M T, et al. Re-conceptualizing the soil and water assessment tool(SWAT) model to predict runoff from variable source areas. Journal of hydrology, 2008, 348: 279-291.
    Edward M. Ecosystem management questions for science and society. Beijing: Science Press, 2003. Farajall N S, Vieux B E. Capturing the essential spatial variability in distributed hydrological modeling infiltration parameters. Hydrological Processes, 1995, 9: 55-68.
    Fierer N G, Gabet E J. Carbon and nitrogen losses by surface runoff following changes in vegetation. Journal of Environmental Quality, 2002, 31(4): 1207-1213
    Fisher D S, Steiner J L, Endale D M, et al. the relationship of land use practices to surface water quality in the Upper Oconee watershed of Georgia. Forest ecology and management, 2000, 128: 39-48.
    Fu S H. Effect of soil containing rock fragment on infiltration. Journal of soil and water conservation, 2005, 19(1): 171-175.
    Gassman P W, Osei E, Saleh A, et al. Alternative practices for sediment and nutrient loss control on livestock farms in northeast Iowa. Agriculturel Ecosystem Environment, 2006, 117 (2–3):135–144.
    Gburek W J, Sharpley A N, Heathwaite A L, et al. Phosphorus management at the watershed scale. Journal of Environmental Quality, 2000, 29: 130-144.
    Gilliam J W. Riparian Wetlands and Water Quality. Journal of Environmental Quality, 1994, 23:896-900.
    Gilliam J W, Parsons J E, Mikkelson R L. Nitrogen dynamics and buffer zones. Journal of Environmental Quality, 1997, 23:917-922.
    Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology Fertil Soils, 1998, 27: 315-334
    Haefelei S M, Wopereis M C S. Spatial variability of indigenous supplies for N, P and its impact on fertilizer strategies for irrigated rice in west Africa. Plant and Soil, 2005, 270: 57-72
    Hefting M, Beltman B, Karssenberg D, et al. Water quality dynamics and hydrology in nitrate loaded riparian zones in the Netherlands. Environmental Pollution, 2006, 139(1): 143-156.
    Hesketh N, Rrookes P C. Development of an indicator for risk of phosphorus leaching. Journal of Environment Quality, 2000, 29: 105-110
    Imenson A C, Prinsen H A M. Vegetation patterns as biological indicators for idenfifying runoff and sediment source and sink areas for semi-arid landscapes in Spain. Agriculture Ecosystem & Environment, 2004, 104(2): 333-340.
    Inamdar S P, Lowrance R R, Altier L S, et al. Riparian ecosystem management model (REMM): II. Testing of the water quality and nutrient cycling component for a Coastal Plain riparian ecosystem. Trans. Am. Soc. Agric. Eng, 1999a, 42:1691–1707.
    Inamdar S P, Sheridan J M, Williams R G, et al. Riparian ecosystem management model (REMM): I. Testing of the hydrologic component for a Coastal Plain riparian system. Trans. Am. Soc. Agric. Eng, 1999b, 42:1679–1689.
    Jamieson R, Gordon R, Joy D, et al. Assessing microbial pollution of rural surface waters a review of current watershed scale modeling approaches. Agricultural water management, 2004, 70: 1-17.
    Jean C R. Factors influencing wind throw in balsam fir forests: from landscape studies to individual tree studies. Forest Ecology and Management, 2000, 135: 169-178.
    Johnson C W, Susan B. Riparian buffer design guidelines for water quality and wildlife habitat functions on agricultural landscapes in the intermountain west. 2005, Utah State University.
    Juerg M, Pradeep M D, et al. Rainfall-runoff events in a middle mountain catchment of Nepal. Journal of Hydrology, 2006, 331: 446-458.
    Kinley T A, Newhouse N J. Relationship of riparian reserve zone width to bird density and diversity in southeastern British Columbia. Northwest Sci, 1997, 71(2): 75-86.
