电磁脉冲孔耦合及其电磁拓扑模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一个实际的电子系统都处于金属屏蔽腔体内,并不可避免地开有小孔及导线穿入腔体内,外部电磁波通过小孔及线耦合到腔体内,并在导线上感应出瞬态电流,在端接部分感应出电压。由此形成的干扰对系统具有破坏作用。随着电子系统的功能不断增加,相应的连接导线增多,系统的边界几何结构日趋复杂,整个空间也不是均匀媒质,外部干扰与其形成了复杂的电磁交互环境。以往对此方面的研究往往采用各自独立的孔耦合理论或多导体传输线理论分别来近似处理,显然该方法与实际情况存在较大误差。为解决上述问题,必须将孔耦合及多导体传输线基本理论相结合,形成系统化理论体系来揭示复杂电磁交互的本质规律。
     电磁拓扑法是按照屏蔽腔体的实际结构、屏蔽级别在三维空间对系统进行划分,用拓扑图来表示它们的相互作用关系,通过BLT (Baum-Liu-Tesche)方程的正交分解算法将整个系统分解成各个独立的子系统,由此来减小系统求解的计算量。
     本文应用电磁拓扑理论对电磁脉冲通过孔耦合到腔体内并与多导体相交互问题进行了研究,建立了多导体传输线孔耦合电磁拓扑理论模型。根据系统的实际结构建立了拓扑图及相应的电磁交互序列图,利用等效原理将孔等效为磁流源,并利用边界条件、镜像原理推导出孔上的等效偶极矩并作为腔体内的辐射源。对于腔体内的多导体传输线上的分布源可通过该辐射源来计算,通过对BLT方程求解,得到了电场屏蔽效能的频率特性、感应电压及其随孔的尺寸、激励源入射角变化规律等孔耦合重要特性参数的理论值及相应曲线。
     电磁脉冲模拟器作为孔耦合电磁拓扑模型的外部高能激励源,为实验研究复杂电磁环境中的耦合问题提供了必要的技术支持。该模拟器采用单片机控制,能够产生5个连续双指数脉冲波形,而且能够实现脉冲间隔、电压幅值连续可调等功能。为了计算模拟器工作空间内的电磁场,利用电磁场张量法推导出电磁脉冲模拟器工作空间内电磁场时域解析表达式,解决了激励源分布在含有折角突变结构中电磁波的时域解析法计算问题,为复杂边界环境中的电磁场计算奠定了基础。结果表明电磁场分布是由模拟器的前、后锥板及平行板上的均匀分布电流不同滞后位叠加所产生的,而且具有横电磁波特性。
     针对金属屏蔽腔体内导线上的感应电压瞬态响应实验数据,采用矩阵束算法和奇点展开法提取了瞬态响应晚期低频特征参数,采用分数付里叶变换技术求取了瞬态响应早期高频特征参数,并确定了耦合函数。
     电磁拓扑理论模型的计算结果与实验数据基本吻合,表明了所提出的模型可行性及有效性,并为今后进一步全面深入研究和应用电磁拓扑理论提供了基础。
A practical electronic system is located within a metal shield cavity with unavoidable perforated apertures and conducting wires pass through the enclosure. Through an aperture and wires external electromagnetic pulse couples to the cavity, in which the transient current is induced on the lines and the transient voltage is induced on the line ends, and the interference formed by the transient current and voltage has destructive effect. With the increasing function of the electronic system and thousands of connecting wires, boundary geometric construction becomes more and more complicated, while the whole space is not a homogeneous medium, and the complicated electromagnetic interaction environment is also formed by the external electromagnetic pulse and the electronic system. The research on the above-mentioned problems used individual theories of the aperture coupling or the multiconductor transmission lines respectively to achieve approximate treatment. Obviously, in the method mentioned above there existed errors in practical situations. To solve the above problems, the aperture coupling theory and multiconductor transmission line theory should be combined to form a theoretics system to reveal essential rules of the complicated electromagnetic interaction.
