压电弹性体孔边裂纹问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的一百多年中,压电材料的各种性能(弹性、压电性、介电性、热释电性、铁电性、光电性)相继被人们发现。而伴随着压电陶瓷制备技术的日渐完善,压电材料的应用也日趋广泛。如今,压电材料及其结构在日常生活和高科技的各个领域中随处可见,如:雷达通讯、水声超声、医学成像、红外探测、航空航天、动物仿生和电子测量等。在工程实际中,开孔结构是一种较为常见的结构。在复杂的加载环境下,含孔洞的结构不可避免的会出现应力集中,在孔边诱发裂纹,从而导致材料的断裂破坏。因此,研究压电弹性体孔边裂纹问题具有重要的理论意义和工程价值。
     本文利用复变函数和保角变换的方法,结合柯西积分,针对无限大压电体内孔边裂纹问题进行理论和数值的研究,导出了某些经典问题的解析解;针对有限大压电体内的孔边裂纹问题,采用半解析半数值的边界元方法,分析了裂尖场的变化规律。主要工作如下:
     (1)利用复变函数和保角变换的方法,提出了研究压电弹性体中任意形状孔边裂纹的反平面问题的解法。对于经典的圆孔/椭圆孔孔边裂纹问题,在前人的基础上,给出了改进后的保角变换函数,从而得到了这些经典问题的解析解;对于任意形状的孔边裂纹问题,提出了用数值保角变换来求得近似的保角变换函数的方法,从而得到该问题的近似解。通过对孔边裂纹问题的分析,探寻裂尖场强度因子和能量释放率随裂纹尺寸、圆孔直径和外载的变化关系,从而简单判断裂纹的扩展。
     (2)发展了双材料中含椭圆孔孔边界面裂纹的无限大压电弹性体反平面问题的解法。利用椭圆孔的保角变换函数将椭圆孔及其裂纹保角变换到新平面内的直线裂纹,从而将椭圆孔孔边裂纹双材料问题转化为新平面内的直线界面裂纹问题。利用Stroh公式,分别得到了在电不可穿透裂纹假设和电可穿透裂纹假设下的本问题的复势函数和场强度因子的解析表达式。分析了在两种电边界条件下裂尖的奇异性,以及场强度因子随椭圆大小、裂纹尺寸的变换关系,从理论上找到降低裂尖强度因子的方法。
     (3)考虑热应力对结构的影响,探讨了复杂形状孔边裂纹的广义二维问题的一般方法。首先由椭圆孔的保角变换函数导出由椭圆孔演化而来的复杂形状孔边非对称裂纹的保角变换函数;其次,基于绝热边界条件,导出了热复势函数表达式;再次,根据热复势函数,假设出电弹场的复势函数表达式,利用无穷远处的场有界性条件、位移单值条件、边界自由和电不可穿透条件,得到该复势函数的表达式;最后,分析了热流、孔周环向应力和环向电位移随裂纹尺寸变化趋势,讨论了裂纹尺寸、椭圆几何形状及外载的变化对场强度因子的影响,从理论上寻找降低场强度因子的方法。
     (4)针对任意形状孔边裂纹的广义二维问题,将椭圆孔的存在考虑入Green函数基本解中,从而建立了间接边界元的半解析半数值解法。研究任意形状孔边裂纹裂尖应力场及电位移场的分布规律,分析了各种几何尺寸和外载对裂尖场强度因子的影响。由于在基本解中已经考虑了椭圆孔的存在,因此在边界的离散过程中,该椭圆孔不再作为边界离散。当椭圆孔退化为裂纹时,避免了裂纹尖端边界离散的困难,极大地提高了裂尖场的计算精度。
During the past century, the properties of piezoelectric materials, such as those of elasticity,piezoelectricity, dielectricity, pyroelectricity, ferroelectricity and photoelectricity, have been found.With the piezoelectric ceramic manufacturing technique beening improved gradually, the application ofpiezoelectric materials has become more and more wide, e.g. they hace benn used in radarcommunications, ultrasound, medical imaging, infrared detection, aerospace, animal bionic, electronicmeasurement and so on.
     Structures with holes are very common in most practical engineering. Under complicated loadingenvironment, this kind of structures will produce the so-called “stress concentration” phenomenon,which will leads to the damage of the materials. So, it is very important to study the cracked-holeproblems in the peizoelectric materials.