    Kleinman P J A, Needelman B A, Shar plyA N, et al. Using soil phosphorus profile data t o assess phosphorus leaching potential in manured soils.Soil Science Society of America Journal, 2003, 67: 215-224.
    Kronvang B, Bechmann M, Lundekva H, et al. Phosphorus losses from agricultural areas in river basins: effects and uncertainties of targeted mitigation measres. Journal of Environmental Quality, 2005, 34(6): 2129-2144.
    Laflen J M, Lane L J, Foster G R. WEPP, a new generation of erosion prediction technology. Journal of Soil Water Conservation, 1991, 46:34–38.
    Lane P N J, Croke J C, Dignan P. Runoff generation from logged and burnt convergent hillslopes: rainfall simulation and modeling. Hydrological Processes, 2004, 18(5): 879-892.
    Lee D, Dillaha T A, Sherrard J H. Modeling phosphate transport in grass buffer strips. J. Environ. Eng. Div., ASCE, 1989, 115:408–426.
    Lee Kye-Han, Thomas M I, Richard C S, et al. Multispecies Riparian Buffers Trap Sediment and Nutrients during Rainfall Simulations. Journal of Environmental Quality, 2000, 29: 1200- 1205.
    Lee P, Smyth C, Boutin S. Quantitative review of riparian buffer width guidelines from Canada and the United States. Environment Management, 2004, 70:165–180.
    Lin Y F, Lin C Y, Chou W C, et al. Modeling of riparian vegetated buffer strip width and placement: a case study in Shei Pa National Park, Taiwan. Ecology Engineer. 2004, 23: 327–339.
    Line D E, White N M, Osmond D L, et al. Pollutant export from various land uses in the Upper Neuse River Basin. Water environment research, 2002, 330: 101-113.
    Liu J C, Zhang L P, Zhang Y Z, et al. Validation of an agricultural non-point source pollution model for a catchment in the Jiulong river watershed, China. Journal of environmental sciences, 2008, 20: 599-606.
    Lowrance R, Todd R L, Fail Jr J, et al. Riparian forests as nutrient filters in agricultural watersheds. BioScience, 1984, 34: 374–377.
    Makkeasorn A, Chang N B, Li J H. Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. Journal of environment management, 2009, 90: 1069-1080.
    Mario T V, Mario T L, Jeffrey J S, et al. Tillage system effects on runoff and sediment yield in hillslope agriculture. Crops research, 2001, 69: 173-182.
    Mayer P M, Reynolds S K, Mccutchen M D. Meta-Analysis of nitrogen removal in riparian buffers. Journal of Environmental Quality, 2007, 36(6):1172-1180.
    McDowell R W, Sharpley A N, Folmar G. Phosphorus export from an agricultural watershed: Linking source and transport mechanisms. Journal of Environmental Quality, 2001, 30(5): 243-251
    McDowell R W, Sharpley A N. Uptake and release of phosphorus from overland flow in stream environment. Journal of Environmental Quality, 2003, 32(3): 937-948.
    McDowell R W, Sharpley A N. Variation of phosphorus leached from Pennsylvanian soils amended with manures, composts or inorganic fertilizer. Agriculture, Ecosystems & Environment, 2004, 102(1): 17-27.
    McGrath A, Kensmith C, Henry L, et al. Effects of land-use change on soil mutrient dynamics in Amazonia. Ecosystems, 2001, 4: 625-645.
    McHale M R, Mitchell M J, McDonnell J J, et al. Nitrogen solutes in an Adirondack forested watershed: Importance of dissolved organic nitrogen. Biogeochemistry, 2000, 48: 165-184
    Megahan W, King P N. Identificationof Critical areas on forest lands for control of nonpoint sources of pollution. Environment management, 1985, 9(1): 7-18.
    Moog D B, Whiting P J.Climatic and agricultural factors in nutrient exports from two watersheds in Ohio. Journal of Environmental Quality, 2002, 31: 72-83.
