铸态TB6钛合金的加工图及其锻造工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TB6钛合金是一种为适应损伤容限设计原则而生产的高结构效益的钛合金,由于具有良好的综合性能,在民用和军用飞机上获得了广泛的应用。TB6钛合金锻造变形组织对变形温度、应变速率等锻造热力参数比较敏感,热力参数容差小,因此有必要对TB6钛合金锻造热力参数的优化进行研究。本文根据铸态TB6钛合金的等温恒应变速率压缩实验数据,对其热变形行为进行了分析,并采用基于动态材料模型的加工图技术对该合金锻造热力参数进行了优化。所得结果对铸态TB6钛合金锻造工艺的制定及获得组织与性能优良且稳定一致的锻件具有重要的指导意义。
     利用Thermecmaster-Z型热加工模拟实验机,在变形温度和应变速率分别为800~1150℃和0.001~10s-1的范围内对铸态TB6钛合金进行了等温恒应变速率热压缩实验。利用压缩实验所获得的数据,绘制了不同变形温度及应变速率条件下的真应力-应变曲线,并分别分析了变形温度和应变速率对铸态TB6钛合金流动应力的影响。结果表明,流动应力随变形温度的升高和应变速率的降低而减小。从流动应力值的大小来考虑,在低的变形温度条件下(800~950℃),应变速率范围为0.001~0.1 s-1时适宜加工;而在高的变形温度条件下(1000~1150℃),应变速率范围为0.001~1 s-1时适宜加工。计算得出,铸态TB6钛合金在应变为0.8时的平均变形激活能Q=225.32kJ/mol。
     对铸态TB6钛合金的热压缩实验数据进行合理的处理,并分别基于Prasad判据和Murty判据绘制出该合金在不同应变量下的加工图。比较和分析表明,基于Murty判据绘制出的加工图比基于Prasad判据绘制出的加工图更能准确的预测和优化锻造热力参数。根据对基于Murty判据绘制出的加工图中稳定区与失稳区的失稳现象分析及组织观察,确定出不同区域的变形机制,并优化出该合金的锻造热力参数。结果表明:当变形温度范围为800~890℃,应变速率范围为0.01~1s-1时,易出现局部流动现象;而当变形温度范围为800~890℃,应变速率范围为1~10 s-1时,则出现了裂纹。在所研究参数范围内,铸态TB6钛合金有四个较佳的变形热力参数区域,分别为800~950℃、0.001~0.008s-1,1025~1075℃、0.001~0.032s-1,920~975℃、1.8~10s-1和1030~1065℃、3.2~10s-1。其中最佳的锻造热力参数分别为850~875℃、0.001s-1附近及1050~1075℃、0.001s-1附近,它们的变形机制分别为大晶粒超塑性与动态再结晶。
TB6 titanium alloy is a kind of titanium alloy in order to meet the damage tolerance design principles and production of high structural efficiency , which obtain a wide range of applications in the civil and military aircraft for its good overall performance. Because the deformed microstructure of TB6 titanium alloy is sensitive to the deformation of thermal parameters such as the deformation temperatures and the strain rates and this alloy has a small tolerance of forging thermomechanical parameters, it is essential to optimize the thermomechanical parameters of TB6 titanium alloy. In this paper, the hot deformation behavior of casting TB6 titanium alloy was analyzed by using the test data obtained from the isothermal and constant strain rate compression tests, and the forging thermomechanical parameters were optimized by using the processing map technology based on dynamic material model. The obtained results are of great value for making reasonable forging process to manufacture casting TB6 titanium alloy forgings with excellent and uniform microstructures as well as properties that can be repeated under the same processing conditions.
     The isothermal and constant strain rate compression tests were carried out in the temperature range of 800~1150℃and strain rate range of 0.001~10\s-1 by Thermecmaster-Z simulator. The true stress-true strain curves at different temperatures and strain rates were plotted with the data obtained from the test, and the influence of the temperature and strain rate on the flow stress of casting TB6 titanium alloy was analyzed. The results indicated that the flow stress decreases with the increasing temperatures and decreasing strain rates. In view of the value of flow stress, the strain rate range of 0.001~0.1 s-1 is suitable for working in the low-temperature(800~950℃)and the strain rate range of 0.001~1s-1 is suitable for working in the high-temperatur(e1000~1150℃). The average deformation activation energy of TB6 titanium alloy at a stain of 0.8 was calculated as 225.32kJ/mol.
     The hot compression test data of casting TB6 titanium alloy were treated reasonably, and the processing maps for this alloy were developed at various stains with data based on Prasad criterion and Murty criterion, respectively. The comparison and analysis of the processing maps based on Prasad criterion and Murty criterion showed that the processing maps based on Murty criterion can predict and optimize the forging thermomechanical parameters more accurately. By analyzing the stability and instability regions of the processing maps and observing microstructure of the samples deformed in different regions in the processing maps based on Murty criterion, the deformation mechanisms in different regions were identified and the thermomechanical parameters of this alloy were optimized. The results showed that the flow localization tended to occur in the temperature range of 800~890℃and strain rate range of 0.01~1s-1, and the crack tended to occur in the temperature range of 800~890℃and strain rate range of 1~10 s-1. There are four regimes corresponding to preferable deformation thermomechanical parameters described as following: 800~950℃、0.001~0.008s-1,1025~1075℃、0.001~0.032s-1,920~975℃、1.8~10s-1 and 1030~1065℃、3.2~10s-1, respectively. The optimum of deformation thermomechanical parameters were in the order of the temperature between 850~875℃, the strain rate at 0.001s-1 and the temperature between 1050~1075℃, the strain rate at 0.001s-1 with the deformation mechanisms of large-grained superplasticity and dynamic recrystallization, respectively.
引文
[1]颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望[J].航空制造技术,2003,(12):19-25
    [2]张和善.国外航空结构材料发展概况[J].航空制造工程,1997,(11):3-6
    [3]邱惠中,吴志红.航天用高性能金属材料的新进展[J].宇航材料工艺,1996,(2):18-23
    [4]段传宝.国内外钛工业发展状况概述[J].上海钢研,2003(1):39-42
    [5]李中华.TC4钛合金高温变形行为及拉伸性能[D].硕士学位论文,哈尔滨工业大学,2003
    [6]王乐安.难变形合金锻件生产技术[M].北京:国防工业出版社,2005:203-205
    [7]王金友,葛志明,周彦邦.航空用钛合金[M].上海:上海科学技术出版社,1985:63-78
    [8]W .M. Parris, H .W. Rosenberg . Producing Ti-13V-11Cr-3A1mill product at TMCA-Hitorical Note II[R].Ref.4.P9-1
    [9]R .R. Boyer,H .W. Rosenbery. Beta Titanium on the SR-71[R].Historical Note I. Ref:1-8
    [10]G Terlinde,G Fischer.Beta titanium alloys.Titanium'95:Science and Technology,ed .P A Blen kinshop et al[J].The Institute of Materials,Birmingham,1996,Vol.Ⅲ:2177-2194
    [11]黄金昌.Beta钛合金在飞机中的应用[J].钛工业进展,1999(2),32-34
    [12]R R Boyer. Applications of beta titanium alloys in airframes.In beta titanium alloys of the 1990's,ed.D Eylon et al[J].TMS-AIME,Warrendale,1993:335
    [13]D P Davies,B C Gittos.Titanium alloy usage in modem helicopter designs. Titanium'95:Science and Technology,ed.P A Blenkinshop et al[J].The Institute of Materials,Birmingham,1996,Vol.Ⅲ:1609-1616
    [14]黄旭,鲍如强,黄利军,等.热模锻工艺对Ti-1023合金显微组织和性能的影响[J].稀有金属材料与工程,2004,33(5):539-542
    [15]赵雪盈,郭鸿镇,姚泽坤,等.Ti-1023合金超塑性压缩时的流动应力及显微组织[J].上海金属,2005,27(5):26-30