     In the present paper, the cracked-hole problems in an infinite piezoelectric body are studied byusing the complex variable method and the conformal mapping function, combined with the Cauchyintegral, and the analytical solutions are derived for some classic problems. On the other hand, theboundary element method is used to deal with the abritrary shape cracked-hole problems in a finitepiezoelectric body. The main works can be summarized as follows:
     (1) By using the complex variable method and the conformal mapping function, the cracked-holeanti-plane problems in the transversely isotropic piezoelectric materials are solved. For the classicproblems, the improved mapping function is obtained, and the explicit and exact expressions forthe complex potentials, field intensity factors and energy release rates are presented respectivelyon the assumption that the surface of the cracks and hole is electrically impermeable. For thearbitrary shape cracked-hole problems, the method of numerical conformal mapping is used toobtain the mapping problem which maps the outside of arbitrary shape with a crack into theoutside of a circular hole. Based on the mapping function, the approximate expressions for thecomplex potentials, field intensity factors and energy release rates are presented, respectively.Numerical analysis is then conducted to discuss the influences of crack length and appliedmechanical/electric loads on the field intensity factors and energy release rates for one and twoedge cracks, respectively.
     (2) The solution of anti-plane problems for the bimaterials which contain an elliptic hole with twoedge cracks is obtained. The mapping function which maps the ellipse to a line crack is obtained. Based on the assumption of permeable or impermeable crack, the expressions for the complexpotentials and field intensity factors are obtained by using the Stroh formulation, respectively. Thesingularity of the crack tip, the field intensity factors are studied.
     (3) The cracked-hole problems in the generalized two-dimensional electrical materials is studied,where the heat flow is considered. Firstly, the mapping function based on the elliptic hole has beenobtained, which maps the outer of the cracked-hole into the outer of the circle hole. Secondly, theheat complex function is solved based on the adiabatic condition. Thirdly, the expressions for thecomplex potentials and field intensity factors are presented under the condition that the stress,strain and electric displacement are bounded at infinity, single-valued displacement, theequilibrium of mechanical, and electrical electrically impermeable boundary condition. Andfinally, some numerical analyses are also made to discuss the influences of crack length and heatflux on the electroelastic fields and fields intensity factors, in order to find a way to decrease thefield intensity factors.
     (4) By using the boundary element method (BEM), the cracked-hole problems in the finitepiezoelectric body is studied. The stress field and the electrical displacement field around thecrack tip are analyzed. For the arbitrary shape of hole, the influence of the geometric dimensionsand the external loads on the field intensity factors are discussed. Since the elliptic hole or thecrack has been considered in the fundamental solution, there is no need to discrete the ellipticalhole boundary or the crack boundary in the discretization process, which avoids the problem ofdiscretization caused by the singularity at the crack tip, and greatly improves the accuracy of thecalculation at the crack tip.
引文
[1]赵玉庭,姚希曾.复合材料基体与界面[M].上海:华东化工学院出版社,1991.
    [2]吴报铢,沈寿彭,史关一等.压电高聚物[M].上海:上海科学技术文献出版社,1980.
    [3]宋道仁,肖鸣山.压电效应及其应用[M].科学普及出版社,1987.
    [4] Cady, W.G.. Piezoelectricity[M]. New York: Dover,1964.
    [5]贾菲,林声和.压电陶瓷[M].科学出版社,1979.
    [6]秦自楷.压电石英晶体[M].国防工业出版社,1980.
    [7]范翠英.压电压磁固体断裂理论及数值方法研究[D].兰州大学2010.
    [8]张志华.压电多连通各向异性板的力电耦合研究[D].南京:南京航空航天大学1999.
    [9] Setter, N., Waser, R.. Electroceramic materials[J]. Acta materialia,2000,48(1):151-178.
    [10] Zhang, T.Y., Zhao, M., Tong, P.. Fracture of piezoelectric ceramics[J]. Advances in AppliedMechanics,2002,38147-289.
    [11] Kamlah, M.. Ferroelectric and ferroelastic piezoceramics–modeling of electromechanicalhysteresis phenomena[J]. Continuum Mechanics and Thermodynamics,2001,13(4):219-268.