    Mulqueen J, Rodgers M, Scally P. Phosphorus transfer from soil to surface waters. Agricultural Water Management, 2004, 68: 91-105.
    Munoz-Carpena R, Parsons J E, Gilliam JW. Modeling hydrology and sediment transport in vegetative filter strips. Journal of Hydrol, 1999, 214:111–129. Mayer C F, Meek J, Sturart T, et al. nonpoint sources of water pollution. Journa of soil and water conservation, 1985, 40(1): 14-18.
    Nash D M, Hannah M, Clemow L, et al. A field study of phosphorus mobilization from commercial fertilizers. Australian Journal of Soil Research, 2004, 42: 313-320
    Neill R V, Krummel J R, Gardner R H. Indices of landscape pattern. Landscape Ecology, 1998, 1: 153-162
    Nigussie H, Fekad Y. Testing and evaluation of the agricultural non-point source pollution model on Augucho catchment, western Hararghe, Ethiopia. Agriculture ecosystems & ecvironment, 2003, 99: 201-212.
    Nilsson C. 1992. Conservation management of riparian communities. Ecological principles of nature conservation (ed. By L. Hansson), pp. 352-372.
    Ning S K, Chang N B, Jeng K Y, et al. Soil erosion and non-point source pollution impacts assessment with the aid of multi-temporal remote sensing images. Envitonmental mangagement, 2006, 79:88-101.
    Norse D. Non-point pollution from crop production: Global, regional and national issues. Pedosphere, 2005, 15(4): 499-508.
    Novotny G, et al. Handbook of non-point pollution: source and management. Van Nistrand Reubbold Company, 1981
    Oren O, Yechieli Y, Bohlke J K, et al. Contamination of groundwater under cultivated fields in an arid environment, central Arava Valley, Israel. Journal of Hydrology, 2004, 290(3-4): 312-328.
    Owens L B, Van Keuren R W, Edwards W M. Non-nitrogen nutrient inputs and outputs for fertilized pastures in silt loam soils in four small Ohio watersheds. Agriculture, Ecosystems and Environment, 2003, 97(1-3): 117-130.
    Parajuli P B, Mankin K R, Barnes P L. Applicability of targeting vegetative filter strips to abate fecal bacteria and sediment yield using SWAT. Agricultural water management, 2008, 95: 1189-1200.
    Patricia A L, Robert J N. Effects of stream size on bird community structure in coastal temperate forests of the Pacific Northwest, U.S.A. Journal of Biogeography, 1998, 25: 773~782.
    Pearsons J E, Gilliam J W, Daniels R B, et al. Sediment and nutrient removal with vegetated and riparian buffers: nutrients. In: Proceedings of the Clean Water–Clean Environment—21st Century Conference, vol. II, Kansas City, Missouri, 15–8 March 1995, pp. 155–158.
    Pearsons J E, Gilliam J W, Munoz-Carpena R, et al. Nutrient and sediment removal by grass and riparian buffers.Second Environmentally Sound Agriculture Conference, Orlando, FL, 22–24 April 1994, pp. 147–154.
    Peterjohn W T, Correll D L. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology, 1984, 65:1466–1475.
    Peterson D L, Wollheim W M, Mulholland P J, et al. Control of nitrogen export from watersheds by headwater streams. Science, 2001, 292: 86-90
    Potter K M, Cubbage F W, Bland G B. A watershed-scale model for predicting nonpoint pollution risk in North Carolina. Environmental management, 2004, 34(1): 62-74.
    Quinton J N, Catt J A, Hess T M. The selective removal of phosphorus from soil: is event size important? Journal of Environment Quality, 2001, 30: 538-545.
    Ribbe L, Delgado P, Salgado E, et al. Nitrate pollution of surface water induced by agricultural non-point pollution in the Pocochay watershed, Chile. Desalination, 2008, 226:13-20.
