CD226分子表达于造血干/祖细胞和巨核细胞谱系及神经细胞谱系参与巨核细胞倍体化调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]本课题旨在研究CD226分子在造血干/祖细胞和相关粒系,红系和巨核细胞谱系细胞上的表达,及造血干细胞跨胚层向神经细胞分化后,CD226分子表达的变化,探索了CD226分子在巨核细胞成熟过程中的作用及与淋巴细胞功能相关抗原-1的关系。
     [方法]使用血小板生成素(thrombopoietin,TPO)和粒细胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)分别诱导成人和胎儿CD34~+细胞向巨核细胞和粒细胞分化。使用红细胞生成素(erythropoietin,EPO)诱导胎肝单个核细胞和成人CD34~+细胞向红细胞分化。使用含TPO的无血清培养基中长期培养扩增人胎肝CD34~+细胞,将扩增细胞置于Neurobasal培养基中,诱导其向神经细胞分化。使用RT-PCR,流式细胞术和免疫组化技术分析CD226分子和淋巴细胞功能相关抗原-1(lymphocyte function associated antigen 1,LFA-1)α亚单位(CDlla)在造血过程中表达的变化。使用抗体交联技术研究CD226分子和LFA-1分子在巨核细胞倍体化过程所起的作用。使用流式细胞仪和免疫组化染色技术分析CD34~+细胞向神经细胞分化过程中,CD226分子以及造血和神经细胞相关抗原表达的变化。
[Objectives] In this study, we examined the expression of CD226 on megakaryocytic, granulocytic and erythroid lineages from hematopoietic stem cells/progenitor cells in adult and fetus and its potential role in megakaryocytic maturation. We also investgated the potential of fetal liver derived-CD34~+cells induced by TPO to proliferate and differentiate further into neural stem cells and neural cells and analyzed and expression of CD226 on theses cells during transdefferetiation from hematopoietc cells to neural cells.[Methods] CD34~+ cells isolated from adult and fetus were induced to differentiate toward the megakaryocytic lineage by thrombopoietin (TPO) and the granulocytic lineage by granulocyte colony-stimulating factor(G-CSF), respectively. Mononuclear cells from fetal liver and CD34~+ cells from adult
    were induced to differentiate toward erythroid-lineage by erythropoietin (EPO). FL derived-CD34~+cells isolated with magnetic beads were incubated in serum-free medium containing TPO for 60 days with weekly changes of half of the medium. The expanded cells were incubated in neurobasal medium containing N-2 supplement. The expression of CD226 and lymphocyte function associated antigen-1 (LFA-1) (CDlla, a subunit of LFA-1 molecule, were investigated during proliferation and differentiation toward granulocyte-lineage, megakaryocyte-lineage and erythroid-lineage. The effect of CD226 monoclonal antibody (MoAb) and LFA-1 MoAb on megakaryocytes was studied with antibody cross-liking technique. We also investigated the expression of CD226 molecule, hemopoiesis related antigens and neural cell related antigens on the FL derived-CD34+cells induced to differentiate toward neural cells with flow cytometry and immunocytochemistry. [Results] CD34~+ cells from adult and fetus and TPO-induced CD41~+ cells allexpressed CD226 molecule. However, CD226 was not expressed on erythroidprogenitor cells and erythroblasts and most cells of granulocytic lineage although G-CSF induced a significant increase of the expression of CD226 on CD34~+ cells in the early period of time during their differentiation toward granulocyte-lineage. CD226 MoAb acts on megakaryocytes by inducing intracellular calcium mobilization. The expression of LFA-1 decreased significantly at late stage of differentiation and maturation of fetal megakaryocytes whereas the expression of LFA-1 on adult megakaryocytes retained at a high level. Moreover, CD226 MoAb in combination with LFA-1 MoAb can shift the ploidy of generated megakaryocytes from adult-derived CD34~+ cells to higher classes significantly although CD226 and LFA-1 MoAb
引文
1. Mazur EM. Megakaryocytopoiesis and platelet production: a review. Exp Hematol. 1987; 15: 340.
    2. Hoffman R. Regulation of megakaryocytopoiesis Blood.1989; 74: 1196-1212.
    3. Briddle RA, et al. Characterization of the human burst-forming unite-megakaryocyte. Blood. 1989; 74: 145.
    4.马东初.人中间转化型未成熟巨核细胞的体外研究.中华血液学杂志.1991.12:198.
    5. Odell TT, et al. Generation cycle of rat megakaryocytes. Exp Cell Res. 1968; 53: 321.
    6. Jackson CW. Cholinesterase as a possible marker for early cells of the megakaryocytic series. Blood 1995. 86: 49.
    7. long MW; Immature megakaryocytes in the mouse: In vitro relationship to megakaryocytic progenitor cells and mature megakaryocyte. J cell physiol. 1982; 112: 339.
    8. Rabellino EM, et al. Human megakaryocytes Ⅱ, Expression of platelet proteins in early marrow megakaryocytes. J Exp Med 1981; 154: 85.
    9. Vinci G, et al. Immunological study of in vitro maturation of human megakaryocytes. Br J Haematol 1984; 26: 589.
    10. Debili N, et al. Expression of CD34 and platelet glycoproteins during human megakaryocytes to differentiation. Blood 1992; 80: 3022.
    11. Jackson CW, et al. Two-color flow cytometrgc meassurement of DNA distmbution of Rat megakargctytes in unfixed, unfractionated manow cell secspenslons Blood; 1984, 63: 768.
    12. Souyri M, et al. A putative truncated cytokine receptor gene transduced by the myeloproliferative leukemia virus immortalizes hematopoietic progenitors. Cell. 1990; 63: 1137.
    13. Vigon IM, et al. Molecular coloning and characterization of MPL. Pro Natl Acad Sci USA. 1992; 89: 5640.
    14. Methia N, et al. Oligodeoxynucleotides antisense to the proto-oncogene c-mpl specifically inhibits in vitro megakaryocytopoiesis. Blood. 1993; 82: 1395.
    15. De Sauvage FJ, et al. Stimulation of megakryocyopoiesis and thrombopoiesis by the cMpl ligand. Nature. 1994, 369: 533.
    16. Wendling F, et al. c-Mpl ligand is humoral regulator of megakaryocytopoiesis. Nature. 1994; 396: 571.
    17. Bartley TD, et al. Identification and cloning of a MK growth and development factor that is a ligand for the cytokine receptor Mpl. Cell. 1994, 77: 1117.
    18. Los S, et al. Cloning and expression of murine thrombopoietin DNA and stimulation of platelet production in vitro. Nature. 1994, 369: 565.
    19. Metacalf D. Thrombopoietin-at last. Nature. 1994; 369: 519.
    20. Gurney AL, et al. Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STATE signal transduction pathway and She phosphorylation. Pro Natl Acad Sci USA. 1995;92:5292.
    21. Kauskansky k: Thrombopoietin, the Primary regulator of platelet production. Blood.l995;86:419.
    22. Kaushansky K, et al. Promotiom of megakaryocyte progenitor expansion and differentiation by the c-mpl ligand thrombopoietin. Nature. 1994;369:568.
    23. Hill RJ, et al. Correlation of in vitro and in vivo biological activities during the partial purification of thrombopoitin. Exp Hematol.l992;20:354.
    24. Quesenberry PJ, et al. The effect of interleukin-3 and GM-CSA-2 on megakaryocyte and myeloid clonal colony formation. Blood. 1985;65:214.
    25. Williams N, et al. Murine megakaryocyte colony stimulating factor: its relationship to interleukin-3. Leuk Res. 1985; 9: 1487.
    26. Ishibashi T, et al. Interleukin-3 promotes the differentiation of isolated single megakaryocytes. Blood; 1986; 67:1512.
    27. Segal GM, et al. Analysis of murine megakaryocyte colony size and ploidy: effects of interleukin-3. J Cell Physiol. 1988;137:537.
    28. Williams N, et al. Cell interactions influencing murine marrow megakaryocytopoiesis:nature of the potentiating cell in bone marrow. Blood. 1981;57:157.
    29. Long MW, et al. Immune regulation of in vitro murine megakaryocyte development:role of T lymphocytes and Ia antigen expression.J Exp Med. 1985; 162:2053.
    30. Lotem J, et al. Regulation of megakryocyte development by interleukin-6. Blood. 1989;74:157.
    31. Mazur EM, et al. Human serum megakaryocyte colony-stimulating acivity appears to be distinct from interleukin-3, granulocyte-macrophage colony-stimulating factor, and lymphocyte-conditioned medium. Blood. 1990;76:290.
    32. Zsebo KM, et al. Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell.l990;63:213.
    33. Huang E,et al. The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell. 1990;63:225.
    34. Anderson DM, et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell.l990;63:235.
    35. Andrews RG, et al. Recombinant human stem cell factor stimulates in vitro and in vivo hematopoiesis in baboons. Blood. 1990;76:10.
    36. Avraham H, et al. Effects of the stem cell factor, c-kit ligand, on human megakaryocytic cells. Blood. 1992;79:365.
    37. Kaushansky K, et al. Thrombopoietin, the Mpl ligand, is essential for full megakaryocyte development. Proc Natl Acad Sci USA.1995;92:3234.
    38. Poupart P, et al. EMBO J. 1987;6:1219.
    39. Wang GG, et al. Stimulation of murine hemapoietic colony formation by IL6J Immunol.l988;140:3040.
    40. Interleukin 6 is potent thrombopoietic factor in vivo in mice. Blood. 1989;74:1241.
    41. Williams N, et al. The role of interleukin 6 in megakaryocyte in megakaryocyte formation, megakaryocyte development and platelet production. Ciba Found Symp. 1992; 167:160.
    42. Kishimoto T, et al.The molecular biology of interleukin 6 and its receptor.Ciba Found Symp.l992;167:5.
    43. Sui XG, et al. Soluble interleukin-6(IL-6) receptor with IL-6 stimulates megakaryocytopoiesis from human CD34+ cells through glycoprotein(gp)130 signaling. Blood.l999;93:2525.
    44. Paul SR, et al. The cloning and biological characterization of recombinant human interleukin 11. Int J Cell Cloning. 1992;10:135.
    45. Yonemura Y, et al.Synergistic effects of interleukin 3 and interleukin 11 on murine megakaryopoiesis in serum-free culture. Exp Hematol. 1992;20;1011.
    46. Teramura M, et al. Interleukin-11 enhances human megakaryopoiesis. Blood. 1992;79:327.
    47. Ccastle V, et al. Frequency and mechnism of neonatal thrombocytopenia. Journal of pediatrics. 1986;108:749-755.
    48. Roberts IAG and Murry NA. Management of thrombocytopenia in neonates. British Journal of Haemotlogy. 1999; 105-.864-870.
    49. Murry NA and Roberts IAG. Circulating megakaryocytes and their progenitors in early thrombocytopenia in preterm babies. Pediatrics Research. 1996;40:l 12-119.
    50. Castle V, et al. 111In-Oxide Platelet survival in thrombocytopenic infants. Blood.l987;70:652-656.
    51. Dreyfus M, et al. Frequency of immune thrombocytopenia in newborns: a prospective study. Blood. 1997;89:4402-4408.
    52. Bleyer WA, et al. The development of hemostasis in the human fetus and newborn infant. Journal of Pediatrics.l971;79:838-853.
    53. Greave JLA, De Alarcon PA. Megakaryocytopoiesis in the human fetus. Arch Dis Child. 1989;64:481.
    54. Ma DC, Sun YH, Chang KZ, Zuo W. Developemental change of MK. maturation and DNA ploidy in human fetus. Eur J Heamatol. 1996;57:121.
    55. Hann IM. Development of blood in the fetus. Fetal and neonatal platelet haematology(ed. By I.M Hann, BES Gibson and E Lestky).pp.l-28. Bailliere Tindall. London.
    56. Holmberg L, et al. A prenatal study of fetal platelet count and size with application to the fetus at risk of Wiskott-Aldrich syndrome. Journal of pediatrics. 1983; 102:773-781.
    57. Forestier F, et al. Developmental hematopoiesis in normal human fetal blood. Blood 1991;77:2360-2363.
    58. Kaufman RM, et al. Circulating megakaryocytes and platelet release in the lung. Blood 1965; 26: 720-731.
    59. Martin JK, et al. Abnormal intrapulmonary platelet production: a possible cause of vascular and lung disease. Lancet. 1983; 1: 793-796.
    60. Enzan H, et al. Light and electronmiscopeic observation of hepatic hematopoiesis of human fetuese. Ⅱ megakaryocytopoiesis. Acta Pathol Jpn 1980; 30: 937.
    61. Hegyi E, Nakazawa M, Debili N, Navarro S, Kats A, Brecton-Gorius J, Vainchenker W. Developemental change of human MK ploidy. Exp Hematol. 1991; 19: 87.
    62. Ma D-C, Sun Y-H, Chang K-Z. In vitro growth characteristics of rIL3 stimulated megakaryocytic progenitor cells (CFU-MK) of fetal liver. Acta Pacta Physiologica Sinica. 1997; 49: 215.
    63. Penniingon DG, and Olsen TE. Megakaryocytes in states of altered platelet production: cell number, size and DNA content. British Journal of haematology. 1970; 18: 447-463.
    64. Bessman JD.The relation of megakaryocyte ploidy toplatelet volume. American Journal of herriatology. 1984; 16; 161-170.
    65. Kieffer N, et al. The platelet glycoproteins. Ann Cell Biol. 1990; 6: 329.
    66. FarclayA, et al. The leucocyte antigen. Oxford: Academic Press, 1997: 235.
    67. 阮长庚.血栓与止血.南京:江苏科学技术出版社,1994:42.
    68. Shattil SJ, et al. Changes in the platelet membrane glycoprotein Ⅱb/Ⅲa compelx during platelet activation. J Biol Chem.1985; 260: 11107.
    69. Faraday N, et al. Gender differences in platelet GPⅡb-Ⅲa activation. Thromb Haemost. 1997; 77: 748.
    70. Pigott R, Power C. The adhesion molecule. Oxford: Academic Press, 1993: 140.
    71. Plow EF, et al. Cellular adhesion: GPⅡb-Ⅲa as a prototypic adhesion receptor. Progress in Haemostasis and Thrombosis. 1989; 9: 117
    72. Newman PJ, et al. Platelet GPⅡb-Ⅲa: Molecular variations and alloantigens. Thromb Haemostasis. 1991; 66: 111.
    73. Ruan CG, et al. Monoclonal antibody to human platelet GPⅡb-Ⅲa: Effect on human, platelet function. Br J Haematol. 1981; 49: 511.
    74. Bastian LS, et al. Analysis of the megakaryocyte glycoprotein Ⅸ promoter identifies positive and negative regulatory domains and functional GATA and Ets sites. J Bio Chem. 1996; 271: 18554.
    75. Yagi et al.Human platelet glycoproteins Ⅴ and Ⅳ: maping of two leucine-rich glycoprotein genes to chromosome 3 and analysis of structures. Biochemistry. 1995; 34: 16132.
    76. Calverly DC, et al. Human platelet glycoprotein V: its role in enhanceing expression of the glycoprotein Ib receptor. Blood 1995; 86: 1361.
    77. Yagi M, et al. Structural characterization and chromosomal location of the gene encoding human platelet glycoprotein Ib beta. J Bio Chem. 1994; 269: 1742.
    78. Wicik AN, Clemetson KJ. The gylcoprotein Ib complex of human blood platelets. Eur J Biochem. 1987; 163: 43.
    79. Du X, et al. Glycoprotein Ib and Ⅸ are fully complexed in the intact platelet membrane. Blood. 1987; 69: 1524.
    80. Nurde P, et al. Bidirectional trafficking of membrane glycoproteins following platelet activation in suspension. Thromb Haemost. 1997; 78: 1305.
    81. Ginsberg MH, et al. Platelets and the adhesion receptor superfamily in platelet membrane receptor: molecular biology, immunology, biochemistry, and pathology. 1988:171.
    82. Ruggeri ZM, et al. The platelet glycoprotein Ib-Ⅸ complex. Progress in haemostasis and thrombosis. 1991; 10: 35.
    83. 金伯泉主编.细胞和分子免疫学.科学出版社,北京.2001
    84. Avraham H, Cowley S, Chi SY, Jiang S, Groopman JE. Characterization of adhesive interactions between human endothelial cells and megakaryocytes. J Clin Invest 1993; 91: 2378-2384.
    85. Avraham H, Scadden DT, Chi S, Broudy VC, Zsebo KM, Groopman JE. Interaction of human bone marrow fibroblasts with megakaryocytes: role of the c-kit ligand. Blood 1992;80:1679-1684.
    86. Alberts B, Bray D, lewis J, Raft M, Roberts k, Watson JD, et al. The Mechanics of cell Division in Molecular Biology of the cell. 916-917.
    87. King RW, et al. How proteolysis drives the cell cycle. Science.1996; 274: 1625
    88. Long, MQ. 8th symposium of molecular biology of Hematopoiesis. 1993. 196,
    89. Datta NS, et al. Novel alterations in cdk/cyclin B_1 kinase complesx formation occur during the acpuisition ofa polyploid DNAcontent. Mol Biol Cell. 1996; 7: 209.
    90. Nagata Y, et al. Thrombopoietin-induced polyploidization of bone marrow. megakaryocytes is due to a unique regulatory mechanism in late mitosis. J Cell Bio. 1997; 139: 449.
    91. Vitrat N, et al. Endomitosis of human megakargocytes are due to abortive mitosis. Blood. 1998; 91: 3711.
    92. Goyanes-Villaescuca V: Cycles of reproduction in megakargo-cytes nuclei. Cell Tissue Kinet. 1969; 2: 165.
    93. Radley JM, et al. Ultrastructure of endomitosis in mekgaryocytes. Nouv Rev Fr Hematol. 1989; 31: 232.
    94. Matsushine H, et al. Colony-stimulating factor 1 regaulates novel cyclins during the G1 phase of the cell cycle. Cell. 1991, 65: 701.
    95. Baldin V, et al. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 1993, 7: 812.
    96. Quelle DE,et al. Overexpression of mouse D-type cyclins accelerate Gl phase in rodent fibroblasts. Genes Dev. 1993,7:1559.
    97. Koff A,et al. Human cyclin E, a new cyclin that interacts with two memebers of the CDC2 gene family. Cell. 1991, 66:1217.
    98. Koff A, et al. Formation and activation of a cyclin E-cdk2 complex during the Gl phase of the human cell cycle. Science. 1992, 257:1689.
    99. D'Urso G, et al. Cell cycle control of DNA replication by a homologue from human cells of the P34cdc2 Protein kinase. Science. 1990,250:786.
    100. Giard F, et al. Cyclin A is required for the onset of DNA replication in mammalian fiborblasts. Cell. 1991,67:1169.
    101. Rosenthal ET, et al. Selective translation of mRNA controls the pattern of protein syntheis during early development of the surf clam, Spisula solidissima. Cell. 1980, 20:487.
    102. Pines J, Hunt T. Isolation of a human cyclin cDNA: evidence cyclin rRNA and protein regualtion in the cell cycle and for interation with P34cdc2. Cell. 1989,58:833.
    103. Swenson Ki, Farrell KM, Ruderman JV. The clam embryo protein cyclin A induces entry into M phase and the resumption of mitosis in Xenopus oocytes. Cell. 1986, 47:861.
    104. Evens T, et al. Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell. 1983,33:389.
    105. Standart N, et al. Cyclin synthesis, modification and destruction during meiotic maturation of the starfish oocyte. Dev Biol. 1987,124:248.
    106. Glotzer M, et al. Cyclin degraded by the ubiquitin pathway. Nature. 1991, 349:132.
    107. Koepp DM, et al. How the cyclin become a cyclin: regulated proteolysis in the cell cycle.Cell.1999;97:431.
    108. Bai C,et al. SKP1 connects cell cycle regulators to the unbiquitin proteoloysis Machinery through a novel motif, the F-box. Cell. 1996;86:263.
    109. Feldman RMR,et al. A complex of cdc4p, skplp, and cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor sic lp.Cell.1997;91:221-230.
    110. Skowyra D.et al.F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiwuitin-ligase complex. Cell. 1997; 91: 209-219
    111. Michael WM and Newport J. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation. Science. 1998;282:1886.
    112. Zachariae W,et al. Control of cyclin ubiquitination by CDK-regulated binding of Hctl to promoting complex. Science. 1998;282:1721.
    113. Yu H, Peters J-M, King RW, Page AM, Hieter P and Kirschnet MW. Identification of a cullin homology region in a subunit of the anaphase-promoting complex. Science.1998;279:1219.
    114. Visintin R,et al. Cdc20 and Cdhl: a family of substrate-specific activators of APC-dependent proteolysis. Science. 1997;278:460.
    115. Schwab M, et al. Yeast Hctl is a regulator of Clb2 cyclin proteolysis. Cell. 1997; 90: 683.
    116. Fang G, Yu and Kirschner MW. Mol Cell. 1998; 2: 163.
    117. Kramer ER, Gieffers C, Holzl G, Hengstschlager M and Peters JM. Current Biology. 1998; 8: 1207.
    118. Sigrist SJ and Lehner CF. Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell. 1997; 90: 671.
    119. Sigrist S, Jacobs H, Stratmann R, and Lehner CF. EMBO J. 1995; 14: 4827.
    120. Zachariae W, et al. Control of cyclin ubiquitination by CDK-regulated binding of Hctl to the anaphase promoting complex. Scinence. 1998; 282: 1721.
    121. Visintin R, et al. Cfil prevents prmature exit from mitosis by anchoring Cdcl4 phophatase in the nucleolus. Nature. 1999; 398: 818.
    122. Zhang Y, et al. The cell cycle in polyploid megakaryocyte is associated with reduced activity ofcyclin Bl-dependent cdc 2 kinase. J Bio Chem. 1996; 271: 4266.
    123. Zhang. Y, et al. Ubiquitin-dependent degradation of cyclin B is accelerated in polyploid megakaryocytes. J Bio Chem. 1998; 273: 1387.
    124. Bassini A, et al. Selective modulation of the cycin B/CDK_1 and cyclin D/CDK_4 complexes during in vitro human megakarycyte development. Br J Haematol. 1999; 104: 820.
    125. Wang Z, et al. cyclin D_3 is essential for megakaryocy topoiesis. Blood. 1995; 86: 3783.
    126. Zimmet JM, et al. A role for cgclin D3 in the endomitotic cell cycle. Mol Cell Biol. 1997; 17: 7248.
    127. Wang Z, et al. Mpl ligand enhances the transcription of the cyclin D_3 gene: a potential role for Sp_1 transcription factor. Blood. 1999, 15: 4208.
    128. Katayama H, et al. Human AIM-1: cDNA cloning and reduced expression during endomitosis in megakaryocyte-lineage cell. Gene. 1998; 224: 1,
    129. Osmam SA, et al. Regulation of the mRNA levels ofnim A, a gene required for the G-M transition in Aspergillus Nidnlans. J Cell Biol. 1987; 104: 1495.
    130. Osmani SA, et al. Mitotic induction and maintenance by overexpressing of a G2-specific gene that oncodes a potential protein kinase. Cell. 1988; 55: 237.
    131. Sun S, et al. Ectopic expression of the Aopergillus nidulans mitotic inducer, him A kinase, in megakaryocytes: effect on polyploidization. Exp Hematol. 1999; 27: 594.
    132. Galiski T, et al. Ploidy regulation of Gene Expression. Science. 1999; 285: 251.
    133. Griffiths T and Hieter polyploidy-more is more or less. Science. 1999; 285: 210.
    134. Sherrington PD, Scott JL, Jin BQ, et al. TIiSAI(PTA1) activation antigen implicated in T cell differentiation and platelet activation is a member of the regulation of expression. J Biol Chem. 1997; 272: 21735-21744
    135.金伯泉.HLDA7专题讨论会新增CD编号和抗原.细胞和分子免疫学杂志.2000;16(5):373-375
    136. Bums GF, Triglia T, Werkmeister JA, et al. TIiSA1, a human Tlineage-specific activation antigen involved in the differentiation of cytotoxic T lymphocytes and anomalous kille cells from their precursors. J Exp Med. 1985; 161: 1063-1078
    137. scott JL, Dunn SM, Jin B, et al. Characterization of a novel membrane glycoprotein involved in platelet activation. J Biol Chem. 1989;264:13475-13482
    138. Chen LK, Bensussan A, Bums GF, et al. Tourvieille-B; Sallospecific proliferative human T cell clones acquire the cytotoxic effector function after three months in culture, in IL-2 conditioned medium. Hum Immunol, 1986; 17: 30-36
    139. Shibuya A, Campbell D, Hunnum C, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity. 1996; 4: 573-581
    140. Grakoui A, Bromley SK, Sumen C, etal.The immunological synapse:a molecular machine controlling T cell activation. Science. 1999; 285: 221-227
    141.贾卫.一种新的白细胞分化抗原CD226(PTA1)分子结构和功能关系的研究(博士论文),第四军医大学,2001年6月:106-109.
    142. Zuzel M, Waiton S, Burns GF, et al. A monoclonal antibody to 2 67kD cell membrane glycoprotein directly induces persistent platelet aggregation independently of granule secretion. Brit J Haematol, 1991; 79: 466-473
    143.孙忱、金伯泉、孙凯,等.PTA1单克隆抗体诱导人血小板活化聚集和胞浆Ca2+水平的升高.中华血液学杂志,1998:19(3):133-135
    144. Kojima H, Kanada H, Shimizu S, Kasama E, Shibuya K, Nakauchi H, Nagasawa T. Shibuya A. CD226 mediates platelet and megakaryocytic cell adhesion to vascula endothelial cell. J Biol Chem 2003; 278: 36748-36753.
    145.陈丽华、金伯泉、贾卫,等.一种新的人内皮细胞可诱导性粘附分子PTA1的表达、调变、及粘附功能.细胞与分子免疫学杂志,2000;16(1):23-25
    146. 张赟,金伯泉,欧阳为明,等.血小板T细胞活化抗原1在NK细胞上的作用.中华微生物学与免疫学杂志.2001;21(3):260-262
    147. Bottino C, Castriconi R, Pende D, etal. Indentification of PVR(CD155) and Nectin-2(CDll2) as cell surface ligands for the human DNAM-1(CD226) activating molecule.J Exp Med.2003;198:557-567
    148. Miller DA,Miller OJ,Dev VG, etal. Human chromosome 19 carries a polivirus recepton gene.Cell.1974;1:167-174
    149. Mendelsohn CL, Wimmer E and Racaniello VR. Celluar receptor for polivirus: molecular coling nucleotide sequence, and expression of a new member of the immuneoglobulin superfamily. Cell. 1989; 56: 855-865
    150. Koike s, Horie H, Ise I, etal.The polivirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J. 1999; 9: 3217-3224
    151. Solecki DJ, Gromerier M, Muller S, et al. Expression of human polivirus receptor/CD155 gene is activated by Sonic Hedgehog. J Biol Chem. 2002; 277: 25697-25702
    152. Morrison ME and Racaniello VR. Molecular coling and expression of a murine homolog of human polivirus receptor gene.J Virol. 1992;66:2807-2813
    153. Eberle F,Dubreuil P,Mattei MG,etal.The human PRR2 gene,related to the human polivirus receptor gene(PVR),is the true homolog of murine MPH gene.Gene. 1995; 159:267-272
    154. Takahashi K,Nakanishi H,Masako M,etal.Nectin/PRR:an immuneoglobulin-like cell adhesion molecule recruited to Cadherin-Based adherens junctions through interaction with afadin,a PDZ domain-containing protein.J Cell Biol.l999;145:539-549
    155. Lopez M,Aoubala M,Jordier F.etal.The human polivirus receptor related 2 protein is a new hemotopoietic/endothelial homophilic adhesion molecule.Blood.l998;92:4602-4611
    156. Long MW. Blood cell cytoadhesion molecules. Exp Hematol 1992;20:288-301.
    157. Springer TA. Adhesion receptors of the immune system. Nature 1990;346:425-434.
    158. Bieber AJ, Snow PM, Hortsch M, Patel NH, Jacobs JR,Traquina ZR, Schilling J, Goodman CS. Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell 1989;59:447-460.
    159. Lanier LL, Philips JH, Ochs HD, Shimizu K,Nakayama E, Nakauchi H, Shibuya A. Physical and Functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 1999; 11:615-623.
    160. Higuchi T, Koike K, Sawai N, Koike T. Proliferative and differentiative potential of thrombopoietin-responsive precursors: expression of megakaryocytic and erythroid lineages.
    161. Tani T, Ylanne J, Virtanen I. Expression of megakaryocytic and erythroid properties in human leukemic cells Exp Hematol 1996;24:158—168
    162. Tabilio A, Rosa JP, Testa U, Kieffer N, Nurden AT Del Canizo MC, Breton-Gorius J, Vainchenker W. Expression of platelet membrane glycoproteins and alphagranule proteins by a human erythroleukemia cell line (HEL). EMBO J 1984;3:453-459.
    163. Avanzi GC, Lista P, Giovinazzo B, Miniero R, Saglio G, Benetton G, Coda R, Cattoretti G, Pegoraro L Selective growth response to IL-3 of a human leukaemic CD226 is expressed on the megakaryocytic lineage cell line with megakaryoblastic features. Br J Haematol1988;69:359-366.
    164. Reymond N, Imbert AM, Devilard E, et al. DNAM-1 and PVR Regulate Monocyte Migration through Endothelial Junctions. J Exp Med 2004; 199:1331-1341.
    165. Sherrington PD, Scott JL, Jin B, et al. TLiSAl (PTA1) activation antigen implicated in T cell differentiation and platelet activation is a member of the immunoglobulin superfamily exhibiting distinctive regulation of expression. J Biol Chem 1997;272:21735-21744.
    166. Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M. Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci. 2004.;24:9372-9382.
    167. Ma DC, Sun YH, Zuo W, Chang KZ, Chu JJ, Liu YG. CD34+ cells derived from fetal liver contained a high proportion of immature megakaryocytic progenitor cells. Eur J Haematol 2000;64:304-314.
    168. Allen Greave JL, de Alarcon PA. Megakaryocytopoiesis in the human fetus. Arch Dis Child 1989;64:481-484.
    169. Wilh ide CC, Dang CV, Dipersio J, Kenedy AA, Bray PF. Overexpression of cyclin D1 in the Dami megakaryocytic cell line causes growth arrest. Blood. 1995;86:294.
    170. Broudy VC, et al. Thrombopoietin (c-mpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin 11 to enhance murine MK colony growth and increase MK ploidy in vitro. Blood. 1995; 85:1719.
    171. Nichol JL,et al. MK growth and development factor. Analysis of in vitro effects on human megakaryocytopoiesis and endogenous seriun levels during chemotherapy-induced thrombocytopia. J Clin Invest. 1995;95: 2973
    172. Hunt P, et al.Purificaion and bioloogic characteristion of plasma- derived MK growth and development factor. Blood. 1995;86:540.
    173. Debili N,et al. The mpl-ligand or thrombopoietin or MK growth and differentiativ factor has both direct proliferative and differentiative activities on human MK progenitors. Blood. 1995;86:2516.
    174. Debili N.et al. In vtitro effects of hematopoietic growth on theproliferation, and maturation of human MKs. Blood. 1991,77:2326.
    175. Mazur EM,et al. Isolation of large numbers of enriched human MKs from liquid cultures of normal peripheral blood progenitor cells. Blood. 1990,78:1771.
    176. Muench MO, Cupp J, Polakoff J, and Roncarolo MG. Expression of CD33.CD38 and HLA-DR on CD34+ human fetal liver progenitors with a high proliferative potential. Blood.l994,83:3170-3181.
    177. McNiece IK, Stewart FM, Decon DM, Temeles DS, Zsobo KM, Clark SC, Guesenberry PJ. Detction of a human CFC with high proliferative potential. Blood. 1989,17:240.
    178. Solar GP, Kerr WG, Zeigler FG, Hess D, Donahue C, de Sauvage FL, and Eaton DL. Role of c-mpl in early hemopoiesis. Blood. 1998,92:4-10.
    179. Young JC, Bruno E, Luens KM, Wu S, Backer M, Murray LJ: Thrombopoitin stimulates megakaryocytopoiesis, myelosis, and exprssion of CD34+ progenitor cells from single CD34+ Thy+ Lin - primitive progenitor cells. Blood. 1996,88,1619-1631.
    180. Ramsfjell V, Borge OJ, Cui L, Jacobsen SEW: Thrombopoitin directly and potenly stimulates multilineage growth and progenitor cell expression from primitive (CD34+ CD38-) human bone marrow progenitor cells. J Immunol 1997, 158, 5169-5177.
    181. Ando K, et al. Regulation of G1/S transition by cyclins D2 and D3 in hematopoietic cells. Proc Natl Acad Sci USA. 1993;90:9571.
    182. Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, Bottino C, Moretta A. Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res. 2004; 64:9180-9143.
    183. Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S, Rivera P, Spaggiari GM, Dondero A, Carnemolla B, Reymond N, Mingari MC, Lopez M, Moretta L, Moretta A. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol. 2005; 42:463-469.
    184. Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M. Intracerebral ransplantation of bone marrow stromal cells in a l-methyl-4-pheny!-],2,3,6-etrahyroyridine mouse model of Parkinson's disease. Neurosci Lett. 2001;316(2): 67-70.
    185. Villa A, Snyder EY, Vescovi A, Martinez-Serrano A. Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp Neurol. 2000;161(l): 67-84.
    186. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J. Generalized potential of adult neural stem cells. Science.2000; 288(5471): 1660-3.
    187. Zhao X, Das AV, Thoreson WB, James J, Wattnem TE, Rodriguez-Sierra J, Ahmad I. Adult corneal limbal epithelium: a model for studying neural potential of non-neural stem cells/progenitors. Dev Biol. 2002; 250(2): 317-331
    188. Galdwell MA. Recent advance in neural stem cell technologies. Trends Neurosci. 2001; 24: 72-74
    189. Tang Z, Yu Y, Guo H, Zhou J. Induction of tyrosine hydroxylase expression in rat fetal striatal precursor cells following transplantation. Neurosci Lett. 2002; 324(1): 13-16
    190. Bartlett PF, Reid HH, Bailey KA, Bernard O. Immortalization of mouse neural precursor cells by the c-myc oncogene. Proc Natl Acad Sci USA. 1988; 85(9): 3255-3259
    191. Schmidt-Kastner R, Humpel C. Nestin expression persists in astrocytes of organotypic slice cultures from rat cortex. Int J Dev Neurosci. 2002;20(l): 29-38
    192. Na E, McCarthy M, Neyt C, Lai E, Fishell G. Telencephalic progenitors maintain anteroposterior identities cell autonomously. Curr Biol. 1998; 8(17): 987 -990
    193. Kalyani A, Hobson K, Rao MS. Neuroepithlial stem cells from the embryonic spinal cord: Isolation,characterization and clonal analysis. Dev Biol. 1997; 186(2): 202-223
    194. Erica L. Herzog, Li Chai, and Diane S. Krause.Plasticity of marrow-derived stem cells.Blood 2003; 102: 3483-3493.
    195. Stemple DL and Mananthappa NK. Neural stem cells are blasting off. Neuron , 1997; 18: 1 -4.
    196. Terskikh AV, Easterday MC, Li L, Hood L, Kornblum HI, Geschwind DH, Weissman IL. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. PNAS. 2001;98: 7934-7939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700