    [12] Hall, D.A.. Review nonlinearity in piezoelectric ceramics[J]. Journal of Materials Science,2001,36(19):4575-4601.
    [13]杨卫.电致失效力学[J].力学进展,1996,26(3):338-352.
    [14]陈增涛,余寿文.压电介质损伤,断裂力学研究的现状[J].力学进展,1999,29(2):187-196.
    [15] Qin, Q.H., Qin, Q.. Fracture Mechanics of Piezoelectric Materials[M]. WIT Press Southampton,2001.
    [16] Chen, Y.H., Lu, T.J.. Cracks and fracture in piezoelectrics[J]. Advances in Applied Mechanics,2003,39121-215.
    [17] Fang, D., Zhang, Z.K., Soh, A.K., et al.. Fracture criteria of piezoelectric ceramics withdefects[J]. Mechanics of Materials,2004,36(10):917-928.
    [18] Zhang, T.Y., Gao, C.F.. Fracture behaviors of piezoelectric materials[J]. Theoretical and AppliedFracture Mechanics,2004,41(1):339-379.
    [19] Suo, Z., Kuo, C.M., Barnett, D.M., et al.. Fracture mechanics for piezoelectric ceramics[J].Journal of the Mechanics and Physics of Solids,1992,40(4):739-765.
    [20] Sih, G.C., Zuo, J.Z.. Multiscale behavior of crack initiation and growth in piezoelectricceramics[J]. Theoretical and Applied Fracture Mechanics,2000,34(2):123-141.
    [21] Liu, M., Hsia, K.J.. Interfacial cracks between piezoelectric and elastic materials under in-planeelectric loading[J]. Journal of the Mechanics and Physics of Solids,2003,51(5):921-944.
    [22] Michelitsch, T.M., Gao, H.J., Levin, V.M.. Dynamic Eshelby tensor and potentials for ellipsoidalinclusions[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical andEngineering Sciences,2003,459(2032):863-890.
    [23] Filshtinskii, L.A., Filshtinskii, M.L.. Green function for a composite piezoceramic plane with aninterfacial crack[J]. Prikl. Mat. Mekh,1994,58159-166.
    [24] Wu, X.F., Cohn, S., Dzenis, Y.A.. Screw dislocation interacting with interfacial and interfacecracks in piezoelectric bimaterials[J]. International Journal of Engineering Science,2003,41(7):667-682.
    [25] Wang, B.L., Mai, Y.W.. Thermal shock fracture of piezoelectric materials[J]. PhilosophicalMagazine,2003,83(5):631-657.
    [26] Li, C.Y., Weng, G.J.. Yoffe–type moving crack in a functionally graded piezoelectric material[J].Proceedings of the Royal Society of London. Series A: Mathematical, Physical and EngineeringSciences,2002,458(2018):381-399.
    [27] Zuo, J.Z., Sih, G.C.. Energy density theory formulation and interpretation of cracking behaviorfor piezoelectric ceramics[J]. Theoretical and Applied Fracture Mechanics,2000,34(1):17-33.
    [28] Wang, B., Liu, Y.. The average field in piezoelectric media with randomly distributedinclusions[J]. Mechanical Modeling of New Electromagnetic Materials, Elsevier,1990,313-318.
    [29] Chen, T.Y.. The translation of a rigid ellipsoidal inclusion embedded in an anisotropicpiezoelectric medium[J]. International Journal of Solids and Structures,1994,31(6):891-902.
    [30] Wang, B.. Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material[J].International Journal of Solids and Structures,1992,29(3):293-308.
    [31] Leknitskii, S.G.. Theory of Elasticity of an Anisotropic Body[M]. Mir Publishers,1981.
    [32] Chung, M.Y., Ting, T.C.T.. Piezoelectric solid with an elliptic inclusion or hole[J]. InternationalJournal of Solids and Structures,1996,33(23):3343-3361.
    [33]杜善义,梁军,韩杰才.含刚性线夹杂及裂纹的各向异性压电材料耦合场分析[J].力学学报,1995,27(005):544-550.
    [34] Liang, J., Han, J., Wang, B., et al.. Electroelastic modelling of anisotropic piezoelectric materialswith an elliptic inclusion[J]. International Journal of Solids and Structures,1995,32(20):2989-3000.