    Ripa M N, Leone A, Garnier M, et al. agricultural land use an dbest management practices to control nonpoint water pollution. Environmental management, 2006, 38(2): 253-266.
    Ritters K H, Neill R V, Hunsaker C T, et al. A factor analysis of landscape and structure metrics. Landscape Ecology, 1995, 10: 23-39
    Rivers C N, Barrett M H, Hiscock K M, et al. Use of nitrogen isotopes to identify nitrogen contamination of the Sherwood sand, stone aquifer beneath the city of Nottingham, United Kingdom. Hydrogeology Journal, 1996, 4(1): 90-102.
    Rose C W, Hogarth W L, Ghadiri H, et al. Overland flow to and through a segment of uniform resistance. Journal of Hydrology , 2002, 255: 134–150.
    Sarangi A, Cox C A, Madramootoo C A. Evaluation of the AnnAGNPS model for prediction of runoff and sediment yields in St Lucia watersheds. Biosyst Eng, 2007, 97: 241-256.
    Schmitt T J, Dosskey M G, Hoagland K D. Filter strip performance and processes for different vegetation, widths, and contaminants. Journal of Environmental Quality, 1999, 28: 1479–1489.
    Sharpley A N, Smith S J. Prediction of soluble phosphorus transport in agricultural runoff. Journal of Environmental Quality, 1989, 18: 313-316.
    Sharpley A N. Identifying sites vulnerable to phosphorus loss in agricultural runoff. Journal of Environmental Quality, 1995, 24:947-951.
    Sharpley A N, William J G, Folmar G, et al. Sources of posphorus exported from an agricultural watershed in Pennsylvania. Journal of Agricultural water management, 1999, 41: 77-89.
    Sheridan J M, Lowrance R, Bosch D D. Management Effects on Runoff and Sediment Transport in Riparian Forest Buffers. Communications in Soil Science and Plant Analysis, 1999, 32(4-5): 723-737
    Shreram inamdar. Challenges in modeling hydrologic and water quality processes in riparian zones. Jpurnal of the American Water Resources Association, 2007, 42(1):5~14.
    Shrestha S, Bable M S, Gupta A D. Evaluation of annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal. Environ Modell Softw, 2006, 21: 961-975.
    Simmons R C, Gold A J, Groffman P M. Nitrate dynamics in riparian forest: groundwater studies. Journal of Environmental Quality, 1992, 21:659–665.
    Smart R P, Soulsbyb C, Cressera M S, et al. Riparian zone influence on stream water chemistry at different spatial scales: a GIS-based modelling approach, an example for the Dee, NE Scotland. The science of the Total environment, 2001, 280(3):173~193.
    Skopp J, Daniel T C. A review of sediment predictive techniques as viewed from the perspective of nonpoint pollution management. Environmental management, 1978, 2(1): 39-53.
    Srivastava P, Edwards D R, Daniel T C, et al. Performance of vegetative filter strips with varying pollutant source and filter strip lengths. Trans. ASAE, 1996, 39: 2231–2239.
    Stenberg M, Aronsson H, Lingden B, et al. Soil mineral nitrogen and nitrate leaching losses in soil tillage systems combined with a catch crop. Soil and Tillage Research, 1999, 50: 115-125
    Stow C A, Borsuk M E, Stanley D W. Long-term changes in watershed nutrient inputs and river exports in the N EUSE River, North Carolina. Water Research, 2001, 35: 1489-1499.
    Swackhamer D L, Paerl H W, Eisenreich S J, et al. A model of carbon, nitrogen and phosphorus dynamics and their interactions in river marginal wetlands. Ecology Model. 2004, 118, 95–130.
    Syversen, Nina, Lillian Oygarden, and Brit Salbu.“Cesium-134 as a tracer to study particle transport processes within a small catchment with a buffer zone”. Journal of Environmental Quality. 2001, 30:1771-1783.