     Electromagnetic topology divides the system in 3D space according to the system construction and shielding levels. The interactive relation can be represented as the electromagnetic topological diagram by using the orthogonal decomposition algorithm of the BLT (Baum-Liu-Tesche) equation to divide the whole system into the separate subsystems and therefore to reduce the computation of the systems’solution.
     Electromagnetic pulse (EMP) coupling through an aperture to multiconductor transmission lines inside cavity is considered by using electromagnetic topological theory in this dissertation. An electromagnetic topology theoretical model of multiconductor transmission-line aperture coupling is proposed. The topological diagram and the corresponding electromagnetic interaction sequence diagram in terms of the practical system are constructed. Using the equivalent theorem, the aperture is replaced by the equivalent magnetic sources. Utilizing boundary conditions and image theorem, the equivalent electric and magnetic dipole moments which can be exciting sources inside cavity are derivated. The calculation of the equivalent distribution sources on multiconductor transmission lines located inside the cavity can be expressed by the exciting sources. The theoretic calculation values and the measured waveforms for the electric field shielding effectiveness in frequency domain are obtained. The induced voltages vary with the aperture sizes and incident angles of the exciting sources, which describe the important characteristic parameters of the aperture coupling, obtained by finding the BLT equation solution.
     An electromagnetic pulse simulator, acting as the external high power electromagnetic pulse of the aperture coupling electromagnetic topological model, offers necessary technical support for the experimental research on the complicated electromagnetic interaction circumstance. The simulator controlled by the single chip microcomputer can generate five continuous double exponential pulse wavefroms, and pulse interval, voltage magnitude are adjustable. In order to compute the electromagnetic field of the simulator work volume, the electromagnetic field analytic expression of the simulator work volume is derived from the electromagnetic field tensor, and the computation problem of the electromagnetic wave analytic method is solved in the time domain for the exciting sources distributed in the abrupt bent construction. The computation result indicates that electromagnetic field distribution results from different retard potentials superimposed by the uniform currents from the front and back conical plates as well as middle parallel plate, and the field distribution has the feature of transverse electromagnetic wave.
     To the transient response experimental data of induced voltage on the lines located a metal shield cavity, the characteristic parameters are extracted for the transient later time response in low frequency by using the singularity expansion method (SEM) and the matrix pencil algorithm, and the characteristic parameters of the early time response in high frequency are also extracted by using the fractional Fourier transform technique, and coupling functions are obtained as well.
     The computation results are in good agreement with the electromagnetic topology theoretical model, indicate the feasibility and validity of the proposed model, and provide the foundation for further extensive research on and application to the electromagnetic topological theory.
引文
[1]路宏敏.电磁兼容性预测研究.西安交通大学博士论文, 2000: 5~29
    [2]杨儒贵.电磁定理和原理及其应用.西南交通大学出版社,2002:75~87
    [3]王长清.现代计算电磁学基础.北京大学出版社,2005: 329~332
    [4] C.E.Baum.From the Electromagnetic Pulse to High Power Electromagnet-ics .Proc.IEEE, 1992,80(6):789~817
    [5]谢彦召,王赞基,王群书等.电磁脉冲模拟器下架空线缆响应的实验研究.中国电机工程学报,2006,26(24):200~204
    [6]李云伟,王泽忠,卢斌先等.电磁脉冲模拟器仿真与实验研究.高电压技术,2007,33(1):128~131
    [7]潘晓东,魏光辉,任新智.有界波模拟器结构尺寸对EMP传输的影响.河北大学学报(自然科学版),2007,27(10):18~21
    [8] C.E.Baum.EMP Simulation for Various Types of Nuclear EMP Environment: An Interim Categorization. IEEE Tran.on Antennas and Propagation, 1978,26(1): 35~53
    [9] J.J.A.Klaasen. an Efficient Mothod for the Performance Analysis of Bounded-Wave Nuclear EMP Simulators. IEEE Tran.on Electromagnetic Compatibility, 1993,35(3):329~338
    [10] F.M.Tesche, Charles Mo and R.W.Shoup.Determination of the Electromag-netic Fields Radiated from the Ares EMP Simulator.IEEE Tran. on Electrom-agnetic Compatibility,1994,36(4): 331~341
    [11] M.Ianoz, BogdanI, C.Nicoara and W.A.Radasky. Modeling of an EMP Conducted Environment.IEEE Tran.on Electromagnetic Compatibility. 1996,38(3):400~413
    [12] J.S.Seregelyi, S.Kashyap and A.Louie.Field Dynamics in a Parallel-Plate Simulator.IEEE Tran.on Electromagnetic Compatibility.1995,37(3):465 ~473
    [13] S.Ahmed, D.Raju, S.Chaturvedi and R. Jha. Modal Analysis for Bunded- Wave EMP Simulator–Part: Effect of Test Object. IEEE Trans. on Electro- magnetic Compatibility. 2005,47(1):171~182
    [14] S.Ahmed, D.Raju,S.Chaturvedi and R.Jha.Modal Analysis for a Bunded-Wave EMP Simulator–PartⅡ:Radiation Leakage and Mode Suppression. IEEE Trans.on Electromagnetic Compatibility.2005,47(1): 183~192
    [15]刘顺坤,郑振兴,焦杰等.电磁脉冲模拟器空间场分布的数值模拟.强激光与粒子束,1998,10(3):399~402
    [16]李宝忠,程引会,陈明等.一维电磁脉冲模拟器的理论分析和设计.强激光与粒子束,2004,16(2):215~218
    [17]谢秦川,陈明,李进玺等.水平极化电磁脉冲模拟器空间场的数值模拟.强激光与粒子束,2004,16(10):1304~1306
    [18]潘晓东,魏光辉.有界波模拟器频率特性研究[J].军械工程学院学报,2005,17(6):25~28
    [19]孙蓓云,周晏,郑振兴等.春雷号有界波EMP模拟器暂态过程的计算.核电子学与探测技术.2000,20(16):461~464
    [20]孙蓓云,周晏等.有界波EMP模拟器脉冲高压电源.强激光与粒子束,2000,12(4):505~508
    [21]董小龙,汪文秉.瞬态电磁学的新近展.电子科技导报,1997,12:20~24
    [22]汪文秉.瞬态电磁场.西安交通大学出版社,1991年:151~169
    [23] B.Fourestieè, Z.Altman and M. Kanda.Anechoic Chamber Evaluation Using the Matrix Pencil Method. IEEE Trans. Electromagnetic Compatibility.1999,41(3):169~174
    [24] T.K.Sarkar, S.Park, J. Koh, and S.M.Rao.Application of the Matrix Pencil Method for Estimating the SEM (Singularity Expansion Method) Poles of Source-Free Transient Responses from Multiple Look Directions. IEEE Tran.on Antennas and Propagation.2000, 48(4):612~618.
    [25] G..Nico and J.Fortuny.Using the Matrix Pencil Method to Solve Phase Unwrapping. IEEE Tran.on Signal Processing.2003,51(3):886~889
    [26] A.E.Hajj. Characteristic Mode Formulation of Multiple Rectangular Apertures in a Conducting Plane with a Dielectric-Filled Cavity. IEEE Trans.on Electromagnetic Compatibility.1998,40(3):89~93
    [27] H.H. Park and H. J. Eom. Electromagnetic Penetration into a Rectangular Cavity with Multiple Rectangular Apertures in a Conducting Plane. IEEE Tran. On Electromagnetic Compatibility. 2000,42(3):303~307
    [28] Z.Jiang, Z. Shen. Mode-Matching Analysis of large Aperture Coupling and Its Applications to the Design of Waveguide Directional Couplers.IEE Proc.Microw Antennas Propag. 2003, 50(6):422~428
    [29]聂小春,葛德彪,阎玉波等.广义网络原理在电磁散射混合方法中的应用.电子科学学刊,2000,22 (4):626~631
    [30]聂小春,葛德彪,袁宁.导电平板上任意孔隙的TM波散射及传输特性分析.电子与信息学报,2001,23(2):168~174
    [31] M. Li, J.Nuebel and J.L.Drewniak.EMI from Cavity Modes of Shielding Enclosures—FDTD Modeling and Measurements IEEE Tran. on Electroma- gnetic Compatibility. 2000,42(1): 29~38
    [32]虞国寅,徐鹏根.强电磁脉冲的小孔耦合.电波科学学报,1996,11(2) 76~80
    [33]刘顺坤,傅君眉等.电磁脉冲对目标腔体的孔缝耦合效应数值研究.电波科学学报,1999,14(2):202~206
    [34]付继伟,侯朝祯,窦丽华.电磁脉冲斜入射时对孔缝耦合效应的数值分析强激光与粒子束,2003,15(3):249~252
    [35]陈修桥,张建华,胡以华.电磁脉冲与窄缝腔体耦合共振特性分析.强激光与粒子束,2003,15(5):481~484
    [36]王建国,屈华民,范如玉.孔洞厚度对高功率微波脉冲耦合的影响.强激光与粒子束,1994,6(2): 282~286
    [37]孟萃,陈雨生,王建国.瞬态电磁场对多孔洞目标耦合规律的数值研究.强激光与粒子束,2000,12(6):732~736
    [38]王建国,刘国治,陈雨生.微波脉冲孔缝线性耦合的数值与实验研究.微波学报,1995,11(4):244~251
    [39]高成,周璧华,陈彬等.实壁金属屏蔽壳体上孔缝及结构尺寸对电磁脉冲屏蔽效能的影响.全国电磁兼容学术会议论文集.广州,2001:66~70
    [40]余同彬,周璧华.贯通导线对屏蔽机箱内电路HEMP耦合电流的影响.电波科学学报.2002,7(5):481~484
    [41]刘顺坤,傅君眉,陈雨生.快上升前沿电磁脉冲与目标腔体的孔腔共振效应研究.强激光与粒子束.1999,11(4):495~498
    [42] M.P.Robinson, T.M.Benson and C.Christopoulos. Analytical formulation for the Shielding Effectiveness of Enclosures with Apertures.IEEE Trans. on Electromagnetic Compatibility,1998,40(3):240~248
    [43] W.Wallyn, D.D.Zutter, H.Rogier.Prediction of the Shielding and Resonant Behavior of Multisection Enclosures Based on Magnetic Current Modeling. IEEE Trans. on Electromagnetic Compatibility, 2002,44(1):130~137
    [44] E.S.Siah. Coupling Studies and Shielding Techniques for Electromagnetic Penetration though Apertures on Complex Cavities and Vehicular Platforms. IEEE Trans. on Electromagnetic Compatibility,2003,45(2): 245~256
    [45] J. Chramiec, M. Kitlin. Design of Quarter-Wave Compact Impedance Trans-formers Using Coupled Transmission lines Electronics Letters. 2002,38(25):1683~1685
    [46] K. Topalli, M. Unlu and S. Demir. New Approach for Moddelling Dstrib- uted MEMS Transmission Lines. IEE Proc-Microw Antennas Propag.2006, 153(2):152~162
    [47] P.D. Doncker,R. Meys .Electromagnetic Coupling to Transmission Lnes Under Complex Illumination.Electronics Letters, 2004, 40 (1):11~13
    [48] M.S. Mami. Computation of Electromagnetic Transients on Transmission Lines with Nonlinear Components IEE Proc-Gener. Transm. Distrib.2003, 150( 2) :200~204
    [49] J.V.Der Merwe, J.H.Cloete and H.C.Reader.Transients on Multicon- ductor Transmission Lines above Dissipative Earth Numerical Simulation and Measurement.IEEE Tran. on Electromagnetic Compatibility, 2003,45(2):404 ~415
    [50]任武,丁四如,高本庆.双绞传输线电磁兼容特性的FDTD分析.电波科学学报,2002,17(1):4~9
    [51]付继伟,侯朝桢,窦丽华.改进多导体传输线模型终端响应的FDTD模拟.北京理工大学学报,2003,23(6):28~731
    [52]张希,刘宗行,孙韬.传输线方程的一种数值解法.重庆大学学报.2004 27(2):116~119
    [53]和伟,郝建明,高攸纲.高频传输线方程适用性的讨论.电波科学学报. 2000,15(3): 275~277
    [54] I.Erdin, A.Dounavis and R.Achar .A SPICE Model for Incident Field Coupling to Lossy Multiconductor Transmission Lines. IEEE Tran.on Electromagnetic Compatibility,2001,43(4):485~494
    [55]齐磊,卢铁兵,崔翔.基于时域有限差分法的非均匀多导体传输线瞬态分析中国电机工程学报.2003,23(7):102~106
    [56]钱建平,郭金生,黄锦安.变量分离法在传输线瞬态分析中的应用.江苏大学学报(自然科学版),2002,23(6):61~64
    [57] H.Kabbaj and J. Zimmermann.Time-Domain Study of Lossy Nonuniform Multiconductor Transmission Lines with Complex Nonlinear Loads.Micro- wave and Optical Technology Letters.2001, 29( 5):296~301
    [58]吕文俊,曹伟,朱洪波.具有屏蔽导体的多导体传输线的矩量法分析.南京邮电学院学报,2003,23(2): 21~25
    [59] G.Antonini, G.Ferri. A New Approach for Closed-Form Transient Analysis of Multiconductor Transmission Lines. IEEE Tran. on Electromagnetics 2004,46(4): 529~543
    [60]孙韬,刘宗行.传输线方程解析解求解方法的探讨.华北电力大学学报, 2005,32:25~28
    [61] A. Cheldavi. Radiation from coupled multiconductor transmission lines IEE Proc.-Gener.Transm.Distrib.,2003,150(1):15~22
    [62] M.S. Mamis, A. Nacaroglu. Transient voltage and current distributions on transmission lines.IEE Proc-Gener. Transm. Distrib, 2002 149(6):705~712
    [63] A. Cheldavi.Analysis of coupled Hermite transmission lines IEE Proc.Mic row. Antennas Propag., 2003,150( 4): 279~284
    [64] R. Nevels, J. Miller. A Simple Equation for Analysis of Nonuniform Tran- smission Lines IEEE Tran.on Microwave Theory and Techniques,2001,49 (4): 721~724
    [65] G.S. Shinh, N.M. Nakhla and Ram Achar.Fast Transient Analysis of Incident Field Coupling to Multiconductor Transmission Lines.IEEE Tran on Electromagnetic Compatibility,2006, 48(1):57~73
    [66] M.K.Amirhosseini.Analysis of Coupled Nonuniform Transmssion Lines Using Short Exponential or Linear Sections.Journal of Electromagnetic Waves and Appl.,2007,21(3):299~312
    [67] G.Tzeremes, P.Kirawanich and C.Christodoulou .Transmission Lines as Radiating Antenna in Sources Aperture Interactions in Electromagnetic Topology Simulations.IEEE Tran on antennas and Wireless Propagation Letters,2004,3:283~286
    [68] P.Kirawanich, D.Gleason.Electromagnetic Topology Quasisolutions for Aperture Interactions Using Transmission Line Matrix. Journal of Applied Physics,2006,99,044910:1~7
    [69] P.Besnier. Electromagnetic Topology:An Additional Interaction Sequence Diagram for Transmission line Network Analysis. IEEE Tran. on Electromagnetic Compatibility, 2006,48(4):685~692
    [70] P.Kirawanich.Methodology for Interference Analysis Using Electromag- netics Topology Techniques.Appl.Phys.Lett.,2004,84(15): 2949~2951
    [71]林竞羽,周东方,毛天鹏等.电磁拓扑分析中的BLT方程及其应用.信息工程大学学报,2004,5(2): 118~121
    [72]戴丽,谢政,罗建书等.多层电磁屏蔽的电磁拓扑图分析方法.强激光与粒子束,2006,18(9):1524~1526
    [73] T.Hua,S.L.Dvorak and J.L.Prince. Extraction of the Hybrid Phase-Pole Macromodel Parameters Using Matrix Pencil method .11Th Topical Meeting On Electrical Performance of Electronic Packaging, Monterey, California,USA,2002: 301~304
    [74] Tao Ran,Deng Bing and WangYue.Reseach progress of the fractional Fourier transform in signal proessing. Science in china: Series F information Science. 2006,49(1):1~25
    [75]齐林,陶然,周思永,王越.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计.中国科学(E缉),2003,33(8):749~762
    [76]齐林,陶然,周思永等.LFM信号的一种最优滤波算法.电子学报, 2004,32(9):1464~1467
    [77]邓宾,陶然,齐林,刘锋.分数阶Fourier变换与时频滤波.系统工程与电子技术,2004,26(10):1357~1459
    [78]赵义正,扬景曙.基于分数阶Fourier变换的瞬时频率估计方法.安徽大学学报(自然科学版),2005,29(1) : 44~49
    [79]蔚宇,孙德宝,郑继刚.基于FrFT优化窗的STFT及非线性调频信号瞬时频率估计.宇航学报,2005,26(2): 217~222
    [80]蔚宇,孙德宝.基于分数阶域的多分量线性调频信号能量聚集检测.电讯技术,2004.3:139~143
    [81]王璞,扬建宇,杜雨洺.分数阶自相关和FrFT的LFM信号参数估计.电子科技大学学报,2006,35(2):179~182
    [82] S.C. Pei, M.H.Yeh and C.C.Tseng.Discrete Fractional Fourier Transform Based on Orthogonal Projections.IEEE Transactions on Signal Processing, 1999, 47(5) :1335~1348
    [83] C. Candan, M.A.Kutay and H.M.Ozaktas.The Discrete Fractional Fourier Transform. IEEE Trans.on Signal Processing. 2000, 48 (5): 1329~1337
    [84] M.T.Hanna,N.P.Yeh and W.M.Ahmed.Hermite-Gaussian-Like Eigenve- ctors of the Discrete Fourier Transform Matrix Based on the Singular-Value Decomposition of Its Orthogonal Projection. IEEE Trans.on Circuits and Systems-I; Regular Papers,2004,51(11):2245~2254
    [85] S.Jang,W.Choi,T.K.Sarkar.Exploiting Early Time Response Using the Fractional Fourier Transform for Analyzing Transient Radar Returns.IEEE Trans.on Electromagnetic Compatibility.2004,52(11):3109~3120
    [86]董小龙,吴季,姜景山.分数阶变换和近区场的计算电波科学学报,2001,16(1):18~21
    [87] C.E.Baum.Including Apertures and Cavities in the BLT Formalism. Electromagnetics, 2005, 25: 623~635
    [88] F.M.Tesche, C.E.Butler.On the Addition of Emfield Propagation and Coupling Effects in the BLT Equation. 2004,Interaction Note 588
    [89]范丽思,魏光辉,王书平等.核电磁脉冲模拟器放电回路的数值分析.军械工程学院学报,2003,15(2):1~5
    [90]王一平.电磁场与播理论基础西安电子科技大学出版社2002;56-67
    [91]周璧华,陈彬,石立华.电磁脉冲及其工程防护国防工业出版社2003:148-152,199~208
    [92] B.S.Guru,H.R.Hiziroglu.Electromagnetic Field Theory Fundament-ials.Second Edition.电磁场与电磁波. (英文版,第二版)机械工业出版社,2005:429~435
    [93]祝敏,孙培云,郑振星等.用平行板天线测量有界波电磁脉冲.强激光与粒子束,1999,11(6):751~754
    [94] P.P.Finet,E.Fogret. Complex Order Fractional Fourier Transforms and Their Use in Diffraction Theory Application to Optical Resonators.Optics Communications, 2006, 258:103~113
    [95] K.K.Sharma, S.D. Joshi.Time Delay Estimation Using Fractional Fourier Transform. Signal Processing,2007,87:853~865
    [96] A.Akan,E.Onen. A Discrete Fractional Gabor Expansion for Multicom- ponent Signals.Inernational Journal of Electronics and Communications,2007,61:279~285
    [97] E.Fogret, P.P.Finet.Agreement of Fractional Fourier Optics with the Huygens–Fresnel Principle. Optics Communications,2007,272 :281~288
    [98] P.Besnier.Electremagnetic Topology:Investigations of Nonuniform Trans-mission Line Networks.IEEE Trans.on Electromagnetic Compatibility 1995,37(2) :227~233
    [99] E.M.Davenport.MESAF: Software for Assessing the Electromagnetic Compatibility of ComplexSystems. IEE Proc.Sci.Meas.Techol.2002, 149(5):227~231
    [100]翁凌雯,牛忠霞,林竞羽.运用BLT方程研究高功率微波的电磁干扰.强激光与粒子束,2005,17(8):1272~1276
    [101] P. Kirawanich,J.R. Wilson .Generic Topological Simulation Scheme for Studying Aperture Electromagnetic Field Interactions and Cable Couplings.Journal of Applied Physics, 2007,102,0249026: 1~8
    [102] P.Kirawanich,J.R.Wilson , S.J.Yakura. A Modular Junction Topological Approach to Aperture—System Interaction Problem. IEEE Antennas and Wireless Propagation Letters,2007,6:296~299
    [103] L.F.Knockaert.Recoverng Lossy Multiconductor Transmission Line Parameters from Impedance or Scattering Respressentations.IEEE Tran.on Advan. Packag, 2002, 25(2): 227~233
    [104]王均宏.脉冲电压电流沿偶极天线传播过程的等效电路法分析.物理学报, 2000,49(9): 107~121
    [105] B.A.Lail,S.P.Castillo.Coupling through Narrow Slot Aperture to Thin- Wire Structures.IEEE Trans. on Electromagnetic Compatibility,2000,42(3): 276 ~283
    [106] L.K.Warne, K.C.Chen.Relation between Equivalent Antenna Radius and Transverse Line Dipole Moments of a Narrow Slot Aperture Having Depth. IEEE Trans. on Electromagnetic Compatibility,1998, 30(3): 364~370
    [107] T.Martin, M.Backstrom and J.Loren.Semi-empirical Modeling of Apertures for Shielding Effectiveness Simulations.IEEE Trans. on Electromagnetic Compatibility,2003,45(2): 229~237
    [108] P.Kirawanich, N.Kranthi and R.Gunda.A Method to Characterize the Interactions of External Pulses and Multiconductor Lines in ElectromagneticTopology Based Simulations.Journal of Appl.Phys.,2004,96(10) : 5892 ~5897
    [109] P.Kirawanich.Electromagnetic Topology-Based Analysis of Coupling through Small Aperture on Cables of Communication Systems. Electromagnetics, 2005, 25: 589~602
    [110] P.Kirawanich,S.J.Yakura and C.Christodoulou.An Electromagnetic TopologyMethod for Cable Interactions Using a Radiating Dipole at Apertures.IEEE Tran.on Antennas and Wireless Propagation Letters,2006, 5:220~223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700