    [35] Stroh, A.N.. Dislocations and cracks in anisotropic elasticity[J]. Philosophical Magazine,1958,3(30):625-646.
    [36] Stroh, A.N.. Steady state problems in anisotropic elasticity[J]. Journal of Mathematical Physics,1962,41(2):77-103.
    [37] Sosa, H.. Plane problems in piezoelectric media with defects[J]. International Journal of Solidsand Structures,1991,28(4):491-505.
    [38] Zheng, Z.. Analysis of a partially debonded elliptic inhomogeneity in piezoelectric materials[J].Applied Mathematics and Mechanics,2004,25(4):445-457.
    [39] Dunn, M.L., Wienecke, H.A.. Inclusions and inhomogeneities in transversely isotropicpiezoelectric solids[J]. International Journal of Solids and Structures,1997,34(27):3571-3582.
    [40] Eshelby, J.D.. The determination of the elastic field of an ellipsoidal inclusion, and relatedproblems[J]. Proceedings of the Royal Society of London. Series A. Mathematical and PhysicalSciences,1957,241(1226):376-396.
    [41] Eshelby, J.D.. The elastic field outside an ellipsoidal inclusion[J]. Proceedings of the RoyalSociety of London. Series A, Mathematical and Physical Sciences,1959,561-569.
    [42] Hou, M.S., Yang, Q.J.. Plane problems in piezoelectric media with elliptic inclusion[J]. AppliedMathematics and Mechanics,1998,19(2):147-155.
    [43] Ishihara, M., Noda, N.. An electroelastic problem of an infinite piezoelectric body with twoinhomogeneities[J]. JSME International Journal. Series A, Solid Mechanics and MaterialEngineering,1999,42(4):492-498.
    [44] Pak, Y.E.. Circular inclusion problem in antiplane piezoelectricity[J]. International Journal ofSolids and Structures,1992,29(19):2403-2419.
    [45] Wu, L., Chen, J., Meng, Q.. Two piezoelectric circular cylindrical inclusions in the infinitepiezoelectric medium[J]. International Journal of Engineering Science,2000,38(8):879-892.
    [46] Wang, X., Shen, Y.P.. On double circular inclusion problem in antiplane piezoelectricity[J].International Journal of Solids and Structures,2001,38(24):4439-4461.
    [47] Gao, C.F., Noda, N.. Faber series method for two-dimensional problems of an arbitrarily shapedinclusion in piezoelectric materials[J]. Acta Mechanica,2004,171(1):1-13.
    [48] Chao, C.K., Chang, K.J.. Interacting circular inclusions in antiplane piezoelectricity[J].International Journal of Solids and Structures,1999,36(22):3349-3373.
    [49]杨宾华.含压电纤维复合材料机电耦合问题的研究[D].南京航空航天大学2008.
    [50]杨宾华,高存法.含多个圆形夹杂压电介质的反平面问题[C].中国力学学会50周年学术大会,北京,2007.
    [51] Yang, B.H., Gao, C.F., Noda, N.. Interactions between N circular cylindrical inclusions in apiezoelectric matrix[J]. Acta Mechanica,2008,197(1):31-42.
    [52] Yang, B.H., Gao, C.F.. Anti-plane electro-elastic fields in an infinite matrix with Ncoated-piezoelectric inclusions[J]. Composites Science and Technology,2009,69(15-16):2668-2674.
    [53] Parton, V.Z.. Fracture mechanics of piezoelectric materials[J]. Acta Astronautica,1976,3(9-10):671-683.
    [54] Deeg, W.F.J.. The Analysis of Dislocation, Crack, and Inclusion Problems in PiezoelectricSolids[D]. California: Stanford University1980.
    [55] Pak, Y.E.. Crack extension force in a piezoelectric material[J]. Journal of Applied Mechanics(Transactions of the ASME),1990,57(3):647-653.
    [56] Pak, Y.E.. Linear electro-elastic fracture mechanics of piezoelectric materials[J]. InternationalJournal of Fracture,1992,54(1):79-100.
    [57] Sosa, H.. On the fracture mechanics of piezoelectric solids[J]. International Journal of Solids andStructures,1992,29(21):2613-2622.