    [16]鲍如强.Ti-1023合金热工艺、组织和性能研究.北京科技大学硕士学位论文[D].北京:北京科技大学,2004
    [17]J.J.Joanas,M.J.Luton.Advances in Deformation Processing[M].J.J.Bruke and V.Weiss (Eds.),Plenum Press,New York,1978:215
    [18]Rishi.Raj. Development of a processing map for use in warm-forming and hot forming processes[J]. Metallurgical and Materials Transactions A,1981, 12A: 1089-1097
    [19]Y.V.R.K.Prasad,S.Sasidhara(EDs).Hot Working Guide:A Compendium of Processing Maps[J]. Materials Park, OH: ASM International, The Materials Information Society,1997
    [20]Y V R K Prasad,H L Gegel et al.Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-242[J].Metalurgy Transaction A,1984,15A (10):1883-1892
    [21]黄光胜,汪凌云,陈华,等.2618铝合金的热变形和加工图[J].中国有色金属学报,2005, 2005,15(5):763-767
    [22]Y V R K Prasad,T Seshacharyulu.Modeling of hot deformation for microshuctural control[J]. International Materials Review, 1998, 43(6):243-258
    [23]Y V R K Prasad, S Sasidhara (EDs).Hot Working Guide: A Compendium of Processing Maps[M]. Materials Park, OH: ASM International, The Materials Information Society, 1997
    [24]Y.V.R.K.Prasad. Recent advances in the science of mechanical processing [J].indian Journal of Technology, 1990,4:435-451
    [25]H.L.Gegel. Synthesis of Atomistics and Continuum Modeling to Describe Microstructure[J]. Computer simulation in Materials Science.Metals Park .OH:ASM Interational, 1986:291-344
    [26]Y.V.R.K.Prasad,D.H.Sastry.Processing maps for hot working of a P/M iron aluminide alloy[J].Intermetallics,2000,8:1067-1074
    [27]S.Kobayashi,C.H.Lee,Y.Saida,etal.Teehnieal RePort AFML-TR-70-9 Berkeley[R].CUSA: University of Califimia.1970,101
    [28]愈汉青,陈金德.金属塑性成形原理[M].北京:机械工业出版社,2002
    [29]Y.V.R.K.Prasad.Author’s Reply:Dynamic Materials Model:Basis and Principles[R]. Metallurgical and Materials Transactions A,1996,27A(1):235-247
    [30]J.K.Chakravartty,G.K.Dey,etal.Characterization of hot deformation behavior of Zr-2.5Nb-0.5Cu using processing maps[J]. Journal of Nnclear Materials,1995:247-255
    [31]Y.V.R.K.Prasad, K.P.Rao.Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300~900℃[J].Materials Science and Engineering A 2005,391 :141-150
    [32]S.Venugopal,S.L.Mannan et al.optimization of cold and warm workability in stainless stell type AISI 316L.using instability maps [J].Journal of Nuclear Materials 1995,227 :1-10
    [33]Y.V.R.K.Prasad,T.Seshacharyulu etal. Influence of oxygen content on the forging response of response of equiaxed (α+β) perform of Ti-6Al-4V:commercial vs ELI grade[J]. Journal of Materials Processing Technology 2001,108:320-327
    [34]N.Srinivasan, Y.V.R.K.Prasad,. Hot working characteristics of nimonic 75,80A and 90 superalloys:a comparison using processing maps[J]. Journal of Materials ProcessingTechnology 1995,51:171-192
    [35]S.V.S.Narayana Murty,B.Nageswara Rao.On the hot working characteristics of INCONEL alloy MA754 using processing maps[J].Scandinavian Journal of Metallurgy ,2000,29:146-150.
