益气活血法抗乳腺癌血道转移的基础与临床转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是严重威胁妇女生命健康的常见恶性肿瘤。乳腺癌的转移直接威胁患者生存。中医药在抗乳腺癌转移中疗效肯定。回顾文献报道,乳腺癌血瘀证与乳腺癌的血道转移关系密切。但是学界对肿瘤活血化瘀药的运用存在争议:怎么用、用多少、为什么,莫衷一是。导师孙桂芝教授从事中西结合肿瘤治疗近半个世纪,认为气虚、血瘀、毒凝是乳腺癌转移的根本病机。乳腺癌血瘀证具有肿瘤血瘀证的通性,也有其自身特性,临床施治当整体把握,区别对待,活血药运用当配合益气药。根据既往自然基金研究结果,结合多年临证经验,导师总结出抗乳腺癌转移的“益气活血方”:黄芪、苏木、蜂房、蒲黄、炮山甲。基于导师学术思想,本课题对“益气活血方”抗乳腺癌血道转移的疗效、机制、运用进行深入、系统的研究。
     1目的
     导师学术思想研究:系统总结导师治疗乳腺癌经验。
     基础研究:获得“益气活血方”的最佳配伍“益气活血核心方”,核心方临床运用适宜剂量。从乳腺癌血道转移中上皮间质转变、血管新生两大核心环节探讨导师抗乳腺癌血道转移学术思想的科学内涵。
     临床转化研究:制定乳腺癌血瘀证量化诊断标准,并与基础研究进行理论衔接,为导师学术思想的临床运用提供技术支持。
     2方法
     导师学术思想研究:跟随导师临证,按照中医理论对导师治疗乳腺癌经验进行总结。
     基础研究:采用乳腺癌小鼠荷瘤模型,筛选抗乳腺癌体内增殖作用最强的“益气活血核心方”,采用含药血清药理学方法,获得核心方抗乳腺癌细胞体外增殖适宜剂量。采用体外体内相结合的方法,从TGF-β/Smad通路介导上皮间质转变和血管新生角度,探讨核心方抗乳腺癌血道转移的分子机制。
     临床转化研究:采用临床流行病学、计量统计学方法,研究乳腺癌血瘀证量化诊断标准,并以JAVA编程实现判别过程的自动化。基于量化标准判别,检测血瘀证与非血瘀证乳腺癌患者血.清TGF-β水平差异,与基础研究衔接。
     3结果
     3.1孙桂芝教授治疗乳腺癌辨证、遣方、用药规律分析
     导师治疗乳腺癌的主要特色有:辩证论治,以证选方;辨病论治,病证结合;参照科研,精细用药;重视经络,回归传统。治疗重点为扶正、疏肝、活血、理气、解毒。对于乳腺癌发生的肺转移、骨转移、肝转移、脑转移,运用益气活血法,并结合脏器自身生理特性予以施治。特色鲜明,疗效卓著。
     3.2基础研究
     3.2.1益气活血方最佳组合的拆方研究
     益气活血方中“黄芪、苏木、蜂房、炮山甲”成分,对乳腺癌EMT6细胞的BALB/C小鼠体内增殖抑制作用最强,与对照组差异具有统计学意义P<0.05。定名为“益气活血核心方”。
     3.2.2益气活血核心方适宜剂量的探索
     CCK-8法检测“益气活血核心方”不同浓度含药血清,不同作用时间,在体外对人乳腺癌MCF-7细胞活力抑制情况。“黄芪30g、苏木6g、蜂房6g、炮山甲6g”临床经验剂量为基础,2倍用量抑制肿瘤细胞增殖作用最佳,为推荐剂量。4倍及以下剂量可抑制肿瘤细胞增殖的,为适宜剂量。6倍剂量作用72小时,具有一定的促进肿瘤增殖的作用,P<0.05,9倍剂量在24、48、72小时均可促进肿瘤细胞的增殖,P<0.05,为不推荐剂量。
     3.2.3益气活血核心方适宜剂量抗小鼠乳腺癌4T1细胞肺转移的研究
     确定益气活血核心方2倍临床剂量具有抗4T1细胞BALB/C小鼠体内肺转移的作用,抑制率为58.82%,P<0.05,较紫杉醇组65.88%为优,但差异无统计学意义,P>0.05。
     3.2.4益气活血核心方抗乳腺癌血道转移的实验研究
     3.2.4.1益气活血核心方抗乳腺癌上皮间质转变的研究
     以TGF-β2ng/ml诱导人乳腺癌MCF-7细胞发生的EMT为体外模型。发现益气活血核心方对乳腺癌EMT进程中细胞形态学改变、侵袭和转移能力的增强具有一定的抑制作用。并能抑制此过程中E-钙粘素等上皮细胞标志分子的下调及N-钙粘素等间质细胞标志分子的上调。
     报告基因技术结合实时定量PCR发现,核心方可抑制Smad分子入核,降低TGF-β/Smad通路激活,减少及其下游转录因子SNAIL。
     对血清TGF-β水平检测发现,益气活血核心方能够降低4T1乳腺癌荷瘤小鼠血清中TGF-β水平,特别对晚期荷瘤小鼠血清TGF-β水平的爆发性增高具有抑制作用,P<0.05,但是较紫杉醇的作用为弱。
     3.2.4.2益气活血核心方抗乳腺癌局部新生血管生成的实验研究
     以冰冻切片免疫荧光的方法发现,益气活血核心方适宜剂量对肿瘤边缘和内部新生血管具有一定的抑制作用(P<0.05)。进一步PCR法检测血管生成相关细胞因子,发现可能与其下调肿瘤细胞表达VEGF-A、VEGF-D有关。
     3.3临床转化研究
     通过对乳腺癌病历资料Logistic回归、条件概率换算、ROC曲线判别、前瞻新检验,获得乳腺癌血瘀证量化诊断标准。诊断阈值16分。诊断标准敏感度95.0%、特异度81.8%、准确度90.3%、阳性似然比5.225、阴性似然比6.11%,检验性能优良。开发出乳腺癌血瘀证诊断自动化软件。
     以新制定的乳腺癌血瘀证量化诊断标准,发现血瘀证乳腺癌患者血清中TGF-β水平较非血瘀证患者为高,P<0.05。
     4.结论
     孙桂芝抗乳腺癌经验方最佳组合“益气活血核心方”具有抗乳腺癌血道转移的作用,与阻断Smad分子入核与靶基因启动子结合,抑制TGF-β/Smad通路介导的乳腺癌EMT进程,同时阻断乳腺癌局部血管新生的机制有关。
     结合乳腺癌血瘀证量化诊断标准及孙桂芝教授治疗乳腺癌经验,益气活血核心方可按剂量推荐在临床使用。
     孙桂芝教授益气活血法抗乳腺癌血道转移学术思想具有丰富的理论内涵和科学内涵,值得学习、继承、研究和发扬。
     5.主要创新点
     4.1采用现代生物信息学和分子生物学前沿技术,体内外试验相结合,通过对益气活血核心方抑制乳腺癌细胞增殖,抗乳腺癌血道转移及其机制研究。首次揭示了益气活血法抗乳腺癌治则、治法科学内涵,为传承与挖掘名老中医经验提供了新思路。
     4.2研究发现促转移活性因子TGF-β在晚期乳腺癌荷瘤小鼠爆发性高表达与临床血瘀证乳腺癌患者血清中TGF-β升高存在关联性,为临床实时观察及药物干预治疗乳腺癌提供给了新的依据。
     4.3采用计量统计学分析技术,对乳腺癌血瘀证的定量诊断标准进行研究,制定乳腺癌血瘀证诊断相关条目及其定量标准。为名老中医经验的推广提供临床转化依据和实践操作工具。
Breast cancer is a malignant tumor that seriously threat women's lives and health. The metastasis of breast cancer is one of the direct causes which deprivate patients'lives. Traditional Chinese Medicine has curative effect in anti breast cancer metastasis. We find that there is a closely relationship between Xueyu syndrome and hematogenus in breast cancer disease basing on the reviewing of literature reports. Also there is large academic disputation in using of Huoxue huayu herbs in cancer disease:how to use, the dosage and the mechanism haven't been explicated. In the past half century, my mentor Professor Sun Guizhi has beening treated malignant tumor patients with integrative oncology medicine methods and has accumulated rich experience of breast cancer treatment. She points out that Qixu, Xueyu, Duning are the fundamental pathogenesis of breast cancer invasion and metastasis, she found that the performance of Xueyu in breast cancer not only has the common characters in all the tumor disease, but also has it's own specialty which based on the meridian patrolling and the situation of Qixue in the meridian. According to the results of basic research funded by national science foundation combined with the experience, Professor Sun Guizhi designed a formula for Xueyu symptom of breat cancer patients which contains five herb medicines:Huangqi, Sumu, Fengfang, Puhuang, Paoshanjia. Under the guidance of my mentor's academic theory in anti breast cancer metastasis, this deviation, we force on efficacy, mechanism and usage of Traditional Chinese Medicine during the deep and systematic research.