    Tang C G, Liu C Q. nonpoint source pollution assessment of wujiang river watershed in Guizhou province, SW China. Envirin Model Assess, 2008, 13: 155-167.
    Tabacchi E, Correll D L, Hauer R, Pinay G, et al. Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biology, 1998, 40:497–516.
    Torbert H A, Daniel T C, Lemunyon J L, et al. Relationgship of soil test phosphorus and sampling depth to runoff phosphorus in calcareous an dnoncalcareous soils. Journal of Environmental Quality, 2002, 31: 1380-1387.
    Tsou M S, Zhang X Y. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS. Journal of Environmental Sciences, 2004, 16(5): 865-867.
    Van der Peijl M J, van Oorschot M M P, Verhoeven J T A. Simulation of the effects of nutrient enrichment on nutrient and carbon dynamics in a river marginal wetland. Ecology Model, 2000, 134:169–184.
    Villar C A, de Cabo L, Vaithiyanathan P, et al. River floodplain interactions: nutrient concentrations in the lower Parana River. Arch. Hydrobiol, 1998, 142: 433–450.
    Wallach R, Grigorina G, Rivlin J. A comprehensive mathematical model for transport of soil-dissolved chemicals by overland flow. Journal of Hydrology, 2001, 247: 85-99.
    Wang X H, Yin C Q, Shan B Q. The role of diversified landscape buffer structures for water quality improvement in an agricultural watershed, North China. Agriculture, Ecosystems and Environment, 2005, 107: 381-396.
    Walton R S, Volker R E, Bristow K L, et al. Experimental examination of solute transport by surface runoff from low-angle slopes. Journal of Hydrology, 2000, 233: 19-36.
    Weller D E, Jordan T E, Correll D L. Heuristic models for material discharge from landscapes with riparian buffers. Ecol. Appl, 1998, 8:1156–1169.
    Welsch, D.J., 1991. Riparian Forest Buffers. Publ. NA-PR-07-91, US Dept. Agric., Radnor, PA, 24 White J G, Welch R M, Noevell W A. Soil Zn map of the USA using geostatistics and geographic information systems. Soil Science Socienty of A merica Journal, 1997, 61: 185-194
    Woessner W W. Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Ground Water, 2000, 38:423–429.
    Xiang W N. GIS-based riparian buffer analysis: injecting geographic i nformation into landscape planning. Landscape Urban Plann, 1996, 34:1–10.
    Xiao H G, Ji W. Relating landscape characteristics to non-point source pollution in mine waste-located watersheds using geospatial techniques. Journal of environmental management, 2007, 82: 111-119.
    Yi-ju chien, Dar-yuan L, Horng-yuh Guo, et al. Geostatistical analysis of soil properties of mid-west Taiwan soils. Soil Science, 1997, 162(4): 291-298
    Young E O, Briggs R D. Shallow ground water nitrate-N and ammonium-N in cropland and riparian buffers. Agriculture Ecosystems & Environment, 2005, 109(3-4): 297-309.
    Young R A,Terry H, Wayne A. Effectiveness of vegetated riparian buffer strips in controlling pollution from feedlot runoff. Journal of Environmental Quality, 1980, 9(3): 483-487.
    Zhang M K, Wang L P, He Z L. Spatial and temporal variation of nitrogen exported by runoff from sandy agricultural soils. Journal of Environmental Sciences, 2007, 19: 1086-1092.
    Ziegler A D, Giambelluca T W, Sutherland R A, et al. Toward understanding the cumulative impacts of roads in upland agricultural watersheds of northern Thailand. Agriculture, Ecosystems & Environment, 2004, 104(1): 145-158.
    Zierholz C, Prosser I P, Fogarty P J, et al. In-stream wetlands and their significance for channel filling and the catchment sediment budget,Jugiong Creek,New South Wales. Geomorphology, 2001, 38: 221-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700