    [36]S.V.S.Narayana Murty,B.Nageswara Rao. On the hot working characteristics of 6061Al-SiC and 6061-Al2O3 particulate reinforced metal matrix composites[J]. Composites Science and Technology,2003, 63:119-135
    [37]S.V.S.Narayana Murty, B.Nageswara Rao. Development and validation of a processing map for AFNOR 7020 aluminium alloy[J] .Materials Science and Technology, 2004 , 20:772-782
    [38]S.Spigarelli,E.Cerri. An analysis of hot formability of the 6061+20%Al2O3 composite by means of different stability criteria[J].Materials Science and Engineering A, 2002,A327 :144-154
    [39]舒滢,曾卫东,周军,等.BT20合金高温变形行为研究[J].材料科学与工艺,2005,13(1):55-58
    [40]H.L.Gegel, J.C.Malas. Modeling Techniques Used in Forging Process Design[J]. Metals Handbook, ASM, Metals Park,OH,1988,14:147-162
    [41]P.Cavaliere. Hot and warm forming of 2618 aluminium alloy[J].Journal of Light Metals ,2002,2(4):247-252
    [42]T.Sesharyulu,S.C.Medeiros,W.G.Frazier,et al.Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure[J]. Materials Science and Engineering A,2002,A325(1-2):112-125
    [43]Z.Gronostajski. The deformation processing map for control of microstructure in CuAl9.2Fe3 aluminium alloy[J].Journal of Materials Processing Technology,2002:119-126
    [44]S.Venugopal,Sridhar Venugopal,etal. Validation of processing maps for 304L strainless stell using hot forging,rolling and extrusion[J]. Journal of Materials Processing Technology,1995:343-350
    [45]曾卫东,周义刚,舒滢,等.基于加工图的Ti-40阻燃钛合金热变形机理研究[J].稀有金属材料与工程,2007,36(1):1-6
    [46]鞠泉,李殿国,刘国权,等.15Cr-25Ni-Fe基合金高温塑性变形行为的加工图[J].金属学报,2006,42(2):218-224
    [47]汪凌云,范永革,黄光杰,等.镁合金AZ31B的高温塑性变形及加工图[J].中有色金属学报,2004,14(7):1068-1072
    [48]张仁鹏,李付国,王晓娜. FGH96合金的热变形行为及其热加工图[J].西北工业大学学报,2007,25(5):652-656
    [49]周军,曾卫东,舒滢,等.应用热加工图研究TC17合金片状组织球化规律[J].稀有金属材料与工程,2006,35(2):265-268
    [50]李鑫,鲁世强,王克鲁,等.应用Murty准则优化TC11钛合金高温变形参数[J].金属学报,2007,43(12):1268-1274
    [51]鲁世强,李鑫,王克鲁,等.基于动态材料模型的材料热加工工艺优化方法[J].中国有色金属学报,2007,17(6):890-896
    [52]薛克敏,段园培,李萍,等.TB8钛合金的热变形行为及加工图[J].材料工程,2007(z1):57-60
    [53]Kreuss C.Defermation Processing and Structure[J].Ohio. American Society for Metal,1984:109-230
    [54]李鑫.TC11钛合金的热态变形行为及其锻造工艺优化研究[D].博士,南京航空航天大学,2008
    [55]WEISS I,SEMIATIN S L.Thermo-mechanical processing of beta titanium alloys-an overview[J]. Mater Sci Eng, 1998, A243:46-65
    [56]SESHACHARYULU T,MEDEIROS S C, MORGAN J T, etal. Hot deformation mechanisms in ELI grade TI-6AL-4V[J]. Scripta Mater, 1999,41(3):283-288
    [57]Tamirisakandala S, Vedam BV, Bhat RB. Recent advances in the deformation processing of titanium alloys[R]. J Mater Eng Perform 2003;12(6):661-673
    [58]鲍如强,黄旭,曹春晓,等.加工图在钛合金中的应用[J].材料导报,2004,18(7):26-29
    [59]SESHACHARYULU T,MEDEIROS S C,MORGAN J T, etal. Hot deformation and micro-structural damage mechanisms in extra-low interstitial (ELI) grade TI-6AL-4V[J]. Mater Sci Eng, 2000,A279:289-299
    [60]刘波,周文龙,陈国请,等.细晶TC21钛合金超塑性性能及变形机制研究[J].航空技术研究,2008,(3):9-12
    [61]文九巴.超塑性应用技术[M].北京.机械工业出版社, 2004:23-25
    [62]赵永庆,舒滢,曾卫东,等.高度稳定化β型Ti40阻燃钛合金的动态再结晶行为[J].稀有金属材料与工程,2009,38(8):1432-1436
    [63]欧阳德来,鲁世强大,催霞,等.TA15钛合金β热变形中的动态再结晶形核[J].材料热处理学报,2009,30(6):116-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700