     1Purpose
     The research of my mentor's academic theory
     Summarize professor's experience in breast cancer treatment.
     Basic research
     Gain Yiqi huoxue core formula's best compatibility of "Yiqi huoxue formula" and it's appropriate clinical dose. Investigate the scientific connotation of mentor's academic theory in the two major area at the point of anti breast cancer hematogenesis:Epithelial to mesenchymal transition and Angiogenesis.
     Clinical translational research
     Formulate the quantify diagnostic criteria of Xueyu Syndrome as the converhence of theoretical and basic research which provide technical support for mentor's clinical academic theory.
     2Method
     The research of mentor's academic theory
     summarize professor Sun Guizhi's experiences basing on the experience of learning clinical skill under Professor's guidance in the outpatient.
     Basic research
     Using the tumor bearing mouse model, filter the "Yiqi huoxue core formula" which has the strongest activation in anti breast cancer proliferation in vivo; Using drug containing serum pharmacological method, gain the appropriate dose of core formula. Using the methods of vitro and in vivo, explore the molecular mechanism of core formula's function in anti breast cancer hematogenes metastasis via the regulation of TGF-β/Smad pathway mediated epithelial to mesenchymal transition and angiogenesis.
     Clinic translational research
     Using clinical epidemiology and statistical methods, study the quantify diagnostic criteria of Xueyu syndrome in breast cancer and automate the process of discrimination by JAVA.Test the differences of TGF-β level in breast cancer patients' serum with "Xueyu syndrome" or not. Converge with the basic research.3.Result
     3.1The experience of Professor Sun Guizhi in treating breast cancers
     The main features of the mentor:treating disease according syndrome diagnosis, choosing famous formula according with the exact syndrome, different kinds of disease different treatment, combining the disease with syndrome, carefully choosing herbs according to the results of base medical researchs, emphasizing the meridian and returning to the tradition. And Fuzhegn, Shugan, Liqi, Huoxue, Jiedu are the key points in professor's treatment experience. Her treatment of the lung, bone, brain, liver metastasis of breast cancer often refers to the physiological characteristics of the organ itself. Obeying these distinctive laws, the treatment efficacy usually becomes outstanding.
     3.2Basic research
     3.2.1The best combination study of Yiqi huoxue formula by apart prescription method
     We find that the core Yiqi huoxue formula consists of "Huangqi, Sumu, Fengfang, Paoshanjia" has the strongest activity in preventing EMT6cells proliferation in vivo, the difference with control group has statistical significance, P<0.05.
     3.2.2The appropriate dose of Yiqi huoxue formula reseach
     The formula dose "Huangqi30g, Sumu6g, Fengfang6g, Paoshanjia6g" and the2times dose can inhibit the MCF-7well proliferation, especially the2time dose serum containing herb drugs has more powerful activity.4times dose has the inhibiton tendency, but the differences has no statistical significance. At the72hours point, the6dose serum has the activity of promote the cell proliferation, P<0.05. At the24,48,72hours point,9dose serum will promote the cell proliferation, P<0.05.
     3.2.3The anti mouse breast cancer cell4T1metastasis to lung research under the treatment of Yiqi huoxue core formula
     The model used in this research in BALB/C mouse bearing4T1breast cancer cells. We found that the Yiqi huoxue core formula can prevent4T1cells'metastasis to lung. The inhibitory rate was58.82%, less than the Taxel group whose inhibitory rate was65.88%. But the differences between formula group and Taxel group has no statistical significance.
     3.2.4The basic research of Yiqi huoxue formula's function in anti breast cancer hematogenous metastasis
     3.2.4.1The basic research of Yqi huoxue formula's function in preventing epithelial to mesenchymal transition progress of beast cancer
     The Yiqi huoxue formula could prevent the EMT process in MCF-7cells which were under going the EMT induced by2ng/ml TGF-β. We checked the preventive function at the protein level and the transcription level by identified the changes of several EMT markers and the difference ability of invasion and migration of different treated cells. These results well supported the Yiqi huoxue formula's anti metastasis function at the prevention the deterioration process of breast cancer cell itself.
     3.2.4.2The research of Yiqi huoxue formula function in inhibiting the TGF-β activit during the TGF-β induced EMT process
     We use dual reciferase report assay combined with real time PCR technology to identify theSmad molecular's entering cell nucleus process, down regulated the activity of TGF-β/smad pathway, reduced the expression of transcription factor SNAIL.
     The TGF-β level in the4T1breast cancer cells bearing mouse was low than that in the control group. And the differences has stastistical significance. But this type of function is some lower than the Taxel. The conclusion was that Yiqi huoxue formula may inhibit the EMT progress via down regulating the TGF-β level in serum.
     3.2.4.3the research of anti breast cancer angiogenesis function of Yiqi huoxue core formula
     We compared the angiogenesis situation in the edge of the lesion and the internal location of the tumor tissue coming from the4T1breast cancer cell bearing mouse via the frozen biopsy organization immunofluorescence techiques. We found that the Yiqi huoxue fonnula had the inhibitory effects of angiogenesis in both the edge and the internal location. Real time PCR examination claimed the this function may be associated with the down regulation of VEGF-A.
     3.3Clinic transflational research
     Quantify diagnosis criteria is established. The diagnostic threshold is16point, whose sensitivity is95.0%, specificity is81.8%, accuracy is90.3%, positive likelihood ratio is5.225, negative likelihood ratio is6.11%. The test performance is excellent.
     The TGF-β level in breast cancer patient with "Xueyu syndrom" is higher than that with out "Xueyu syndrom",P<0.05.
     4Conclusions
     The "Yiqi huoxue core formula" based on Professor Sun Guizhi's clinical experience has the function of anti-breast cancer hematogenes metastasis via the inhibition of molecular Smads'entering nuclear and binging to the promoter area of target genes which can prevent the EMT process of breast cancer. Also the prevention of angiogenesis is it's mechanism.
     "Yiqi huoxue core formula" can be used in breast cancer cases at the recommended dose referring to the breast cancer'Xueyu syndrome'
     Professor SunGuizhi's experience of treating breast cancer hematogenes metastasis under the law of 'Yiqi huoxue' owns rich theoretical content and scientific connotation which is worthing learning, inheritance, research and development.