    [58] Pak, Y.E., Tobin, A.. On electric field effects in fracture of piezoelectric materials[J]. ASMEApplied Mechanics Division-Publications-AMD,1993,16151-51.
    [59] McMeeking, R.M.. Electrostrictive stresses near crack-like flaws[J]. Zeitschrift für AngewandteMathematik und Physik (ZAMP),1989,40(5):615-627.
    [60] Hao, T.H., Shen, Z.Y.. A new electric boundary condition of electric fracture mechanics and itsapplications[J]. Engineering Fracture Mechanics,1994,47(6):793-802.
    [61] Zhao, M.H., Xu, G.T., Fan, C.Y.. Hybrid extended displacement discontinuity-charge simulationmethod for analysis of cracks in2D piezoelectric media[J]. Engineering Analysis with BoundaryElements,2009,33(5):592-600.
    [62]侯密山.压电材料平面应力状态的直线裂纹问题一般解[J].力学学报,1997,29(5):595-599.
    [63] Gao, C.F., Fan, W.X.. Exact solutions for the plane problem in piezoelectric materials with anelliptic or a crack[J]. International Journal of Solids and Structures,1999,36(17):2527-2540.
    [64] Zhang, T.Y., Qian, C.F., Tong, P.. Linear electro-elastic analysis of a cavity or a crack in apiezoelectric material[J]. International Journal of Solids and Structures,1998,35(17):2121-2149.
    [65] Sosa, H., Khutoryansky, N.. New developments concerning piezoelectric materials withdefects[J]. International Journal of Solids and Structures,1996,33(23):3399-3414.
    [66] Dunn, M.L.. The effects of crack face boundary conditions on the fracture mechanics ofpiezoelectric solids[J]. Engineering Fracture Mechanics,1994,48(1):25-39.
    [67] Xu, X.L., Rajapakse, R.. On a plane crack in piezoelectric solids[J]. International Journal ofSolids and Structures,2001,38(42):7643-7658.
    [68] Xu, X.L., Rajapakse, R.. A theoretical study of branched cracks in piezoelectrics[J]. ActaMaterialia,2000,48(8):1865-1882.
    [69] Qi, H., Fang, D.N., Yao, Z.H.. Analysis of electric boundary condition effects on crackpropagation in piezoelectric ceramics[J]. Acta Mechanica Sinica,2001,17(1):59-70.
    [70] Wang, B.L., Mai, Y.W.. On the electrical boundary conditions on the crack surfaces inpiezoelectric ceramics[J]. International Journal of Engineering Science,2003,41(6):633-652.
    [71]赵明皞,韩海涛.三维压电介质中不同电边界条件的裂纹分析[J].机械强度,2003,25(4):445-449.
    [72] Gao, C.F., Zhao, Y.T., Wang, M.Z.. Moving antiplane crack between two dissimilar piezoelectricmedia[J]. International Journal of Solids and Structures,2001,38(50):9331-9345.
    [73]路见可.平面弹性复变方法[M].武汉大学出版社,2005.
    [74]高健,刘官厅.带有半椭圆形缺口的半平面问题的应力分析[J].内蒙古师范大学学报:自然科学版,2011,40(5):444-447.
    [75] Hasebe, N., Inohara, S.. Stress analysis of a semi-infinite plate with an oblique edge crack[J].Archive of Applied Mechanics,1980,49(1):51-62.
    [76] Park, S.B., Carman, G.P.. Tailoring the properties of piezoelectric ceramics: analytical[J].International Journal of Solids and Structures,1997,34(26):3385-3399.
    [77] McMeeking, R., Ricoeur, A.. The weight function for cracks in piezoelectrics[J]. InternationalJournal of Solids and Structures,2003,40(22):6143-6162.
    [78]杨丽敏,柳春图,曾晓辉.压电材料平面问题的尖端场和应力强度因子的求解[J].应用力学学报,2005,22(2):212-216.
    [79] Ostergaard, D.F., Pawlak, T.P.. Three-dimensional finite elements for analyzing piezoelectricstructures[C].1986;639-644.
    [80] Heyliger, P., Ramirez, G., Saravanos, D.. Coupled discrete‐layer finite elements for laminatedpiezoelectric platess[J]. Communications in Numerical Methods in Engineering,1994,10(12):971-981.
    [81]石志飞,赵世瑛,周利民等.压电材料变分原理逆问题的研究[J].复合材料学报,1998,15(3):119-123.
    [82] Wu, C.C., Sze, K.Y., Huang, Y.Q.. Numerical solutions on fracture of piezoelectric materials byhybrid element[J]. International Journal of Solids and Structures,2001,38(24):4315-4329.
    [83]周勇,王鑫伟.压电材料平面裂纹尖端场的杂交应力有限元分析[J].力学学报,2004,36(3):354-358.
    [84]朱昊文,李尧臣,杨昌锦.功能梯度压电材料板的有限元解[J].力学季刊,2006,26(4):567-571.
    [85]平学成,陈梦成,谢基龙等.基于新型裂尖杂交元的压电材料断裂力学研究[J].力学学报,2006,38(003):407-413.
    [86] Sze, K.Y., Pan, Y.S.. Hybrid finite element models for piezoelectric materials[J]. Journal ofSound and Vibration,1999,226(3):519-547.
    [87] Detwiler, D.T., Shen, M.H.H., Venkayya, V.B.. Finite element analysis of laminated compositestructures containing distributed piezoelectric actuators and sensors[J]. Finite Elements inAnalysis and Design,1995,20(2):87-100.
    [88]丁皓江,池毓蔚,国凤林等.压电材料轴对称有限元分析[J].计算力学学报,2000,171.
    [89] Chao, C., Young, C.. On the general treatment of multiple inclusions in antiplane elastostatics[J].International Journal of Solids and Structures,1998,35(26):3573-3593.
    [90] Chen, J.T., Wu, A.C.. Null-field approach for piezoelectricity problems with arbitrary circularinclusions[J]. Engineering Analysis with Boundary Elements,2006,30(11):971-993.
    [91]黎在良,蒋和洋.用裂纹张开位移全场拟合法求应力强度因子-边裂纹问题[J].固体力学学报,2000,21(4).
    [92] Conway, H.D., Ithaca, N.Y.. The stress distributions induced by concentrated loads acting inisotropic and orthotropic half planes[J]. Journal of Applied Mechanics,1953,20(1):82-86.
    [93] Kamel, M., Liaw, B.M.. Green's functions due to concentrated moments applied in an anisotropicplane with an elliptic hole or a crack[J]. Mechanics Research Communications,1989,16(5):311-319.
    [94] Kamel, M., Liaw, B.M.. Boundary element formulation with special kernels for an anisotropicplate containing an elliptical hole or a crack[J]. Engineering Fracture Mechanics,1991,39(4):695-711.
    [95] Sollero, P., Aliabadi, M.H.. Fracture mechanics analysis of anisotropic plates by the boundaryelement method[J]. International Journal of Fracture,1993,64(4):269-284.
    [96]高存法,岳伯谦.含有椭圆孔的各向异性体平面问题的通解[J].石油大学学报(自然科学版),1992,2.
    [97]高存法,岳伯谦.集中载荷作用下各向异性平面内的椭圆或裂纹问题[J].应用力学学报,1993,10(3):49-57.
    [98]高存法,岳伯谦.含椭圆孔或裂纹各向同性体平面问题基本解[J].石油大学学报:自然科学版,1995,19(004):83-86.
    [99]高存法,全兴华.含椭圆孔或裂纹的等参数正交异性板平面问题基本解[J].力学学报,1995,272.
    [100]高存法,仝兴华.含半无限裂纹的各向异性体平面问题基本解[J].力学与实践,1995,17(005):46-48.
    [101]高存法,龙连春.各向异性体半平面问题的复应力函数基本解[J].应用力学学报,1996,13(3):62-66.
    [102]高存法,龙连春.各向异性平面问题的复应力函数基本解[J].应用力学学报,1996,13(003):62-66.
    [103]高存法,樊蔚勋.各向异性平面内双边半无限裂纹问题的基本解[J].工程力学,1997,14(002):128-133.
    [104] Chen, Y., Hasebe, N.. An edge crack problem in a semi-infinite plane subjected to concentratedforces[J]. Applied Mathematics and Mechanics,2001,22(11):1279-1290.
    [105] Liu, J.X., wang, B., Du, S.Y.. Line force, charge and dislocation in anisotropic piezoelectricmaterials with an elliptic hole or a crack[J]. Mechanics Research Communications,1997,24(4):399-405.
    [106] Lu, P., Williams, F.W.. Green functions of piezoelectric material with an elliptic hole orinclusion[J]. International Journal of Solids and Structures,1998,35(7):651-664.
    [107] Gao, C.F., Fan, W.X.. Green's functions for generalized2D problems in piezoelectric media withan elliptic hole[J]. Mechanics Research Communications,1998,25(6):685-693.
    [108]高存法,樊蔚勋.含椭圆孔或裂纹压电介质平面问题的基本解[J].应用数学和力学,1998,19(011):965-973.
    [109] Qin, Q.H.. Thermoelectroelastic Green's function for a piezoelectric plate containing an elliptichole[J]. Mechanics of Materials,1998,30(1):21-29.
    [110]高存法,崔德密.压电介质平面问题的基本解[J].应用力学学报,1999,16(1):140-143.
    [111] Gao, C.F., Wang, M.Z.. Green’s functions of an interfacial crack between two dissimilarpiezoelectric media[J]. International Journal of Solids and Structures,2001,38(30):5323-5334.
    [112] Gao, C.F., Noda, N.. Green’s functions of a half-infinite piezoelectric body: Exact solutions[J].Acta Mechanica,2004,172(3):169-179.
    [113] Crouch, S.L.. Solution of plane elasticity problems by the displacement discontinuity method. I.Infinite body solution[J]. International Journal for Numerical Methods in Engineering,1976,10(2):301-343.
    [114] Zhao, M.H., Shen, Y.P., Liu, Y.J., et al.. Isolated crack in three-dimensional piezoelectric solid.Part II: Stress intensity factors for circular crack[J]. Theoretical and Applied Fracture Mechanics,1997,26(2):141-149.
    [115] Zhao, M.H., Fan, C.Y., Liu, T., et al.. Extended displacement discontinuity Green's functions forthree-dimensional transversely isotropic magneto-electro-elastic media and applications[J].Engineering Analysis with Boundary Elements,2007,31(6):547-558.
    [116] Zhao, M.H., Fan, C.Y., Yang, F., et al.. Analysis method of planar cracks of arbitrary shape in theisotropic plane of a three-dimensional transversely isotropic magnetoelectroelastic medium[J].International Journal of Solids and Structures,2007,44(13):4505-4523.
    [117] Berger, J.R., Karageorghis, A.. The method of fundamental solutions for layered elasticmaterials[J]. Engineering Analysis with Boundary Elements,2001,25(10):877-886.
    [118] Li, X.L., Zhu, J.L.. The method of fundamental solutions for nonlinear elliptic problems[J].Engineering Analysis with Boundary Elements,2009,33(3):322-329.
    [119] Chantasiriwan, S., Johansson, B.T., Lesnic, D.. The method of fundamental solutions for freesurface Stefan problems[J]. Engineering Analysis with Boundary Elements,2009,33(4):529-538.
    [120] Yao, W.A., Wang., H.. Virtual boundary element integral method for2-D piezoelectric media[J].Finite Elements in Analysis and Design,2005,41(9-10):875-891.
    [121] Li, X.C., Yao, W.A.. Virtual boundary element-integral collocation method for the planemagnetoelectroelastic solids[J]. Engineering Analysis with Boundary Elements,2006,30(8):709-717.
    [122] Snyder, M.D., Cruse, T.A.. Boundary-integral equation analysis of cracked anisotropic plates[J].International Journal of Fracture,1975,11(2):315-328.
    [123] Liaw, B., Kamel, M.. Stress intensity factors for cracks emanating from a curvilinear hole in ananisotropic plane under arbitrary loadings[J]. Engineering Fracture Mechanics,1990,36(5):669-681.
    [124] Liaw, B., Kamel, M.. A crack approaching a curvilinear hole in an anisotropic plane undergeneral loadings[J]. Engineering Fracture Mechanics,1991,40(1):25-35.
    [125] Tan, C.L., Gao, Y.L.. Boundary integral equation fracture mechanics analysis of plane orthotropicbodies[J]. International Journal of Fracture,1992,53(4):343-365.
    [126] Sollero, P., Aliabadi, M.. Anisotropic analysis of cracks in composite laminates using the dualboundary element method[J]. Composite Structures,1995,31(3):229-233.
    [127] Saez, A., Gallego, R., Dominguez, J.. Hypersingular quarter‐point boundary elements for crackproblems[J]. International Journal for Numerical Methods in Engineering,1995,38(10):1681-1701.
    [128]高存法,侯密山.各向异性半平面问题的边界元法[J].工程力学(增刊),1996,271-273.
    [129] Pan, E., Amadei, B.. Fracture mechanics analysis of cracked2-D anisotropic media with a newformulation of the boundary element method[J]. International Journal of Fracture,1996,77(2):161-174.
    [130] Garc a, F., Sáez, A., Dom nguez, J.. Traction boundary elements for cracks in anisotropicsolids[J]. Engineering Analysis with Boundary Elements,2004,28(6):667-676.
    [131]陆建飞,沈为平.半平面多圆孔多裂纹反平面问题[J].上海交通大学学报,1998,32(011):66-70.
    [132] Chen, Y.Z., Hasebe, N.. Solution of multiple‐edge crack problem of elastic half‐plane byusing singular integral equation approach[J]. Communications in Numerical Methods inEngineering,1995,11(7):607-617.
    [133]王钟羡,陈宜周,李福林.半平面多边缘裂纹反平面问题的奇异积分方程[J].力学与实践,2006,28.
    [134]文丕华.正交各向异性半平面内作用集中载荷的弹性解[J].应用数学和力学,1992,13(012):1117-1126.
    [135] Lee, J.S., Jiang, L.Z.. A boundary integral formulation and2D fundamental solution forpiezoelastic media[J]. Mechanics Research Communications,1994,21(1):47-54.
    [136] Lee, J.S.. Boundary element method for electroelastic interaction in piezoceramics[J].Engineering Analysis with Boundary Elements,1995,15(4):321-328.
    [137] Liang, Y.C., Hwu, C.. Electromechanical analysis of defects in piezoelectric materials[J]. SmartMaterials and Structures,1996,5314.
    [138] Pan, E.. A BEM analysis of fracture mechanics in2D anisotropic piezoelectric solids[J].Engineering Analysis with Boundary Elements,1999,23(1):67-76.
    [139] Denda, M., Lua, J.. Development of the boundary element method for2D piezoelectricity[J].Composites Part B: Engineering,1999,30(7):699-707.
    [140] Liu, Y., Fan, H.. On the conventional boundary integral equation formulation for piezoelectricsolids with defects or of thin shapes[J]. Engineering Analysis with Boundary Elements,2001,25(2):77-91.
    [141] Rajapakse, R., Xu, X.L.. Boundary element modeling of cracks in piezoelectric solids[J].Engineering Analysis with Boundary Elements,2001,25(9):771-781.
    [142] Dav, G., Milazzo, A.. Multidomain boundary integral formulation for piezoelectric materialsfracture mechanics[J]. International Gournal of Solids and Structures,2001,38(40):7065-7078.
    [143] Ding, H.J., Jiang, A.M.. A boundary integral formulation and solution for2D problems inmagneto-electro-elastic media[J]. Computers&Structures,2004,82(20):1599-1607.
    [144] Garcia-Sanchez, F., Sáez, A., Dominguez, J.. Anisotropic and piezoelectric materials fractureanalysis by BEM[J]. Computers&Structures,2005,83(10-11):804-820.
    [145] Garcia-Sanchez, F., Rojas-Diaz, R., Saez, A., et al.. Fracture of magnetoelectroelastic compositematerials using boundary element method (BEM)[J]. Theoretical and Applied FractureMechanics,2007,47(3):192-204.
    [146] Wang, Y.J., Gao, C.F.. The mode III cracks originating from the edge of a circular hole in apiezoelectric solid[J]. International Journal of Solids and Structures,2008,45(16):4590-4599.
    [147] Wang, Y.J., Gao, C.F.. Thermoelectroelastic solution for edge cracks originating from anelliptical hole in a piezoelectric solid[J]. Journal of Thermal Stresses,2012,35(1-3):138-156.
    [148] Wang, Y.J., Gao, C.F.. