黄瓜低霜霉威残留性的生理生化及分子基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus L.)是一种重要的可鲜食类蔬菜。蔬菜不同于粮食作物,内吸性较强,农药喷洒后容易被蔬菜组织内部吸收,残留的农药在人体内蓄积会造成慢性中毒,有的农药还有致DNA损伤、致畸和致癌的作用。更为重要的是,黄瓜等蔬菜作物因存在鲜食特性,其农药残留问题尤为突出,已成为政府、市场和消费者都非常关注的热点问题。霜霉威是一种氨基甲酸酯类杀菌剂,我国有近80%的农民使用它来防治黄瓜霜霉病。由于生产上的大剂量使用,黄瓜霜霉威残留是已经是一个影响黄瓜品质的重要问题。
     本研究首先利用气相色谱法对32份不同生态类型的黄瓜种质资源进行了霜霉威残留量的测定,从中筛选出低残留资源3份和高残留资源3份。并以低残留资源D0351和高残留资源D9320为材料,从生理生化、基因组学、蛋白质组学等角度,开展了对黄瓜果实低霜霉威残留性的生理和分子机理的研究。在此基础上利用RT-PCR技术克隆出1个与黄瓜低霜霉威残留相关的ABC转运蛋白基因(ABCA19),并进行了组织特异性表达。
     试验结果如下:
     1.通过对32份不同生态类型的黄瓜种质资源果实进行的霜霉威残留量的测定,采用主观评价体系和按照8%的入选率,最终筛选出低霜霉威残留品系2份,残留量均在0.2mg/kg以下,依次是D0351(腌渍型)和D0406-15(欧洲温室型);高霜霉威残留品系2份,残留量均在2.0mg/kg以上,依次是津研4号(华北型)和D9320(华南型)。
     2.利用Solexa技术和比较基因组学的方法对霜霉威胁迫下黄瓜果实差异表达基因进行鉴定,结果发现黄瓜嫩果果实在霜霉威胁迫下差异表达的基因共有14530个,符合FDR≤0.001且倍数差异在2倍以上的基因共731个,上调表达的有546个,占总数的74.7%,下调表达的有185个,占总数的25.3%。在农药霜霉威胁迫下,黄瓜果实差异表达的基因主要有四大类,第一类主要为农药解毒相关的基因,包括多向耐药性蛋白基因(PDR),多药耐药性蛋白基因(MRP),谷胱甘肽转移酶基因(GST),ABC转动蛋白基因(ABCT),细胞色素P450(CYP),苯丙氨酸解氨酶基因(PAL)等。第二类主要包括一些与转录调节相关的转录因子,涉及TCP转录因子,GATA转录因子,WRKY转录因子30,DREB1转录因子等。第三类主要包括转运与信号相关基因,蔗糖转动基因(SUT),氨基转移酶(AMT),琥珀酸脱氢酶(SUD)等。第四类主要包括胁迫与刺激相关的基因,过氧化物酶基因(POD),几丁质酶Ⅳ基因(CHI4),半胱氨酸合酶(CYS),70kDa热休克蛋白基因(HSP)等。
     3、GO分析显示差异表达基因涉及了多个生物学过程,在细胞成分,分子功能和生物学进程分类中,细胞组成(cell part),催化活性(catalytic activity)和代谢过程(metabolic process)占据各自最主要的部分。
     4、在霜霉威胁迫下,黄瓜果实差异表达基因显著性分析显示差异表达基因共涉及90个Pathway。其中P≤0.05且Q≤0.5的Pathway共有8个。其中谷胱甘肽代谢通路(Glutathionemetabolism)是一条显著性富集Pathway,进一步分析表明,其中的6个谷胱甘肽代谢基因在农药霜霉威处理后均表现出上调表达趋势。
     5、利用MALDI-TOF-TOF技术,获得差异蛋白的质谱图谱,用Mascot软件搜索NCBI数据库,鉴定出了18个差异表达的高丰度蛋白点。其中13个上调表达蛋白,为Spot1、6、8、10、11、12、13、14、15、16、17、18和19;5个下调表达蛋白,为Spot2、3、5、7和9。差异蛋白质点的主要功能是关于解毒、能量和转运、蛋白合成及抵抗外界胁迫反应。
     6、克隆了黄瓜ABC转运蛋白基因(ABCA19),并对其蛋白质结构进行了预测。该基因序列的全长为921bp,编码306个氨基酸。黄瓜ABCA19氨基酸序列与与拟南芥的同源性为56%。该基因编码的蛋白含特有的ATP/GTP结合区A序列[ATP/GTP-binding site motif A(P-loop)]。基因表达分析表明,黄瓜ABCA19在果实中受霜霉威胁迫的响应迅速,主要在处理的前期响应表达。同时,该基因在黄瓜叶、果和茎的表达量高低顺序稳定,在叶片中是表达量最高,在茎中是表达量最低。
Cucumber (Cucumis sativus L.) is a kind of important fresh vegetable. Vegetables are differentfrom food crops, and its attractivity is stronger. Pesticides are easily absorbed by the vegetableorganization after spraying. The accumulation of pesticide residues in the human body can causechronic poisoning, and some pesticides cause DNA damage, teratogenic and carcinogenic effects.More importantly, cucumber and other vegetable crops due to the presence of fresh features,pesticide residues have become the hot issues that the government, the market, and consumers arevery concerned. Propamocarb is a carbamate fungicide, and nearly80percent of the farmers inChina use it against cucumber downy mildew. Due to the production of high-dose use,propamocarb residue of cucumber has been an important issue of cucumber quality. Study aboutlow pesticide residues of cucumber has an important theoretical and practical significance to reduce the use of pesticides, cucumber production costs, improve the quality of cucumber products, protectthe safety of the diet of the people, and enhance the international competitiveness of vegetableproducts in China.
     In this study, propamocarb residues of32cucumber germplasms of different ecological typeswere determined, three low residual resources and three high residual resources were screened.With low residual resource (D0351) and high residual resource (D9320) as materials, and thecucumber fruit propamocarb residual physiological and molecular mechanism is carried out fromthe point of view of physiology and biochemistry, genomics and proteomics. On this basis, an ABCtransporter protein gene (ABCA19) related to cucumber low propamocarb residue was cloned byRT-PCR, and tissue-specific expression.
     Test results are as follows:
     1. This test was carried out for determination of propamocarb residue in32cucumbergermplasm resources of different ecological types. The use of subjective evaluation system andaccording to8%of the rate of selection, the final selection of low propamocarb residue strain2,followed by D0351(pickled) and D0406-15(European greenhouse type); high propamocarb residue strain2, followed by Jinyan No.4(North China type) and D9320(South China type).
     2. Using Solexa technology, differentially expressed genes were identified under propamocarbtreatment of cucumber fruit through the method of comparative genomics. The results found thatdifferentially expressed genes had a total of14,530, in line with FDR≤0.001and differences in2times more than a total of731genes.546genes were up-regulated expression, accounting for74.7%, and185genes were down-regulated expression, accounting for25.3%. Under propamocarbstress, differentially expressed genes are mainly four categories, the first category is mainly relatedto pesticide detoxification genes, including the multidirectional resistance protein gene (PDR),multidrug resistance protein gene (MRP), glutathione transferase gene (GST), ABC protein gene(ABCT), cytochrome P450(CYP), phenylalanine ammonia solution enzyme gene (PAL), etc. Thesecond type mainly includes some transcription factors, including TCP transcription factors, GATAtranscription factor, WRKY transcription factor30etc. Third category mainly includes transportand signal related genes, including sucrose transport genes (SUT), transaminase (AMT), succinatedehydrogenase (SUD), etc. Fourth category mainly includes stress stimulus related genes, includingperoxidase gene (POD), cysteine synthase gene (CYS),70kDa heat shock protein gene (HSP), etc.
     3. GO analysis showed that differentially expressed genes involved in several biologicalprocesses, including cellular components, molecular function and biological processes. Cell part,catalytic activity and metabolic process occupy mainpart respectively.
     4. In propamocarb stress, differentially expressed genes involved90Pathway. The Pathway ofP≤0.05and Q≤0.5had a total of eight. Glutathione metabolism pathway (Glutathione metabolism)is a significant enrichment pathway among them, and further analysis showed that six genes ofglutathione metabolism were all up-regulated expression.
     5. Using MALDI-TOF-TOF technology,18differentially expressed proteins of highabundance were identified with Mascot software.13protein spots showed up-regulated expression,which were Spot1,6,8,10,11,12,13,14,15,16,17,18and19;5protein spots showeddown-regulated, Spot2,3,5,7and9. The main function of the differential protein spots wasdetoxification, energy and transport, protein synthesis, and resistance to stress reaction.
     6. In this study, the cucumber ABC transporter gene (ABCA19) was cloned, and its proteinstructure was predicted. The entire length sequence of this gene was921bp encoding306aminoacids. The homology of ABCA19amino acid sequence between cucumber and arabidopsis was 56%. Encoding the protein of this gene contained the ATP/GTP binding region [ATP/GTP-bindingsite motif A (P-loop)]. Gene expression analysis showed that, ABCA19responded rapidly underpropamocarb stress, mainly expressed in the early treatment. At the same time, the gene expressionfound that the leaf had the highest expression level, and stem had the lowest expression.
引文
[1] Pimental D, Levitan L. Pesticides:amounts applied and amounts reaching pests[J]. Biosciences,1986,36:86-91.
    [2]刘芳芳.黄瓜种质资源低农药残留性评价[D].哈尔滨:东北农业大学,2008.
    [3]马佰慧.黄瓜果实霜霉威残留性的遗传分析与SSR分子标记[D].哈尔滨:东北农业大学,2010.
    [4]雷红涛,孙远明.蔬菜农药残留问题[J].中国食物与营养,2002,6:17-19.
    [5]吴鹏,秦智伟,周秀艳,武涛,辛明.蔬菜农药残留研究进展[J].东北农业大学学报,2011,42(1):138-144.
    [6]李晨光.黄瓜、甜瓜霜霉病流行学初步研究[D].长春:吉林农业大学,2008.
    [7] Hiemstra M, Kok A. Determination of propamocarb in vegetables using polymer-basedhigh-performance liquid chromatography coupled with electrospray mass spectrometry[J]. Journalof Chromatography A,2002,972:231–239.
    [8]刘腾飞,谢修庆,刘文婷.气相色谱及气质联用在农药残留分析中的应用[J].现代农业科技,2010,3:179-182.
    [9]唐晓宾,许泓,万志全,曹学军,菅丽萍,李建芳,赵鹏.万积成检测霜霉威的两种方法的比较[J].中国食品卫生杂志,2009,21(1):36-39.
    [10]刘芳芳,秦智伟,周秀艳.低农药残留量的黄瓜种质资源筛选[J].东北农业大学学报,2010,41(7):32-36.
    [11]李飞飞,黄荣茂,胡德禹,张侃侃,丁明伟,薛伟.气相色谱测定土壤中霜霉威的残留[J].农药,2010,49(2):131-133.
    [12]马佰慧,秦智伟,谭行之.利用气相色谱检测黄瓜果实中霜霉威的残留量[J].长江蔬菜,2010,20:51-53.
    [13]滕中秋,付卉青,贾少华,孟薇薇,戴荣继,邓玉林.植物应答非生物胁迫的代谢组学研究进展[J].植物生态学报,2011,35(1):110-118.
    [14]刘红玉.高铁酸钾对叶菜类蔬菜中三种有机磷农药的降解作用研究[D].青岛:中国海洋大学,2009.
    [15]何和明. PGR-1对槟榔苗的生理效应[J].海南大学学报,1987,5(3):20-24.
    [16]汪季涛.油菜素内酯调控番茄农药降解的生理与分子机制[D].杭州:浙江大学,2010.
    [17]王红红,李凯荣,侯华伟.油菜素内酯提高植物抗逆性的研究进展[J].干旱地区农业研究2005,23(3):213-220.
    [18]赵建庄,康国瑞.快速测定果蔬中农药残留量的方法研究[J].农业环境保护,2002,21(1):70-71.
    [19]赵秀阁.几种典型农药化合物及其残留的生物和化学降解的研究[D].北京:中国环境科学研究院,2004.
    [20]吕海燕.农药对两种蔬菜生理生化影响及机理研究[D].扬州:扬州大学,2007.
    [21] Schmuck G, Mihail F. Effects of the carbamates fenoxycarb, propamocarb and propoxur onenergy supply, glucose utilization and SH-groups in neurons[J]. Archives of Toxicology,2004,78:330-337.
    [22]李贵,吴竞仑.除草剂对作物生理生化指标的影响[J].安徽农业科学,2007,35(29):9157-9159.
    [23]盛慧.黄瓜单倍体培育及其发育相关基因筛选[D].哈尔滨:东北农业大学,2010.
    [24]肖金平,陈俊伟,张慧琴,徐红霞,王慧亮,谢鸣.干旱胁迫下柑橘叶片基因表达谱的cDNA-AFLP分析[J].园艺学报,2011,38(3):417-424.
    [25]秘彩莉,张学勇,温小杰,刘旭.利用cDNA-AFLP技术获得小麦耐盐性相关基因TaVHA-C[J].中国农业科学,2006,39(9):1736-1742.
    [26]郭丽琼,林俊芳,杨丽卿,刘瑞瑞.应用cDNA-AFLP技术分离草菇冷诱导表达基因[J].园艺学报,2005,32(1):54-59.
    [27]武涛.南瓜矮化突变体cga的遗传、生理生化及相关基因表达分析[D].杭州:浙江大学,2008.
    [28]裴雁曦,李德葆,骆红梅,董海涛.用cDNA微阵列分析水稻防卫反应及信号传导相关基因[J].浙江大学学报,2003,29(4):399-401.
    [29]刘桂丰,褚延广,王玉成,杨传平,侯英杰. cDNA微阵列技术研究NaHCO3胁迫下星星草基因表达谱[J].西北植物学报,2005,25(5):887-892.
    [30]王玉成,李红艳,杨传平,张国栋. cDNA微阵列技术研究干旱胁迫下柽柳基因的表达[J].植物研究,2007,2:186-195.
    [31]杨之帆,陈永勤,李春华,蒋思婧.利用抑制差减杂交技术分离受水稻抗性调控的褐飞虱基因[J].昆虫学报,2009,52(10):1059-1067.
    [32]李艳军,张新宇,杨会娜,田新惠,孙杰.利用抑制差减杂交技术分离棕色棉纤维特异表达基因[J].分子植物育种,2009,7(1):194-198.
    [33]周亚君,陈钰辉,刘富中,张映,连勇.利用抑制差减杂交技术分离茄子单性结实相关ESTs[J].园艺学报,2010,37(12):1944-1952.
    [34]唐建新,陈卓,胡晗华.利用抑制差减杂交技术分离三角褐指藻在缺氮条件下上调表达的基因[J].2009,31(8):865-870.
    [35]王林海,吕再萍,张艳欣,黎冬华,吕海霞,张晓燕,张秀荣.利用抑制差减杂交分离芝麻耐湿性相关基因[J].中国油料作物学报,2010,32(4):485-490.
    [36] Johnston A J, Meier P, Gheyselinck J, Wuest S, Federer M, Schlagenhauf E, J rg B,Grossniklaus U. Genetic subtraction profiling identifies genes essential for Arabidopsisreproduction and reveals interaction between the female gametophyte and the maternalsporophyte[J]. Genome Biology,2007,8:R204.
    [37]金晓霞.利用抑制消减杂交(SSH)技术筛选乙烯利诱导黄瓜茎尖雌性表达相关基因[D].哈尔滨:东北农业大学,2011.
    [38]徐慧妮,何小钊,王康,陈丽梅,李昆志. NO-3胁迫下菠菜SSH文库的构建及EST分析[J].园艺学报,2011,38(增刊):2552.
    [39]闫恩维,谭放,那晓婷.北五味子叶片EST文库的构建及主要表达基因分析研究方法[J].中国林副特产,2009,3:100-101.
    [40]张洁,焦岳宏,陆海峰,李有志.玉米混合组织的EST文库的构建和部分EST序列的分析[J].广西农业生物科学,2004,23(3):243-249.
    [41]王丽娟,孙彩玉,毕永贤,秦智伟.黄瓜抗霜霉病相关EST-SSR的信息分析.东北农业大学学报,2011,42(10):52-56.
    [42]刘生财,林玉玲,陈晓东,赖钟雄.利用Solexa测序技术鉴定苋菜试管开花过程中的miRNAs[J].热带作物学报,2011,32(7):1296-1303.
    [43] Wu T, Qin Z W, Zhou X Y, Feng Z, Du Y L. Transcriptome profile analysis of floral sexdetermination in cucumber. Journal of Plant Physiology,2010,167:905-913.
    [44] Metzker ML, et al. Sequencing technologies-the next generation[J]. Nature Reviews Genetics,2010,11:31-46.
    [45]熊筱晶. NCBI高通量测序数据库SRA介绍[J].生命的化学,2010,30(6):959-964.
    [46]宋琳琳,顾朝辉,韦朝春,陈赛娟. Illumina-Solexa测序数据质量评估系统的构建[J].现代生物医学进展,2009,9(15):2899-2904.
    [47]于聘飞,王英,葛芹玉.高通量DNA测序技术及其应用进展[J].南京晓庄学院学报,2010,3:1-5.
    [48] Wasinger V C, Cordwell S J, Cerpa P A, Yan J X, Gooley A A, Wilkins M R, Duncan M M,Harris R, Williams K L, Humphery S I. Progress with gene product mapping the Mollicutes:mycoplasma genitalium[J]. Electrophoresis,1995,16:1090-1094.
    [49]万华方,董翠月,梁颖.植物蛋白质组学的研究进展[J].生物学通报,2006,41(12):10-12.
    [50]张鹏.黄瓜果实弯曲性QTL定位及蛋白质组差异研究[D].哈尔滨:东北农业大学,2009.
    [51]辛明.黄瓜植株矮化的分子基础[D].哈尔滨:东北农业大学,2010.
    [52]阮松林,马华升,王世恒,忻雅,钱丽华,童建新,赵杭苹,王杰.植物蛋白质组学研究进展Ⅱ.蛋白质组技术在植物生物学研究中的应用[J].遗传,2006,28(12):1633-1648.
    [53] Leone A, Costa A, Tucci M, Grillo S. Comparative analysis of short-and long-term changes ingene expression caused by low water potential in potato (Solanum tuberosum) cell suspensioncultures[J]. Plant Physiology,1994,106(2):703-712.
    [54]许培磊.低温对不同基因型黄瓜叶片抗氧化酶与蛋白质组的影响[D].泰安:山东农业大学,2009.
    [55] Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H. Proteome analysis of differentiallydisplayed proteins as a tool for investi-gating ozone stress in rice (Oryza sativa L.) seedlings[J].Proteomics,2002,2(8):947-959.
    [56]赛里默.水稻幼苗响应高浓度二氧化碳的差异蛋白质组学研究[D].北京:清华大学,2008.
    [57] Shen S, Komatsu S. Characterization of proteins responsive to gibbereln in the leaf sheath ofrice (Oryza sativa L.) seedling using proteome analysis[J]. Biological and Pharmceutical Buetin,2003,26:129-136.
    [58] Chang WW, Huang L, Shen M. Patterns of protein synthesis and tolerance of anoxia in roottips of maize Beatings acclimated to a low-oxygen environment and identification of proteins bymass spectrometry[J]. Plan Physiology,2000,122(2):295-318.
    [59]王华丙,张振义,包锐,陈宇星. ABC转运蛋白的结构与转运机制.生命的化学,2007,27(3):208-211.
    [60] Higgins C F. ABC transporters: from Microorganisms to man [J]. Annual Review of CellBiology,1992,8:67-113.
    [61]王康,徐慧妮,李昆志.植物ABC转运蛋白及其在Al胁迫下的功能研究进展[J].生物技术,2010,20:89-93.
    [62] Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y,Shinozaki K. ABC transporter AtABCG25is involved in abscisic acid transport and responses [J].Proceedings of the National Academy of Sciences,2010,107:2361-2366.
    [63]王先磊.蜡梅ABC转运蛋白基因CpABC的克隆与功能的初步分析[D].重庆:西南大学,2011,24-28.
    [64] Hung L W, Wang I X, Nikaido K, Liu P Q, Ames GF, Kim SH. Crystal structure of theATP-binding subunit of an ABC transporter [J]. Nature,1998,17:703-707.
    [65] Locher K P, Lee A T, Rees D C.The E. coli BtuCD structure: a framework for ABCtransporter architecture and mechanism [J]. Science.2002,10:1091-1098.
    [66] Roger J P, Kaspar P. Structure of a bacterial multidrug ABC transporter [J]. Nature,2006,443:180-185.
    [67] Gao Q S, Yang Z F, Zhou Y, Zhang D, Yan C H, Liang G H, Xu C W. Cloning of anABC1-like gene ZmABC1-10and its responses to cadmium and other abiotic stresses in maize (Zeamays L.)[J]. Acta Agronomica Sinica,2010,36(12):2073-2083.
    [68] Kang J, Hang J U, Lee M, Kim Y, Assmann S M, Martinoia E, Lee Y. PDR-type ABCtransporter mediates cellular uptake of the phytohormone abscisic acid [J]. Proceedings of theNational Academy of Sciences,2010,107:2355-2360.
    [69]王彩香,景蕊莲,毛新国,庞晓斌,刘惠民,昌小平.小麦TaABC1L的克隆及表达特性分析[J].作物学报,2007,33(6):878-884.
    [70]尚毅. DON诱导的小麦TaPDRI基因的克隆和特征分析以及二穗短柄草多倍体中PDR1基因的系统进化[D].南京:南京农业大学,2009,45-47.
    [71] Derek A W. Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress [J]. Journal of Experimental Botany,2003,54:1163-1174.
    [72]侯冬梅,苗博,王洋洋,张云静,刘代刚,吴学玲.嗜酸氧化亚铁硫杆菌中锌离子转运基因的鉴定与分析[J].中国有色金属学报,2012,22:1497-1503.
    [73]曲跃军,杜人杰,王雷,吕澈妍,吴丽丽,姜廷波.抑制性消减杂交技术研究Cd2+胁迫下星星草基因表达.东北林业大学学报,2010,38:9-12.
    [74]冯卓,秦智伟,武涛,何红梅.黄瓜细胞质型谷氨酰胺合成酶基因(GS1)的克隆及其在低氮条件下的表达[J].中国农业科学,2012,45(15):3100-3107.
    [75]赵胡,李裕红.植物ABC转运蛋白研究综述[J].海峡科学,2012,2:13-17.
    [76] Theodoulou F L. Plant ABC transporters [J]. Biochimicaet Biophysica Acta,2000,1465:79-103.
    [77] Walters S A, Wehner T C. Evaluation of the U.S. cucumber germplasm collection for root sizeusing a subjective rating technique [J]. Euphytica,1994,79:39-43.
    [78] Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable toacrylamide gels [J]. Analytical Biochemistry,1971,44(1):276-287.
    [79]陈建勋,王晓峰.植物生理学实验指导(第二版)[M].广州:华南理工大学出版社,2006.
    [80] Aebi H. Catalase in vitro[J]. Methods in Enzymology,1984,105:121-126.
    [81] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein using the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72:248-254.
    [82]Giannakoula A, Moustakas M, Syros T, Yupsanis T. Aluminium stress induces up-regulation ofan efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line [J].Environmental and Experimental Botany,2010,67:487-494.
    [82] Giannakoula A, Moustakas M, Mylona P, Papadakis I, Yupsanis T. Aluminium tolerance inmaize is correlated with increased levels of mineral nutrients, carbohydrates and proline anddecreased levels of lipid peroxidation and Al accumulation [J]. Journal of Plant Physiology,2008,165:385-396.
    [84] Foyer C H, Halliwell B. The Presence of Glutathione and Glutathione Reductase inChloroplasts:A Proposed Role in Ascorbic Acid Metabolism[J]. Planta,1976,133:21-25.
    [85]汪季涛.油菜素内醋调控番茄农药降解的生理与分子机制[D].杭州:浙江大学,2010,17-18.
    [86] Chen F H,Cai H N,Feng Z S,et al. Changes in hormones levels in fruit during grape fruitdevelopment[J]. Journal of Plant Physiology and Molecular Biology,2002,28(5):391-395.
    [87]冯卓.低氮胁迫下黄瓜幼苗差异表达基因鉴定与蛋白质组学分析[D].哈尔滨:东北农业大学,2012.
    [88] Xion L, Zhu J K. Regulation of Abscisic Acid Biosynthesis[J]. Plant Physiology,2003,133:29-36.
    [89] Audic S, Claverie J M. The significance of digital gene expression profiles[J]. Genome Res,1997,7(10):986-995.
    [90]王海英.草菇不同发育时期菌柄基因表达谱差异初步分析[D].福州:福建农林大学,2011.
    [91]赵彦檀.枣谷胱甘肽转移酶的克隆、表达及其与枣疯病相关性研究[D].保定:河北农业大学,2011.
    [92] Giavalisco P, Nordhoff E, Lehrach H, Gobom J, Klose J. Extraction of proteins from planttissues for two-dimensional electrophoresis analysis[J]. Electrophresis,2003,24:207-216.
    [93]陈振德,张清智,王文娇.叶类蔬菜低农药残留基因型筛选研究[J].农业环境科学学报,2010,29(2):239-245.
    [94] Gulen H, Eris A. Effect of heat stress on peroxidase activity and total protein content instrawberry plants[J]. Plant Science,2004,166:739-744.
    [95] Chaitanya K V, Sundar D, Masilamani S, Reddy A R. Variation in heat stress-inducedantioxidant enzyme activities among three mulberry cultivars [J]. Plant Growth Regulation,2002,36:175-180.
    [96] Mazorra L M, Nunez M, Hechavarria M, Coll F, Sanchez-Blanco M J. Influence ofbrassinosteroids on antioxidant enzymes activity in tomato under different temperatures[J]. PlantBiology,2002,45:593-596.
    [97] Davies D G, Swanson H R. Activity of stress-related enzymes in the perennial weed leafyspurge[J]. Environmental and Experimental Botany,2001,46:95-108.
    [98] Dionisio-Sese M L, Tobita S. Antioxidant responses of rice seedlings to salinity stress[J]. PlantScience,1998,135:1-9.
    [99] Sandermann H.Plant metabolism of xenobiotics[J]. Trends in Biochemical Sciences,1992,17(2):82-84.
    [100] Xia X J, Wang Y J, Zhou Y H, Mao W H, Shi K, Asami T, et al. Reactive oxygen speciesplays a crucial role in brassinosteroids-induced stress tolerance in Cucumis sativus [J].PlantPhysiology,2009,150:801-814.
    [101]贾慧春. NaCl胁迫对黄瓜幼苗生长及可溶性物质含量的影响[J].农业科技与装备,2010(6):1-3.
    [102] Gill P K, Sharma A D, Singh P, et al. Changes in germination, growth and soluble sugarcontents of Sorghum bicolor (L.) moench seeds under various abiotic stresses [J]. Plant GrowthRegulation,2003,40(2):57-162.
    [103] Kameli A, Losel D M. Growth and sugar accumulation in durum wheat plants under waterstress[J]. New Phytologist,1996,132(1):57-62.
    [104] Zhang S Q, Outlaw J R, Aghoram K, et al. Relationship between changes in the guard cellabscisic-acid content and other stress-related physiological parameters in intact plants[J]. Journal ofExperimental Botany,2001,52(355):301-308.
    [105] Finkelstein R R, Gampala S S, Rock C D. Abscisic acid signaling in seeds and seedlings[J].Plant Cell,2002,14: s15-s45.
    [106] Fuerst E P, Irzyk G P, Miller K D. Partial characterization of glutathione S-transferaseisozymes induced by the herbicide safener benoxacor in maize[J]. Plant Physiology,1993,102:795-802.
    [107] Fujita M, Hossain M Z. Molecular cloning of cDNAs for three tau-type glutathioneS-transferases in pumpkin (Cucurbita maxima) and their expression properties[J]. PhysiologiaPlantarum,2003,117:85-92.
    [108] Gueta-Dahan Y, Yaniv Z, Zilinskas B A, Ben-Hayyim G. Salt and oxidative stress: similar andspecific responses and their relation to salt tolerance in Citrus[J]. Planta,1997,203:460-469.
    [109] Wang J, Jiang Y, Chen S, Xia X, Shi K, Zhou Y, Yu Y, Yu J. The different responses ofglutathione-dependent detoxification pathway to fungicide chlorothalonil and carbendazim intomato leaves[J]. Chemosphere,2010,79:958-965.
    [110] Karunker I, Benting J, Lueke B, Ponge T, Nauen R. Over-expression of cytochrome P450CYP6CM1is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisiatabaci (Hemiptera: Aleyrodidae)[J]. Insect Biochemistry and Molecular Biology,2008,38:634-644.
    [111] Rasmussen J B, Smith J A, Williams S, Burkhart W, Ward E, Somerville S C, et al. cDNAcloning and systemic expression of acidic peroxidases associated with systemic acquired resistanceto disease in cucumber[J]. Physiological and Molecular Plant Pathology,1995,36:389-400.
    [112] Kiyomi N, Guis M, Rose J K, Kubo Y, Bennett K A, Lu W J, et al. Ethylene regulation offruit softening and cell wall disassembly in Charentais melon[J]. Journal of Experimental Botany,2007,58:1281-1290.
    [113] Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plants[J].Plant Molecular Biology,1996,32:191-222.
    [114] Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecularchaperones in the abiotic stress response[J]. Trends in Plant Science,2004,9:244-252.
    [115] Youssefian S, Nakamura M, Orudgev E, Kondo N. Increased cysteine biosynthesis capacityof transgenic tobacco overexpressing an o-acetylserine (thiol)-lyase modifies plant responses tooxidative stress[J]. Plant Physiology,2001,126:1001-1011.
    [116] Terzaghi W B, Cashmore A R. Light-regulated transcription[J]. Annual Review of PlantPhysiology and Plant Molecular Biology,1995,46:445-474.
    [117] Sung D Y, Kaplan F, Lee K J, Guy C L. Acquired tolerance to temperature extremes[J].Trends in Plant Science,2003,8:179-187.
    [118] Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsiveelement binding factors act as transcriptional activators or repressors of GCC Box-mediated geneexpression[J]. The Plant Cell,2000,12:393-404.
    [119] Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E. Zea maysL. protein changes in response to potassium dichromate treatments[J]. Chemosphere,2006,62,1234-1244.
    [120] Korithoski B, Le′vesque C M, Cvitkovitch D G. Involvement of the detoxifying enzymelactoylglutathione lyase in streptococcus mutans aciduricity [J]. Journal of Bacteriology,2007,21,7586-7592.
    [121] Glavinas H, Krajcsi P, Cserepes J, Sarkadi B. The role of ABC transporters in drug resistance,metabolism and toxicity[J]. Current Drug Delivery,2004,1,27-42.
    [122] Xu C J, Li Y T, Kong A T. Induction of phase I, II and III drug metabolism/transport byxenobiotics. Archives of Pharmacal Research,2005,28,249-268.
    [123] Yu D, Fan B, MacFarlane S A, Chen Z. Analysis of the involvement of an inducibleArabidopsis RNA-dependent RNA polymerase in antiviral defense[J]. Molecular Plant-MicrobeInteractions,2003,16,206-216.
    [124] Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, WangY, Zhao X, Li S, Zhu L. A B-lectin receptor kinase gene conferring rice blast resistance [J]. ThePlant Journal,2006,46,794-804.
    [125] Moffett P, Farnham G, Peart J, David C. Interaction between domains of a plant NBS-LRRprotein in disease resistance-related cell death[J]. The EMBO Journal,2002,21,4511-4519.
    [126] Tesfaye M, Temple S J, Allan D L, Vance C P, Samac D A. Overexpression of malatedehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance toaluminum[J]. Plant Physiology,2001,127,1836-1844.
    [127] Dooki A D, Mayer-Posner F J, Askari H, Zaiee A, Salekdeh G H. Proteomic responses ofrice young panicles to salinity[J]. Proteomics,2006,6,6498-6507.
    [128] Vannini C, Domingo G, Marsoni M, Bracale M, Sestili S, Ficcadenti N, Speranza A, CrinelliR, Carloni E, Scoccianti V. Proteomic changes and molecular effects associated with Cr(III) andCr(VI)treatments on germinating kiwifruit pollen[J]. Phytochemistry,2011,72,1786-1795.
    [129] Hirokawa N, Tekamura R. Biochemical and molecular characterization of diseases linked tomotor proteins[J]. Trends in Biochemical Sciences,2003,28,558-565.
    [130] Cole S P, Bhardwaj G, Gerlach J H, Mackie J E, Grant C E, Almquist K C, Stewart A J, KurzE U, Duncan A M, Deeley R G. Overexpression of a transporter gene in a multidrug-resistanthuman lung-cancer cell line[J]. Science,1992,258:1650-1654.
    [131] Urban M, Daniels S, Mott E, Hammond-Kosack K. Arabidopsis is susceptible to the cerealear blight fungal pathogens Fusium graminearum and Fusarium culmorum[J]. The plant Journal,2002,32:961-973.
    [132] Fleibner A, Sopalla C, Weltring K M. An ATP binding cassette multidrug-resistancetransporteris necessary for tolerance of Gibberella pulicaris to phytoalexins and virulence on potatotubers[J]. Molecular plant-microbe interactions,2002,15:102-108.
    [133] Lee M, Lee K, Lee J, Noh E, Lee Y. AtPDR12contributes to lead resistance in Arabidopsis[J]. Plant Physiology,2005,138:827-836.
    [134] Sanchez-Fernandez R, Davies T G, Coleman J O, Rea P A. The Arabidopsis thalianaABC protein superfamily, a complete inventory[J]. The Journal of Biological Chemistry,2001,276:30231-30244.
    [135] Schulz B, Kolukisaoglu H U. Genomics of plant ABC transporters:the alphabet ofphotosynthetic life forms or just holes in membranes[J]. FEBS Letter,2006,580:1010-1016.
    [136] Linton K J,Higgins C F. The Escherichia coli ATP-binding cassette (ABC) proteins[J].Molecular Microbiology,1998,28:5-13.
    [137] Sheps J A,Ralph S, Zhao Z, Baillie D L, Ling V. The ABC transporter gene familyCaenouhabdltls elegans has implications for the evolutionary dynamics multidrug resistance ineukaryotes [J]. Genome Biology,2004,5(3):R15.
    [138].Decottignies A, Goffeau A. Complete inventory of the yeast ABC proteins[J]. NatureGenetics,1997,15:137-145.
    [139] Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transportersuperfamily[J]. Genome Research,2001,11:1156-1166.
    [140] Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumissativus L [J].Nature Genetics,2009,41(12):1275-1281.
    [141]王利国,李玲.拟南芥中ABC转运蛋白的研究进展[J].生命科学研究,2002,6:13-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700