     4The main innovation
     4.1Reveal the scientific connotation of "Yiqi huoxue" law in preventing breast cancer hematogenes by the research of anti breast cancer cell proliferation and angiogenesis in vitro via the bioinformation and molecular biological techniques. Provide new ideas in inheriting and mining clinical experience of famous Chinese medicine master.
     4.2The increased TGF-β level is similar with that in the serum of breast cancer patients."Yiqi huoxue core formula" can decrease the TGF-β level in the serum of tumor bearing mouse model which afford new basis for real time observation and drug intervention treatment in clinical breast cancer cases.
     The established quantify diagnostic criteria of breast cancer " Xueyu syndrome" with the measuring statistical analysis techniques afford clinical conversion basis and practical tools for the promotion of famous Chinese medicine masters' experience.
引文
[1]宋·陈自明.校注妇人良方.注释.南昌:江西人民出版社,1983.10:450.
    [2]明·王肯堂.证治准绳·女科.北京:人民卫生出版社,1993.2:893.
    [3]明·陈实功.外科正宗.北京:人民卫生出版社,1993.5:160.
    [4]清·王旭高.外科证治秘要.北京:中医古籍出版社,1991.12:45-46.
    [5]清·吴谦.医宗金鉴.吉林:辽宁科学技术出版社,1997.8:632.
    [6]宋·窦汉卿.疮疡经验全书(卷三.影印本).续修四库全书·1012·子部·医 家类.上海古籍出版社,505
    [7]清·林佩琴.类治证裁.北京:中国中医药出版社,1997.2:565.
    [8]清·王维德.外科证治全生集.北京:人民卫生出版社,1956.10:13.
    [9]清·傅山.青囊秘诀.山西:人民出版社,1983.10:23.
    [10]元·朱震亨.丹溪治法心要.济南:山东科学技术出版社,1985.12:166.
    [11]清·冯兆张.冯氏锦囊秘录(卷十九).上海千顷堂石印本.
    [12]清·竹林寺僧人.竹林寺女科.北京:中医古籍出版社,1993.2:241.
    [13]卢雯平.160例乳腺癌术后血行转移患者中医辩证分型的研究.临床肿瘤学杂志.2006,11(6):425-430
    [14]曾玉珠.中国中医科学院硕士研究生毕业论文.2004:2-5
    [15]司徒红林,陈前军,李娟娟等.501例乳腺癌围手术期患者中医证候分布规律的临床研究.辽宁中医杂志,2010,37(4):595-598
    [16]任黎萍,李娟娟.100例乳腺癌术后疲劳综合征中医辨证规律探析.陕西中医.2008,,2(7):798-800
    [17]黄勇,张延伟,李健萍等.乳腺癌MR征象与中医证型关系观察.新中医.2008,40(8):21-22
    [18]许宇飞,张成智等.乳腺癌X线征象与中医证型关系分析.中医药信息,1999(1):39
    [19]杨婧,张捷,王笑民等.乳腺癌伴发抑郁焦虑患者的中医证型分析.中医杂志.2009,50(12):1112-116
    [20]肖健敏.乳腺癌动态增强MRI与MVD、VEGF及中医血瘀证相关性初步研究.广州中医药大学硕士论文.2008:5
    [21]左光剑.乳腺癌患者中医证型与脂联素、瘦素、VEGF及部分免疫组化因子关系的临床研究.复旦大学硕士研究生毕业论文,2009:8
    [22]卞卫和,李琳,任晓梅等.乳腺癌前病变中BRCA1基因突变频率计与中医证型的相关性研究.南京中医药大学学报.2009,23(3):176-177
    [23]陈前军,徐飙,司徒红林等.“消癖颗粒”阻断SD大鼠乳腺癌癌前病变及其对EGFR-STAT3通路影响的研究.广州中医药大学学报.2001,19(10):121-123
    [24]张蕴超,贾英杰,陈军.乳腺癌患者生存质量测定及中医“立体疗法”对其 作用研究.2009年国际中医药肿瘤大会论文汇编:575-581
    [25]陈前军,陆得铭,司徒红林等.“乳宁Ⅱ号”抑制Ca761小鼠乳腺癌肺转移及其对nm23、Cath-D表达的影响.中国中医基础医学杂志.2007,13(7):523-524
    [26]郭宇飞,孙秀琳.凋瘤丸诱导人乳腺癌细胞系MCF-7凋亡的实验研究.辽宁中医杂志.2010,3(11):2248-2250
    [26]刘胜,薛晓红,杨新伟等.乳宁方药物血清对人乳腺癌细胞基因表达的影响.中西结合学报.2009,4(5):490-494
    [27]陈洋,李岩,刘新莉等.白藜芦醇对人乳腺癌MDA-MB-231细胞生长、迁移及侵袭的影响.中国医科大学学报.2010,39(3):201-204
    [28]龙丽,曹友得.姜黄素对乳腺癌MDA-MB-231细胞NOT CHI和NF-JB表达的影响.肿瘤防治研究.2010,3(2):158-161
    [29]张佩秋.乳腺癌的中医诊治概况.中国中医药信息杂志,1996,3(3):27.
    [30]万华.陆德铭外科临床用药特色举隅.上海中医药杂志,1998,(8):14.
    [31]阙华发,吴雪卿,陈前军.陆德铭扶正法为主防治乳腺癌复发转移的经验.辽宁中医杂志,1998,25(7):297-298.
    [32]蔡炳,郭勤,郭智涛,等.生肌玉红膏对乳腺癌术后皮瓣坏死溃疡的疗效观察.中医外治杂志,1997,(5):11.
    [33]郭智涛,司徒红林,任黎萍.突出中医外治法治疗乳腺癌之我见.天津中医,2001,18(4):44
    [34]蔡勇,李小平.健脾理气中哟啊结合介入治疗乳腺癌肝转移40例.陕西中医.2005,26(6):491-493
    [35]欧阳华强,黄雯霞,刘鲁明等.消瘕方联合介入治疗乳腺癌肝转移43例疗效观察.新中医2006,38(11):46-47
    [1]中国中西医结合研究会中国抗癌协会中医诊断协作组.12448例癌症患者舌象临床观察.癌症.1987,7(3):129-130
    [2]胡小梅,张培彤,杨宗艳等.非小细胞肺癌不同病理类型与中医证候分布规律关系探讨.中国中医药信息杂志.2006,13(12):19-21
    [3]杨捷,李学,颜祥建等.甲皱微循环检查在肿瘤治疗中的应用.中日友好医院学报.1996,10(4):319-322
    [4]刘永惠,杨晓峰,周冬枝等.肿瘤转移与血瘀证的临床研究.中国中医基础医学杂志.2002,8(4):50-58
    [5]范刚启,宋祥龙,王辉等.活血.化瘀治疗癌及癌前病变效应的两重性与血管生成的关系.中国中西医结合杂志.2003,23(8):624-626
    [6]李军详,张玉禄,朱陵群等,益气活血法对大鼠萎缩性胃炎爱钱病变差异基因表达谱的影响.世界华人消化杂志.2008,16(29):3261-3268
    [7]黄孔威,傅乃五.赤芍对实验肿瘤生长和转移的影响及药理作用的研究[J].中华肿瘤杂志,1983.5(1):24-27
    [8]张培彤,裴迎霞,祁鑫,等.活血药对人肺癌细胞粘附和侵袭的影响[J].中国中西结合杂志,1999,19(2):103-105
    [9]傅乃武,范贤俊,王永远泉,等.丹参对实验肿瘤生长和转移的影响及原理的初步探讨[J].中华肿瘤杂志,1981,3(3):165
    [10]丁罡,宋明志,于尔辛.丹参、赤芍对大鼠Walker256癌肝转移影响机制的研究.中国癌症杂志.2001,11(4):364-366
    [11]黄光武,谢成熹,邝国乾等.水蛭等活血化瘀中药与放疗联合治疗晚期鼻咽癌41例.中国中西医结合杂志.2003,23(10):777-778
    [12]陈淼,郭勇.活血化瘀与肿瘤转移机制探讨.中华中医药学刊.2011,1(1):183-185
    [13]刘鲁明,陈震,陈培丰.对活血化瘀中药治疗恶性肿瘤的思考.中医杂志.2007,48(9):776-779
    [14]徐咏梅,郁仁存.益气活血法治疗肿瘤经验.中医杂志.2010,51(6):110-111
    [15]于明薇,孙桂芝,祁鑫等.苏木、苏木+黄芪对荷瘤小鼠CD4+CD25+调节性T细胞及相关调控分子的干预作用.中国中医基础医学杂志.2010,16(5):384-386
    [16]徐德成,张培宇.活血化瘀强度与气血双亏型胃癌转移率相关性机理探讨.中医杂志,1998,39(3):156-157
    [17]张文康等.中医临床家-余桂清.中国中医药出版社.北京..2006:252
    [18]孙桂芝.孙桂芝实用中医肿瘤学.中国中医药出版社.北京..2009:39
    [19]崔永安,左小东,毛承飞.活血化瘀法在肿瘤“辨法论治疗”中的应用.中医杂志.2007,48(8):749-750
    [20]梁富义.活血化瘀法在肿瘤科中的应用.中国中西医结合杂志.1995,1(6):324-325
    1 Akhurst R. TGF-b signaling in epithelial-mesenchymal transition and invasion and metastasis. In:Derynck R, Miyazono K, eds. The TGF-beta family. Cold Spring Harbor Laboratory Press:New York 2007:939-964.
    2 Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2001; 2:285-293.
    3 Assemat E, Bazellieres E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D. Polarity complex proteins. Biochim Biophys Acta 2008; 1778:614-630.
    4 Martin-Belmonte F, Mostov K. Regulation of cell polarity during epithelial morphogenesis. Curr Opin Cell Biol 2008; 20:227-234.
    5 Niessen CM, Gottardi CJ. Molecular components of the adherens junction. Biochim Biophys Acta 2008; 1778:562-571.
    6 Wheelock MJ, Johnson KR. Cadherins as modulators of cellular phenotype. Annu Rev Cell Dev Biol 2003; 19:207-235.
    7 Llorens A, Rodrigo I, Lopez-Barcons L, et al. Down-regulation of E-cadherin in mouse skin carcinoma cells enhances a migratory and invasive phenotype linked to matrix metalloproteinase-9 gelatinase expression. Lab Invest 1998; 78:1131-1142.
    8 Navarro P, Lozano E, Cano A. Expression of E-or P-cadherin is not sufficient to modify the morphology and the tumorigenicbehavior of murine spindle carcinoma cells. Possible involvement of plakoglobin. J Cell Sci 1993; 105:923-934.
    9 Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor etastasis. Cell 2004; 117:927-939.
    10 Ansieau S, Bastid J, Doreau A, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting activation of premature senescence. Cancer Cell 2008; 14:79-89.
    11 De Craene B, Gilbert B, Stove C, et al. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 2005; 65:6237-6244.
    12 Ohkubo T, Ozawa M. The transcription factor Snail downregulates the tight junction components independently of Ecadherin downregulation. J Cell Sci 2004; 117:1675-1685.
    13 Garrod D, Chidgey M. Desmosome structure, composition and function. Biochim Biophys Acta 2008; 1778:572-587.
    14 Yin T, Green KJ. Regulation of desmosome assembly and adhesion.Semin Cell Dev Biol 2004; 15:665-677.
    15 Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitionsby repressing E-cadherin expression. Nat Cell Biol 2000;2:76-83.
    16 Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition.J Cell Biol 1997; 137:1403-1419.
    17 Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-b induced transdifferentiation of mammary epithelial cells to mesenchymal cells:involvement of type I receptors. J Cell Biol 1994; 127:2021-2036.
    18 Imamichi Y, Menke A. Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial-mesenchymal transition. Cells Tissues Organs 2007; 185:180-190.
    19 Zhao Y, Min C, Vora S, et al. The lysyl oxidase pro-peptide attenuates fibronectin-mediated activation of FAK and p130CAS in breast cancer cells. J Biol Chem 2008 Nov 21.doi:10.1074/jbc.M802612200.
    20 Frame MC, Inman GJ. NCAM is at the heart of reciprocal regulation of E-cadherinand integrin-mediated adhesions via signaling modulation. Dev Cell 2008; 15:494-496.
    21 Shirakihara T, Saitoh M, Miyazono K. Differential regulation of epithelial and mesenchymal markers by deltaEFl proteins in epithelial mesenchymal transition induced by TGF-b. Mol Biol Cell 2007; 18:3533-3544.
    22 Deckers M, van Dinther M, Buijs J, et al. The tumor suppressor Smad4 is required for transforming growth factor b-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 2006; 66:2202-2209.
    23 Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 2004;4:118-132.
    24 Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 2003; 4:657-665.
    25 Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 2007; 98:1512-1520.
    26 Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression:an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7:415-428.
    27 Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P. TGF-b type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 1999; 112:4557-4568.
    28 Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-b and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 2005; 16:1987-2002.
    29 Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 2003; 120:1351-1383.
    30 Kishigami S, Mishina Y. BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev 2005; 16:265-278.
    31 Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelialmesenchymal transition:new insights in signaling, development, and disease. J Cell Biol 2006; 172: 973-981.
    32 Nakajima Y, Yamagishi T, Hokari S, Nakamura H. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis:roles of transforming growth factor (TGF)-b and bone morphogenetic protein (BMP). Anat Rec 2000; 258:119-127.
    33 Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-b isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 2007; 185:146-156.
    34 Azhar M, Schultz Jel J, Grupp I, et al. Transforming growth factor b in cardiovascular development and function. Cytokine Growth Factor Rev 2003; 14:391-407.
    35 Pelton RW, Hogan BL, Miller DA, Moses HL. Differential expression of genes encoding TGFs b1, b2, and b3 during murine palate formation. Dev Biol 1990; 141:456-460.
    36 Nawshad A, LaGamba D, Hay ED. Transforming growth factor b (TGFb) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch Oral Biol 2004; 49:675-689.
    37 Klattig J, Englert C. The Mullerian duct:recent insights into its development and regression. Sex Dev 2007; 1:271-278.38 Hugo H, Ackland ML, Blick T, et al. Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol 2007; 213:374-383.
    39 Cui W, Fowlis DJ, Bryson S, et al. TGFb1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996;86:531-542.
    40 Derynck R, Akhurst RJ, Balmain A. TGF-b signaling in tumor suppression and cancer progression. Nat Genet 2001;29:117-129.
    41 Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002; 110:341-350.
    42 Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC. TGFb signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 2003; 284:F243-F252.
    43 Willis BC, Borok Z. TGF-b-induced EMT:mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 2007; 293:L525-L534.
    44 Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-b in hepatic fibrosis. Front Biosci 2002; 7:d793-d807.
    45 Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-tomesenchymal transition contributes to cardiac fibrosis. Nat Med 2007; 13:952-961.
    46 Feng XH, Derynck R. Specificity and versatility in TGF-bsignaling through Smads. Annu Rev Cell Dev Biol 2005; 21:659-693.
    47 Portella G, Cumming SA, Liddell J, et al. Transforming growth factor b is essential for spindle cell conversion of mouse skin carcinoma in vivo:implications for tumor invasion. Cell Growth Differ 1998; 9:393-404.
    48 Oft M, Heider KH, Beug H. TGFb signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 1998;8:1243-1252.
    49 Han G, Lu SL, Li AG, et al. Distinct mechanisms of TGF-b1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 2005; 115:1714-1723.
    50 Lamouille S, Derynck R. Cell size and invasion in TGF-binduced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 2007; 178:437-451.
    51 Eger A, Stockinger A, Park J, et al. b-Catenin and TGFb signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 2004; 23:2672-2680.
    52 Mercado-Pimentel ME, Hubbard AD, Runyan RB. Endoglin and Alk5 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol 2007; 304:420-432.
    53 Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-bl/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003; 112:1486-1494.
    54 Ashcroft GS, Yang X, Glick AB, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1999; 1:260-266.
    55 Hoot KE, Lighthall J, Han G, et al. Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymaltransition during skin cancer formation and progression. J Clin Invest 2008; 118:2722-2732.
    56 Ju W, Ogawa A, Heyer J, et al. Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol Cell Biol 2006; 26:654-667.
    57 Oft M, Akhurst RJ, Balmain A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 2002; 4:487-494.
    58 Takano S, Kanai F, Jazag A, et al. Smad4 is essential for down-regulation of E-cadherin induced by TGF-b in pancreatic cancer cell line PANC-1. J Biochem 2007; 141:345-351.
    59 Kaimori A, Potter J, Kaimori JY, et al. Transforming growth factor-bl induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem 2007; 282:22089-22101.
    60 Bardeesy N, Cheng KH, Berger JH, et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 2006; 20:3130-3146.
    61 Desgrosellier JS, Mundell NA, McDonnell MA, Moses HL, Barnett JV. Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol 2005; 280:201-210.
    62 Armstrong EJ, Bischoff J. Heart valve development:endothelial cell signaling and differentiation. Circ Res 2004; 95:459-470.
    63 Saika S, Ikeda K, Yamanaka O, et al. Transient adenoviral gene transfer of Smad7 prevents injury-induced epithelialmesenchymal transition of lens epithelium in mice. Lab Invest 2004; 84:1259-1270.
    64 Xu GP, Li QQ, Cao XX, et al. The Effect of TGF-b1 and SMAD7 gene transfer on the phenotypic changes of rat alveolar epithelial cells. Cell Mol Biol Lett 2007; 12:457-472.
    65 Dooley S, Hamzavi J, Ciuclan L, et al. Hepatocyte-specific Smad7 expression attenuates TGF-b-mediated fibrogenesis and protects against liver damage. Gastroenterology 2008; 135:642-659.
    66 Zavadil J, Bottinger EP. TGF-b and epithelial-to-mesenchymal transitions. Oncogene 2005; 24:5764-5774.
    67 Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3:155-166.
    68 Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival:implications in development and cancer. Development 2005; 132:3151-3161.
    69 Batlle E, Sancho E, Franci C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2:84-89.
    70 Hemavathy K, Guru SC, Harris J, Chen JD, Ip YT. Human Slug is a repressor that localizes to sites of active transcription. Mol Cell Biol 2000; 20:5087-5095.
    71 Jamora C, Lee P, Kocieniewski P, et al. A signaling pathway involving TGF-b2 and snail in hair follicle morphogenesis. PLoS Biol 2005; 3:e11.
    72 Martinez-Alvarez C, Blanco MJ, Perez R, et al. Snail family members and cell survival in physiological and pathological cleft palates. Dev Biol 2004; 265:207-218.
    73 Yanez-Mo M, Lara-Pezzi E, Selgas R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003; 348:403-413.
    74 Peinado H, Quintanilla M, Cano A. Transforming growth factor b1 induces snail transcription factor in epithelial cell lines:mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003; 278:21113-21123.
    75 Romano LA, Runyan RB. Slug is an essential target of TGFb2 signaling in the developing chicken heart. Dev Biol 2000; 223:91-102.
    76 Cho HJ, Baek KE, Saika S, Jeong MJ, Yoo J. Snail is required for transforming growth factor-b-induced epithelialmesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Commun 2007; 353:337-343.
    77 Morita T, Mayanagi T, Sobue K. Dual roles of myocardinrelated transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. J Cell Biol 2007; 179:1027-1042.
    78 Grotegut S, von Schweinitz D, Christofori G, Lehembre F. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 2006; 25:3534-3545.
    79 Olmeda D, Jorda M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 2007; 26:1862-1874.
    80 Bolos V, Peinado H, Perez-Moreno MA, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions:a comparison with Snail and E47 repressors. J Cell Sci 2003; 116:499-511.
    81 Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002; 62:1613-1618.
    82 Carver EA, Jiang R, Lan Y, Oram KF, Gridley T. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 2001; 21:8184-8188.
    83 Nieto MA, Sargent MG, Wilkinson DG, Cooke J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 1994; 264:835-839.
    84 Ikenouchi J, Matsuda M, Furuse M, Tsukita S. Regulation oftight junctions during the epithelium-mesenchyme transition:direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 2003; 116:1959-1967.
    85 Kajita M, McClinic KN, Wade PA. Aberrant expression ofthe transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 2004; 24:7559-7566.
    86 Wang Z, Wade P, Mandell KJ, et al. Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor slug. Oncogene 2007;26:1222-1230.
    87 Kurrey NK, K A, Bapat SA. Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol 2005; 97:155-165.
    88 Whiteman EL, Liu CJ, Fearon ER, Margolis B. The transcription factor snail represses Crumbs3 expression and disrupts apico-basal polarity complexes. Oncogene 2008; 27:3875-3879.
    89 Guaita S, Puig I, Franci C, et al. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 2002;277:39209-39216.
    90 Moreno-Bueno G, Cubillo E, Sarrio D, et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelialmesenchymal transition. Cancer Res 2006; 66:9543-9556.
    91 Boutet A, De Frutos CA, Maxwell PH, et al. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J 2006; 25:5603-5613.
    92 Boutet A, Esteban MA, Maxwell PH, Nieto MA. Reactivation of Snail genes in renal fibrosis and carcinomas:a process of reversed embryogenesis? Cell Cycle 2007; 6:638-642.
    93 Cicchini C, Filippini D, Coen S, et al. Snail controls differentiation of hepatocytes by repressing HNF4a expression. J Cell Physiol 2006; 209:230-238.
    94 Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 2008; 70:431-457.
    95 Taki M, Verschueren K, Yokoyama K, Nagayama M, Kamata N. Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial-mesenchymal transition in human squamous carcinoma cells,Int J Oncol 2006; 28:487-496.
    96 Jorda M, Olmeda D, Vinyals A, et al. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 2005; 118:3371-3385.
    97 Postigo AA, Depp JL, Taylor JJ, Kroll KL. Regulation of Smad signaling through a differential recruitment of coactivatorsand corepressors by ZEB proteins. EMBO J 2003; 22:2453-2462.
    98 Postigo AA. Opposing functions of ZEB proteins in the regulation of the TGFb/BMP signaling pathway. EMBO J 2003; 22:2443-2452.
    99 Nishimura G, Manabe I, Tsushima K, et al. DeltaEF1 mediates TGF-b signaling in vascular smooth muscle cell differentiation. Dev Cell 2006; 11:93-104.
    100 Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10:593-601.
    101 Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22:894-907.
    102 Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283:14910-14914.
    103 Long J, Zuo D, Park M. Pc2-mediated sumoylation of Smadinteracting protein 1 attenuates transcriptional repression of E-cadherin. J Biol Chem 2005; 280:35477-35489.
    104 Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7:1267-1278.
