阿特拉津和乙草胺对土壤酶的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿特拉津和乙草胺,是我国乃至世界上都应用很广泛的两种选择性除草剂,被广泛应用于玉米、大豆、高粱等的杂草控制。因为常年广泛地和大量地应用,由于它们所产生的水体、土壤等环境污染已经越来越引起人们的关注。
     本文以这两种除草剂为研究对象,研究了他们对土壤酶的影响。其中选取被视为土壤生态系统的一种很好的感应器,能够及时、准确的反映出土壤生理-生态变化,预示出土壤肥力和土壤的健康状况的脱氢酶和过氧化氢酶作为研究的酶类。研究除草剂对这两种酶的影响,就脱氢酶而言,主要集中在研究阿特拉津和乙草胺在单用以及复配的情况下,对脱氢酶活性的影响。同时,土壤性质对酶活性的影响,在除草剂存在和不存在的情况下,是如何变化的;至于对过氧化氢酶影响的研究包括,调查阿特拉津和乙草胺对过氧化氢酶活性的影响。以及用动力学方法研究两种除草剂对酶是否具有抑制作用。
     可以发现,阿特拉津和乙草胺的浓度变化对脱氢酶活性的变化起着重要作用,而且通过正交分析,除草剂的浓度就是本次试验研究因素中影响脱氢酶活性的主要因素。并且高浓度的阿特拉津和乙草胺(≥5μg/g soil)对土壤中脱氢酶的活性有强烈的激活效应(p≤0.01)。同时在整个观测的过程中,在同样浓度水平上两者并没有表现出对土壤脱氢酶活性影响有显著的差异(p≥0.05)。这可能说明这两种除草剂对脱氢酶活性的影响方式是一样的。但当两者加到一起时,它们对土壤脱氢酶的作用并不是独立的:由于施用了混合除草剂后,观测到的土壤脱氢酶活性值并不是两种除草剂单独作用后脱氢酶活性值的总和。当除草剂混合物中阿特拉津为高剂量时(即土壤中阿特拉津的浓度为10μg/g soil),发现阿特拉津和乙草胺有协同作用,这可能跟阿特拉津在土壤环境中的半衰期相对较高有关系。同时在整个实验过程中没有发现结抗现象。
     土壤性质对脱氧酶活性会产生影响。不过,是否有除草剂的参与,土壤性质对脱氢酶活性的影响趋势是不同。在没有除草剂存在的情况下,相对高温(30℃)和相对低湿度(40%MHC)会导致相对较低的脱氢酶活性。但是在有除草
    
    浙江大学硕士学位论文
    剂存在的情况下,结果正好相反。而且特别的是当土样中有高浓度的除草剂时,
    这种对激活效应的增强作用非常明显。
     从活体实验,可以发现无论是阿特拉津还是乙草胺都对过氧化氢酶活性没有
    大的影响。过氧化氢酶对这两种除草剂并不敏感。但是当除草剂为高剂量时,还
    是表现出对过氧化氢酶有一定的激活作用。不过,这种激活效应并不强烈。
     从动力学结果可以发现,阿特拉津和乙草胺可能会对过氧化氢酶产生抑制,
    这种抑制来自除草剂分子和酶一底物分子的结合。但是考虑到实际的情况,可以
    确定无论阿特拉津还是乙草胺都对过氧化氢酶没有明显的抑制,过氧化氢酶对这
    两种除草剂并不敏感,这和以前的实验结论还是相符的。至于高剂量的除草剂对
    过氧化氢酶活性有激活作用,这可能是因为这些除草剂可以被微生物作为碳源,
    刺激了微生物的活动,而表现出一定的激活效应。
     总而言之,阿特拉津和乙草胺在推荐用量的范围内施用,对土壤脱氢酶和过
    氧化氢酶没有负效应,对土壤生态环境还是相对安全的。
Atrazine and Acetochlor are two kinds of selective herbicides widely applied not only in China but also all over the world for control of weeds in corn, soybeans, and other row crops. As a result of these herbicides used widely and heavily for the last decades, the soil and water contamination by them is more and more of a public concern.
    The influence of these two herbicides to soil enzymes were chosen for this study. As good representative enzymes integrating the information form mibcrobial status and soil physico-chemical conidtion, which indicate the potential of soil to support biochemical processes and maintain fertility, soil dehydrogenase and catalse were selected. Regarding the dehydrogenase, this research was focused oil the influence of herbicide using and soil properties to its activity - how the enzyme activity responded to herbicide applied separately and jointly, and to the diverse soil conditions. As to the catalase, how it responded to atrazine and acetochlor, and whether it was inhibited by the two herbicides through kinetic measurement, are included in the research interests.
    From the results of the study, it was concluded that the concentration of herbicide plays an important role and it was the key factor that influences the enzyme activity most among the assessed factors. Atrazine and acetochlor of high concentration (> 5 ug/g soil) stimulated soil dehydrogenase activity significantly (p < 0,01) and intensely, and there was no significant (p >0.05) difference found between the effects of the two herbicides. However, when they were added together to a soil sample, they didn't influence the enzyme activity independently - after applied the herbicide jointly, the value of enzyme activity observed was not equal to the sum of values accounted from the experiment of atrazine and acetochlor applied separately. When the atrazine among the herbicide compound was applied in high dose (the concentration of atrazine is 10 ug/g soil), synergism was observed. It probably resulted from the high
    
    
    
    half-life of atrazine. However, there was no antagonism observed. Despite the herbicides, soil properties could affect the activity of the enzyme as well. However, it is different in absence from presence of herbicide. In absence of herbicide, higher temperature (30C) and lower moisture content of soil (40%MHC) leaded to low dehydrogenase activity. However, Incorporated with herbicide, they worked conversely and potentiation was produced.
    As to the catalase, it was observed that the enzyme was not sensitive to atrazine or acetochlor. These two herbicides have little influence on the enzyme activity. However, when atrazine or acetochlor was applied in high dose (10 ug/g soil), they both could stimulate catalase activity. The stimulation was not strong and didn't last for long time.
    From the kinetic measurement, atrazine and acetochlor was able to inhibit the enzyme activity as they could affect the active complex (Enzyme-Substrate). However, it is not convenient for these herbicides to do so in actual environment. Therefore, neither atrazine nor acetochlor will inhibit catalase and the enzyme was not sensitive to these herbicides. Thus was consistent with the results of experiment above. As for the explanation of the stimulation above, it possibly accounts for it that these two herbicides could be used as carbon resource by microbes and thus activated the organism and ultimately enhanced the enzyme activity.
    Generally speaking, atrazine and acetochlor, applied in recommend dose, didn't have negative effects on soil dehydrogenase and catalase. These herbicides are friendly to environment of soil system.
引文
[01] Rachel Carson 吕瑞兰 李长生译.1997,寂静的春天.长春,吉林人民出版社:12-32.
    [02] 杨燕红 盛国英 傅家谟等.1996,珠江三角洲一些城市水体中微量有机氯化合物的初步分析.环境科学学报,16(1):59-65.
    [03] Sluszny C. Graber E. R. Gerstl Z. 1999, Sorption of s-triazine herbicides inorganic matter amended soils: Fresh and incubated systems. Water Air and Soil Pollution 115 (1-4): 395-410.
    [04] Keith R. Solomon, 1996, Environ. Toxicol. Chem., 15(1): 31-76.
    [05] 苏少泉.1998,除草剂作用靶标的分类与使用.农药,37(13):1-7.
    [06] 中华人民共和国农业部农药核定所.2000,农药登记公告:1-8.
    [07] 张敏恒.2002,从美国玉米田除草剂市场看我国玉米田除草剂开发.农药,41(6):1-6.
    [08] 熊英 邓金保.2000,全球深受欢迎的41种农药及相关产品.世界农药,22(6):32~36.
    [09] Alan Newman. 1995, Atrazine found to cause chromosomal breaks. Environ.Sci.Tech., 29(10): 450.
    [10] Barry Gruessner. 1995, Patterns of herbicide coutamination in selected Vermont Streaks detected by enzyme immunoassay and gas chromatography / mass spectrometry. Environ.Sci. Tech., 29: 2806-2813.
    [11] 叶常明 雷志芳 殷兴军等.1997,含莠去津和乙草胺河水灌溉对苗期水稻危害的研究.环境科学进展,5(5):51-57.
    [12] 陈林观 陈中霞 张仲国.1989,一起阿特拉津污染农田事故调查.农业环境保护,8(5): 35-38.
    [13] 高明和 赵明宇.1998,昌图县水田污染事故污染物和污染源的鉴定.农业环境保护,17(1):34-39.
    [14] 陈国参 张玉聚 石红霞.2002,酰胺类除草剂的药宫表现与安全应用.农药,43(9):32-33.
    [15] 际良燕 林玉锁.2001,莠去津乙草胺和甲磺隆3种除草剂对青菜危害的生物测试.农业环境保护,20(2):111-114.
    [16] 陈立杰 刘惕若 李海燕等.1999,除草剂对大豆幼苗根腐病及其土壤微生物的影响.大豆科学,18(2):122-128.
    [17] 冉梦莲 陈友荣 肖敬平.1999,乙草胺对不同品种水稻萌发生长期间呼吸代谢的影响.
    
    华南农业大学学报 20(1):68-72.
    [18] 黄春艳 陈铁保 王宇等.2002,除草剂对油菜的安全性及药害研究初报.中国油料作物学报,24(1):58-60.
    [19] 黄春艳 陈铁保 王宇等.2003,28种除草剂对大豆的安全性及药害研究初报.植物保护,29(1):31-34.
    [20] 黄春艳 陈铁保 王宇等.2000,除草剂对向日葵的安全性评价.植物保护,22(4):64-66.
    [21] Armstrong D. E. Chester G. Harris J. H. 1967, Atrazine hydrolysis in soil. Soil Sci. Soc. Am. Proc, 31: 61~66.
    [22] Garmouma M. Teil M. J. Blanchard M. et al. 1998, Spatial and temporal variations of herbicide (triazines and phenylureas) concentrations in the catchment basin of the Marne river (France). Science of the Total Environment, 224(1~3): 93~107.
    [23] Coote D. R. MacDonald E. M. Dickinson W. T. et al. 1982, Agriculture and water quality in the Canadian Great Lakes Basin: Ⅰ. Representative agricultural watersheds. J. Environ: Qual. 11,473-481.
    [24] Frank R., Braun H. E., Van Hove Holdrinet M. et al. 1982, Agricultrue and water quality in the Canadian Great Lakes Basin: V. Pesticide use iu 11 agricultural Watersheds and presence in stream water, 1975-1977, J.Environ.Qual. 11,497-505
    [25] Thurman E. M., Goolsby D. A., Meyer M. T. and Kolpin D. W. 1991, Herbicides in surface waters of the Midwestern United States: The effects of sping flush, Environ.Sci. Technol. 25,1794-1796
    [26] Barry Gruessner. 1995, Patterns of herbicide contamination in selected Vermont Streaks detected by enzyme immunoassay and gas chromatography/mass spectrometry. Environ.Sci. Tech., 29: 2806-2813.
    [27] Pimentel D. 1971, Effects of Pesticides on Non-target Species, washington, U.S. Gov.Print
    [28] J. B. Belden M. J. Lydy. 2001, Effects of Atrazine on acetylcholinesterase activity in midges (chironomus tentans) exposed to organophosphorus in insecticides. Chemosphere, 44:1685-1689.
    [29] 于建垒 宋国春 万鲁长等.2000,乙草胺对土壤微生物的影响研究.环境污染冶理技术与设备,1(5):28-33.
    [30] 张玉聚 孙化田 王春生等.2000,除单刑及其复配与农田杂草化学防治.北京,中国
    
    农业科技出版社.
    [31] 李美 赵德友 孙作文等.2001,玉米对乙草胺的敏感性研究.农药学学报,3(4):44-48.
    [32] Balinova, A. M. 1997, Acetochlor-a comparative study on parameters governing the poteutial for water pollution. J. Environ. Sci. Health B, 32(5): 645-658.
    [33] Ashby, J.; Tinwell, H.; Lefevre, P. A. et al. 1997, Evaluation of the mutagenicity of acetochlor to male rat germ cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 393(3): 263-281.