    105 Grooteclaes ML, Frisch SM. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 2000; 19:3823-3828.
    106 Eger A, Aigner K, Sonderegger S, et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005; 24:2375-2385.
    107 Vandewalle C, Comijn J, De Craene B, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cellcell junctions. Nucleic Acids Res 2005; 33:6566-6578.
    108 Bindels S, Mestdagt M, Vandewalle C, et al. Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene 2006; 25:4975-4985.
    109 Spaderna S, Schmalhofer O, Wahlbuhl M, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 2008; 68:537-544.
    110 Aigner K, Dampier B, Descovich L, et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26:6979-6988.
    111 Massari ME, Murre C. Helix-loop-helix proteins:regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000; 20:429-440.
    112 Perez-Moreno MA, Locascio A, Rodrigo I, et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 2001; 276:27424-27431.
    113 Kondo M, Cubillo E, Tobiume K, et al. A role for Id in the regulation of TGF-b-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ 2004; 11:1092-1101.
    114 Kowanetz M, Valcourt U, Bergstrom R, Heldin CH, Moustakas A. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor beta and bone morphogenetic protein. Mol Cell Biol 2004; 24:4241-4254.
    115 Kang Y, Chen CR, Massague J. A self-enabling TGFb response coupled to stress signaling:Smad engages stress responsefactor ATF3 for Idl repression in epithelial cells. Mol Cell 2003; 11:915-926.
    116 Chen ZF, Behringer RR. Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 1995; 9:686-699.
    117 el Ghouzzi V, Le Merrer M, Perrin-Schmitt F, et al. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. NatureGenetics 1997; 15:42-46
    118 Howard TD, Paznekas WA, Green ED, et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nature Genetics 1997; 15:36-41.
    119 Yang J, Mani SA, Weinberg RA. Exploring a new twist on tumor metastasis. Cancer Res 2006; 66:4549-4552.
    120 Thuault S, Valcourt U, Petersen M, et al. Transforming growth factor-b employs HMGA2 to elicit epithelial-mesenchymaltransition. J Cell Biol 2006; 174:175-183.
    121 Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-b family signalling. Nature 2003; 425:577-584.
    122 Kretzschmar M, Doody J, Timokhina I, Massague J. A mechanism of repression of TGFb/Smad signaling by oncogenic Ras. Genes Dev 1999; 13:804-816.
    123 Funaba M, Zimmerman CM, Mathews LS. Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J Biol Chem 2002; 277:41361-41368.
    124 Lehmann K, Janda E, Pierreux CE, et al. Raf induces TGFb production while blocking its apoptotic but not invasive responses:a mechanism leading to increased malignancy in epithelial cells. Genes Dev 2000; 14:2610-2622.
    125 Davies M, Robinson M, Smith E, et al. Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-b1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem 2005; 95:918-931.
    126 Lee MK, Pardoux C, Hall MC, et al. TGF-b activates Erk MAP kinase signalling through direct phosphorylation ofShcA. EMBO J 2007; 26:3957-3967.
    127 Galliher AJ, Schiemann WP. Src phosphorylates Tyr284 in TGF-b type Ⅱ receptor and regulates TGF-b stimulation ofp38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 2007; 67:3752-3758.
    128 Grande M, Franzen A, Karlsson JO, et al. Transforming growth factor-b and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes.J Cell Sci 2002; 115:4227-4236.
    129 Janda E, Lehmann K, Killisch I, et al. Ras and TGFb cooperatively regulate epithelial cell plasticity and metastasis:dissection of Ras signaling pathways. J Cell Biol2002; 156:299-313.
    130 Uttamsingh S, Bao X, Nguyen KT, et al. Synergistic effect between EGF and TGF-bl in inducing oncogenic properties of intestinal epithelial cells. Oncogene 2008; 27:2626-2634.
    131 Xie L, Law BK, Chytil AM, et al. Activation of the Erk pathway is required for TGF-b1-induced EMT in vitro. Neoplasia 2004; 6:603-610.
    132 Schmidt CR, Gi YJ, Patel TA, et al. E-cadherin is regulated by the transcriptional repressor SLUG during Ras-mediated transformation of intestinal epithelial cells. Surgery 2005; 138:306-312.
    133 Marchetti A, Colletti M, Cozzolino AM, et al. ERK5/MAPK is activated by TGFb in hepatocytes and required for the GSK-3b-mediated Snail protein stabilization. Cell Signal 2008; 20:2113-2118.
    134 Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL. p38 mitogen-activated protein kinase is required for TGFb-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 2002; 115:3193-3206.
    135 Yu L, Hebert MC, Zhang YE. TGF-b receptor-activated p38 MAP kinase mediates Smad-independent TGF-b responses. EMBO J 2002; 21:3749-3759.
    136 Sano Y, Harada J, Tashiro S, et al. ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-signaling. J Biol Chem 1999; 274:8949-8957.
    137 Santibanez JF. JNK mediates TGF-bl-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Lett 2006; 580:5385-5391.
    138 Alcorn JF, Guala AS, van der Velden J, et al. Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-b1. J Cell Sci 2008; 121:1036-1045.
    139 Liu Q, Mao H, Nie J, et al. Transforming growth factor b1 induces epithelial-mesenchymal transition by activating the JNK-Smad3 pathway in rat peritoneal mesothelial cells. Perit Dial Int 2008; 28 Suppl 3:S88-S95.
    140 Han S, Ritzenthaler JD, Sitaraman SV, Roman J. Fibronectin increases matrix metalloproteinase 9 expression through activation of c-Fos via extracellular-regulated kinase and phosphatidylinositol 3-kinase pathways in human lung carcinoma cells. J Biol Chem 2006; 281:29614-29624.
    141 Wang W, Zhou G, Hu M, Yao Z, Tan TH. Activation of the hematopoietic progenitor kinase-1 (HPK1)-dependent, Stress activated c-Jun N-terminal Kinase (JNK) pathway by transforming growth factor-b (TGF-b)-activated Kinase (TAK1), a kinase mediator of TGF-b signal transduction. J Biol Chem 1997; 212:22771-22775.
    142 Delaney JR, Mlodzik M. TGF-b activated kinase-1:new insights into the diverse roles of TAK1 in development and immunity. Cell Cycle 2006; 5:2852-2855.
    143 Yamashita M, Fatyol K, Jin C, et al. TRAF6 mediates Smadindepent activation of JNK and p38 by TGF-b. Mol Cell 2008; 31:918-924.
    144 Sorrentino A, Thakur N, Grimsby S, et al. The type Ⅰ TGFb receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 2008; 10:1199-1207.
    145 Tavares AL, Mercado-Pimentel ME, Runyan RB, Kitten GT. TGF-b-mediated RhoA expression is necessary for epithelialmesenchymal transition in the embryonic chick heart. Dev Dyn 2006; 235:1589-1598.
    146 Cho HJ, Yoo J. Rho activation is required for transforming growth factor-b-induced epithelial-mesenchymal transition in lens epithelial cells. Cell Biol Int 2007; 31:1225-1230.147 Pellegrini S, Mellor H. Actin stress fibres. J Cell Sci 2007;120:3491-3499.
    148 Vardouli L, Moustakas A, Stournaras C. LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-b. J Biol Chem 2005; 280:11448-11457.
    149 Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growth factor-b1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12:27-36.
    150 Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6 by TGFb. receptors controls epithelial cell plasticity. Science 2005; 307:1603-1609.
    151 Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor-b-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000; 275:36803-36810.
    152 Lee YI, Kwon YJ, Joo CK. Integrin-linked kinase function is required for transforming growth factor b-mediated epithelial to mesenchymal transition. Biochem Biophys Res Commun 2004; 316:997-1001.
    153 Rodriguez-Barbero A, Dorado F, Velasco S, et al. TGF-b1 induces COX-2 expression and PGE2 synthesis through MAPK and PI3K pathways in human mesangial cells. Kidney Int 2006; 70:901-909.
    154 Lien SC, Usami S, Chien S, Chiu JJ. Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-bl-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells. Cell Signal 2006; 18:1270-1278.
    155 Lin CC, Chiang LL, Lin CH, et al. Transforming growth factor-b1 stimulates heme oxygenase-1 expression via the PI3K/Akt and NF-κB pathways in human lung epithelial cells. Eur J Pharmacol 2007; 560:101-109.
    156 Yeh YY, Chiao CC, Kuo WY, et al. TGF-b1 increases motility and avb3 integrin up-regulation via PI3K, Akt and NF-kb dependent pathway in human chondrosarcoma cells. Biochem Pharmacol 2008; 75:1292-1301.
    157 Yi JY, Shin I, Arteaga CL. Type Ⅰ transforming growth factor b receptor binds to and activates phosphatidylinositol 3-kinase. J Biol Chem 2005; 280:10870-10876.
    158 Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005; 17:596-603.
    159 Kattla JJ, Carew RM, Heljic M, Godson C, Brazil DP. Protein kinase B/Akt activity is involved in renal TGF-bl-driven epithelial-mesenchymal transition in vitro and in vivo. Am J Physiol Renal Physiol 2008; 295:F215-225.
    160 Pon YL, Zhou HY, Cheung AN, Ngan HY, Wong AS. p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells. Cancer Res 2008; 68:6524-6532.
    161 Nelson WJ, Nusse R. Convergence of Wnt, b-catenin, and cadherin pathways. Science 2004; 303:1483-1487.
    162 Liebner S, Cattelino A, Gallini R, et al. b-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 2004; 166:359-367.
    163 Nawshad A, Medici D, Liu CC, Hay ED. TGFb3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex. J Cell Sci 2007; 120:1646-1653.
    164 Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP. Integration of TGF-b/Smad and Jagged 1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 2004; 23:1155-1165.
    165 Grego-Bessa J, Diez J, Timmerman L, de la Pompa JL. Notch and epithelial-mesenchyme transition in development and tumor progression:another turn of the screw. Cell Cycle 2004; 3:718-721.
    166 Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 2004; 18:99-115.
    [1]孙桂芝.实用中医肿瘤学.中国中医药出版社.北京.2009:191-192
    [2]夏文斌,薛震,李帅,等.杜鹃兰化学成分即肿瘤细胞毒性研究.中国中药杂志,2005,30(23):1827
    [3]赵建斌,崔勤,王连刚,等.补骨脂素辐射对S180细胞的增敏作用.第四军医大学学报.1998,19(6):627-629
    [4]于明薇,孙桂芝,祁鑫等.苏木、苏木+黄芪对荷瘤小鼠CD4+CD25+调节性T细胞及相关调控分子的干预作用.中国中医基础医学杂志.2010,16(5):384-386
    [5]徐咏梅,郁仁存.益气活血法治疗肿瘤经验.中医杂志.2010,51(6):110-111
    [1]周际昌.实用肿瘤内科学.北京:人民卫生出版社,2002.511
    [2]任美萍,刘明华,李蓉等.黄芪多糖抗肿瘤活性研究.中国新药杂志.2010,19(3):221-224
    [3]张喜林,孛文虎,李路勇等.黄芪总提取物抗肿瘤作用的实验研究.中国现代药物运用.2010,4(4):29-31
    [4]陈坤,高献书,卢付河等.黄芪、参芪促肿瘤生长作用的观察.河北医科大学学报.2004,25(1):33-34
    [5]徐建华,郭素堂,乔丽娟等.苏木提取液抑制肿瘤作用的研究.肿瘤研究与临床.2006,11(8):726-727
    [6]张坤,魏金荣,关一夫.蜂房提取物中抗肿瘤成分的活性研究.中医杂 志.2010,51(S2):246-248
    [7]李东涛,吴志奎,孙桂芝等.益气、活血软坚、解毒法对荷瘤小鼠肿瘤生长抑制的实验研究.江苏中医药.2010,42(4):74-75
    [1]崔慧娟,万冬桂.不同剂量黄芪对肿瘤患者NK细胞活性的影响.中医杂志.2006,12(3):230
    [2]陈坤,高献书,卢付河等.黄芪、参芪促肿瘤生长作用的观察.河北医科大学学报.2004,25(1):33-34
    [3]李瑾.不同剂量黄芪、川芎注射液对肿瘤生长和转移的影响.第二军医大学.2006:8-11
    [4]徐建国,郭素堂,乔丽云等.苏木提取液抑制肿瘤作用的研究.肿瘤研究与临床.2006,18(11):726-727
    [5]任连生,汤莹,张燕等,苏木水提物抗肿瘤作用机制的研究.山西医药杂志.2000,29(3):201-203
    [6]张坤.蜂房提取物体外抗肿瘤作用研究.中国医科大硕士研究生毕业论文.2010:2,19-20
    [7]张红敏,谢春光,陈世伟.含药血清体外药理试验的评价.中国中西医结合杂志.2004,24(8):741-745
    [8]许炜茹,陈信义,张英.中药复方体外药理研究的思考.中华中医药学刊.2011,29(1):55-56
    [9]刘建勋,韩笑,孙宇扬.含药血清药理作用强度与体内给药的效量、时效关系研究.中国中药杂志.2006,131,3
    [1]乳宁Ⅱ号对TA2小鼠乳腺癌MA-891抑制瘤中血管内皮生长因子表达的影响.中国中西医结合杂志.2004,24(3):251-253
    [1]Elzbieta Janda, Kerstin Lehmann, Iris Killisch, et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis dissection of Ras signaling pathways. The journal of cell biology.2002 January3; 156(2):299-314.
    [2]Oft M, Peli J, Rudaz C, et al. TGF-betal and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes development.1996 Oct 1; 10(19):2462-77.
    [1]陈洋,李岩,刘新莉等.白藜芦醇对人乳腺癌MDA-MB-231细胞生长、迁移及侵袭的影响.中国医科大学学报.2010,39(3):201-204
    [2]王秀峰,周前梅,苏式兵.黄芩素抑制人乳腺癌细胞侵袭和迁移的实验研究.中国药理学通报.2010,26(6):745-749
    [1]王秀峰,周前梅,苏式兵.黄芩素抑制人乳腺癌细胞侵袭和迁移的实验研究.中国药理学通报.2010,26(6):745-749
    [1]Katz E, Dubois-Marshall S, Sims AH, et al. An in vitro model that recapitulates the epithelial to mesenchymal transition (EMT) in human breast cancer. PLoS One.2011 Feb 15;6(2):e17083
    [2]Ozawa M, Ringwald M, Kemler R.Uvomorulin-catenin complex for mation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule.Proec Natl Acad Sci USA,1990,87 (11):4246-4250
    [3]张聚良,王岭,凌瑞等.乳腺癌组织中E-cadherin的表达与外周血微转移的相关性及临床意义.
    [4]袁鹏,朱梁军,李晟等.三阴乳腺癌中Ki-67、P53、E-cadherin的表达及临床意义.中国现代医药杂志.2010,12(12):38-41
    [5]Kotb AM, Hierholzer A, Kemler R, et al. Replacement of E-cadherin by N-cadherin in the mammary gland leads to fibrocystic changes and tumor formation. Breast Cancer Res.2011 Oct 26;13(5):R104
    [6]Vuoriluoto K, Haugen H, Kiviluoto S, et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene.2011 Mar 24;30(12):1436-48
    [1]Akhurst R. TGF-b signaling in epithelial-mesenchymal transition and invasion and metastasis. In:Derynck R, Miyazono K, eds. The TGF-beta family. Cold Spring Harbor Laboratory Press:New York 2007:939-964.
    [2]包俊杰,吴诚义E-cadherin及N-cadherin在乳腺癌中表达的相关性及临床意义.中国普通外科杂志.2010,19(11):1253-1256
    [3]Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 2000; 148:779-90.
    [4]Hazan RB, Kang L, Whooley BP, Borgen PI. N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhes Commun1997;4:399-411.
    [5]Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 1999;147:631-44.
    [1]Jeong H, Ryu YJ, An J, et al. Epithelial-mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology.2012 May;60(6B):E87-95
    [2]Kallergi G, Papadaki MA, Politaki E, et al. Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res.2011 Jun 10;13(3):R59
    [3]Bonnomet A, Syne L, Brysse A, et al. A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene.2011 Nov 28. doi: 10.1038/onc.2011.540.
    [1]Dijke P, Goumans MJ, Pardali E. Endoglin in angiogenesis and vascular diseases. Angiogenesis.2008;11(1):79-89
    [2]张丁丁,杨明清,范晰建等.乳腺癌患者TGF-β水平的检测机临床意义.山东医药.2002,42(24):22
    [1]Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res.2009;19(2):156-172.
    [2]Miyazono K. Transforming growth factor-β signaling in epithelial to mesenchymal transition and progression of cancer. Proc Jpn Acad B Phys Biol Sci. 2009;85(8):314-323.
    [3]Massague J. TGFβ in cancer. Cell.2008; 134(2):215-230.
    [4]Dijke P, Goumans MJ, Pardali E. Endoglin in angiogenesis and vascular diseases. Angiogenesis.2008;11(1):79-89.
    [5]Ulrich Valcourt, Marcin Kowanetz, Hideki Niimi,et al. TGF-p and the Smad Signaling Pathway Support Transcriptomic Reprogramming during Epithelial-Mesenchymal Cell Transition. Mol Biol Cell.2005 April; 16(4): 1987-2002.
    [6]Petersen M, Pardali E, van der Horst G,et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene.2010 Mar 4;29(9):1351-61
    [7]Dijke P, Hill CS. New insights into TGF-β-Smad signalling. Trends Biochem Sci.2004;29(5):265-273.
    [8]Vidya Ganapathy, Rongrong Ge, Alison Grazioli,et al. Targeting the transforming Growth Factor-β pathway inhibits human basal-like breast cancer metastasis. Mol Cancer.2010; 9:122.
    1. Massague, J. How cells read TGF-β signals. Nature Rev. Mol. Cell Biol. 2000,1:169-178
    2. Pardali, K.& Moustakas, A. Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim. Biophys. Acta.2007,1775:21-62
    4. Janda, E. et al. Ras and TGF-β cooperatively regulate epithelial cell plasticity and metastasis:dissection of Ras signaling pathways. J. Cell Biol. 2002.156:299-313
    5. Massague, J. TGF-β in cancer. Cell.2008,134:215-230 ().
    6. Nawshad, A., Lagamba, D., Polad, A.& Hay, E. D. Transforming growth factor-β signaling during epithelial-mesenchymal transformation:implications for embryogenesis and tumor metastasis. Cells Tissues Organs.2005,179:11-23
    [1]Zhang W, Feng M, Zheng G,et al. Chemoresistance to 5-fluorouracil induces epithelial-mesenchymal transition via up-regulation of Snail in MCF7 human breast cancer cells. Biochem Biophys Res Commun.2012 Jan 13;417(2):679-85
    [2]Casas E, Kim J, Bendesky A,et al. Snail2 is an essential mediator of Twistl-induced epithelial mesenchymal transition and metastasis. Cancer Res.2011 Jan 1;71(1):245-54
    [3]Du C, Zhang C, Hassan S,et al. Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res. 2010 Oct 15;70(20):7810-9
    [4]Vincent T, Neve EP, Johnson JR,et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol.2009 Aug;11(8):943-50
    [1]Jean Paul Thiery, "Epithelial-mesenchymal transitions in tumour progression," Nature Reviews. Cancer 2, no.6 (June 2002):442-454.
    [2]L Thompson, B Chang, and S H Barsky, "Monoclonal origins of malignant mixed tumors (carcinosarcomas). Evidence for a divergent histogenesis," The American Journal of Surgical Pathology 20, no.3 (March 1996):277-285
    [1]Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, and ten Dijke P (2002). Balancing the activation state of the endothelium via two distinct TGF-β type Ⅰ receptors. EMBO J 21,1743-1753.
    [2]Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, and ten Dijke P (2002). Balancing the activation state of the endothelium via two distinct TGF-β type Ⅰ receptors. EMBO J 21,1743-1753.
    [3]Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, and Ten Dijke P (2003). Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGF-β/ALK5 signaling. Mol Cell 12,817-828.
    [4]Pepper MS, Vassalli JD, Orci L, and Montesano R (1993). Biphasic effect of TGF-β1 on in vitro angiogenesis. Exp Cell Res 204,356-363.
    [5]Fajardo LF, Prionas SD, Kwan HH, Kowalski J, and Allison AC (1996). TGF-β1 induces angiogenesis in vivo with a threshold pattern. Lab Invest 74,600-608.
    [6]Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H, and Miyazono K (2002). Targets of transcriptional regulation by two distinct type Ⅰ receptors for TGF-β in human umbilical vein endothelial cells. J Cell Physiol 193, 299-318.
    [7]Wu X, Ma J, Han JD, Wang N, and Chen YG (2006). Distinct regulation of gene expression in human endothelial cells by TGF-β and its receptors. Microvasc Res 71,12-19.
    [8]Petersen M, Pardali E, van der Horst G,et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene.2010 Mar 4;29(9):1351-61
    [1]Weidenaar AC, ter Elst A, Kampen KR,et al. Stromal interaction essential for vascular endothelial growth factor A-induced tumour growth via transforming growth factor-β signalling. Br J Cancer.2011 Dec 6; 105(12):1856-63
    [2]Maae E, Olsen DA, Steffensen KD,et al. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer. Breast Cancer Res Treat.2012 May;133(1):257-65.
    [3]Rykala J, Przybylowska K, Majsterek I,et al. Angiogenesis markers quantification in breast cancer and their correlation with clinicopathological prognostic variables. Pathol Oncol Res.2011 Dec;17(4):809-17
    [4]Ran S, Volk L, Hall K, Flister MJ. Lymphangiogenesis and lymphatic metastasis in breast cancer. Pathophysiology.2010 Sep;17(4):229-51
    [5]Stacker SA, Caesar C, Baldwin ME,et al.VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med.2001,7(2):186-191
    [6]Yu M, Berk R, Kosir MA. CXCL7-Mediated Stimulation of Lymphangiogenic Factors VEGF-C, VEGF-D in Human Breast Cancer Cells. J Oncol.2010; 2010:939407
    [1]寺泽捷年.血瘀证的证候分析与诊断标准刍议.国外医学.中医中药分册.1984,6(1):1
    [2]陈可冀,史载祥.《实用血瘀证》.北京:人民卫生出版社,1999:20-21
    [3]王阶,陈可冀,翁维良,等.《血瘀证诊断标准的研究》.中西医结合杂志.1988,(10):585-589
    [1]侯风刚,赵刚,贺宪民.中医证候诊断标准研究中方法学应用概述.陕西中医.2005,26(5):473-475
    [1]卢雯平.160例乳腺癌术后血行转移患者中医辩证分型的研究.临床肿瘤学杂志.2006,11(6):425-430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700