    [34] 谢志浩 黄剑锋 陈国.2003,除草剂乙草胺对泥鳅血红细胞微核及核异常的诱导.科技通报,19(1):77-82.
    [35] 耿德贵 刘贤德 温洪宇等.2000,除草剂乙草胺对蝌蚪红细胞微核及核异常的影响.环境与健康杂志,17(1):36-38.
    [36] Dick, R. P. 1994, Soil enzyme activities as indicators of soil quality. In: Doran, J.W. (Ed.), Defining Soil Quality for a Sustainable Environment. SSSA Special Publication 35, Madison, WI, 107-124.
    [37] Sinsabaugh R. L. 1994, Enzymic analysis of microbial pattern and process. Biol. Fertil. Soils, 17: 69-74.
    [38] Dkhar M. S. and Mishra R. R. 1983, Dehydrogenase and urease activities of maize (Zea mays L.) field soils. Plant and Soil,. 70: 327-333.
    [39] Ross D. J. 1971, Some factors influenciug the estimation of dehydrogenase activities of some soils under pasture. Soil Biology & Biochemistry, 3:97-110.
    [40] Dick, R. P. 1997, Soil enzyme activities as integrative indicators of soil health, In: Pankhurst, C.E, Doube, B.M., Gupta, V.V.S.R.(Eds.). Biological Indicators of Soil Health. CAB International, Wallingford, 121-156
    [41] Reddy G. B. and Faza A. 1989, Dehydrogenase activity in sludge amended soil. Soil Biology & Biochemistry 21: 327.
    [42] Wilke B. M. 1991, Effects of single and successive additions of cadmium, nickel and zinc on carbon dioxide evolution and dehydrogenase activity in a sandy Luvisol. Biology and Fertility of Soils 11, 34-37.
    [43] Frank T. and Malkomes H. P. 1993, Influence of temperature on microbial activities and their
    
    reaction to the herbicide "Goltix" iu different soils under laboratory conditions. Zentralblatt fur Mikrobiologie 148, 403-412.
    [44] J. C. Tarafdar. S. C. Meena. S. Kathju. 2001, Influence of straw size on activity and biomass of soil microorganisms during decomposition. Eur. J. Soil Biol. 37:157-160.
    [45] McCarthy, G. W., Siddaramappa, R., Reight, R. J., Coddling, E. E., Gao, G. 1994, Evaluation of coal combustion byproducts as soil liming materials: their influence on soil pH and enzyme activities. Biology and Fertility of Soils 17, 167-172.
    [46] Gh.Hassan Dar. 1996, Effects of cadmium and sewage-sludge on soil microbial biomass and enzyme activities. Bioresource Technology 56:141-145.
    [47] Pichtel, J. R., Hayes, J.M. 1990, Influence of fly-ash on soil microbial activity and populations. Journal of the Environmental Quality 19: 593-597.
    [48] Baruah, M., Mishra, R. R. 1986, Effect of herbicides butachlor, 2,4-d and oxyfluorfen on enzyme activities and CO2 evolution in submerged paddy field soil. Plant and Soil, 96, 287-291.
    [49] Doelman, P., Haanstra, L., 1979, Effect of lead on soil respiration and dehydrogenase activity. Soil Biology and Biochemistry 11,475-479.
    [50] Kandeler, E., Kampichler, C., Horak, O., 1996, Influence of heavy metals on the functional diversity of soil microbial conuntmities. Biology and Fertility of Soils 23,299-306.
    [51] Barros, N. Gomez-Orellana, I. Feijoo, S. Balsa, R. 1995, The effect of soil moisture ou soil microbial activity studied by microcalorimetry. Thermochimica Acta, 249, 161-168.
    [52] Maag M., Vinther F. P. 1996, Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology 4,5-14
    [53] Berry E. C.. Jordan D. 2001, Temperature and soil moisture content effects on the growth of Lumbricus terrestris (Oligochaeta-Lumbricidae) under laboratory conditions. Soil Biology & Biochemistry 33, 133-136.
    [54] Lance Presley M., McElroy Tom C., and Diehl Walter J. 1996, Soil Moisture and Temperature Interact to Affect Growth, Survivorship, Fecundity, and Fitness in the Earthworm Eisenia fetida. Comp.Biochem.Physiol. 114A(4), 319-326.
    [55] Veikko Huhta, Pekka Sulkava, Katja Viberg 1998, Interactions between enchytraeid (Cognettia sphagnetorum), microarthropod and nematode populations in forest soil at differcnt
    
    moistures. Applied Soil Ecology 9, 53-58.
    [56] Mclean K. L., Swaminathan J., Stewart A. 2001, Increasing soil temperature to reduce sclerotial viability of Sclerotium cepivorum in New Zealand soils. Soil Biology & Biochemistry 33, 137-143.
    [57] Bauer Clrista, Rombke Jorg 1997, Factors influencing the toxicity of two pesticides on three Imnbricid species in laboratory tests. Soil Biology & Biochemistry.29, 705-708.
    [58] B. K. Vainshtein, W. R. Melik-Adamyan, V. V. Barynin, et al. 1986, Three-dimensional structure of catalase from Penicillium viatale at 2-0 A resolution. J.Mol.Biol., 188,49-61.
    [59] 林植芳,1991,光敏反应对过氧化氢酶的影响.生物化学与生物物理进展,18(6):435-438.
    [60] 戴伟 白红英.1995,土壤过氧化氢酶活度及动力学特征与土壤性质的关系.北京林业大学学报,7(1):37-41.
    [61] 朱鲁生 王军 林爱军等.2002,二甲戊乐灵的土壤微生物生态效应.环境科学,23(3):88-91.
    [62] 黄智 李时银 刘新会等.2002,苯噻草胺对土壤中过氧化氢酶活性及呼吸作用的影响.环境化学,21(5):481-484.
    [63] C. Pozo, M. V. Martinez-Toledo, V. Salmeron., et al. 1995, Effect of Chlorpyrifos ou soil microbial activity. Environmental Toxicology and Chemistry, 14(2): 187-192.
    [64] Allan S. Felsot., E. Kudjo Dzantor. 1995, Effect of alachlor concentration and an organic amendment on soil dehydrogenase activity and pesticide degradation rate. Environmental. Toxicology and Chemistry, 14(1): 23-28.
    [65] 朱楠文 阌航 陈美慈.1996,甲胺磷对土壤中磷酸酶和脱氢酶活性的影响.农村生态环境,12(2):22-24,64.
    [66] R. D. Bardgett., L. James., D. K. Leemans. 1995, Microbial biomass and activity in a grassland soil amended with different application rates of silage effluent-A laboratory study. Bioresource Technology, 52:175-180.
    [67] Adolphe Monkiedje., Matthew Olusoji Ilori., Michael Spiteller. 2002, Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biology & Biochemistry, 34: 1939-1948.
    [68] Piero Perucci., Costantino Vischetti., Fabrizio Battistoni. 1999, Rimsulfuron in a silty
    
    clay loam soil:e.ects upon microbiological and biochemical properties under varying microcosm conditions. Soil Biology and Biochemistry, 31: 195-204.
    [69] 郭明 陈红军 王春蕾.2000,4种农药对土壤脱氢酶活性的影响.环境化学,19(6):523-527.
    [70] 史长青.1995,重金属污染对水稻土酶活性的影响.土壤通报,26(1):24-35.
    [71] 刘树庆.1996,城市污灌区域铅、镉污染对土壤酶活性的影响 土壤通报,33(2):175-182.
    [72] Bertrand Brohon.,Cecile Delolme.,Remi Gourdon. 2001,Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality. Soil Biology & Biochemistry 33:883-891.
    [73] 王秀丽 徐建民 谢正苗等.2002,重金层铜和锌污染对土壤环境质量生物学指标的影响 浙江大学学报(农业与生命科学版),28(2):190-194.
    [74] Speir T W. 1992, Assessment of the feasibility of using CCA(copper, chromium and arsenic)-treated and boric acid-treated sawdust as soil amendments. Ⅱ.Soil Biochemical and biological properties. [J].Plant and Soil, 142:249-258.
    [75] Gh.Hassan Dar., 1996, Effects of cadmium and sewage-sludge on soil microbial biomass and enzyme activities.Bioresource Technology 56:141-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700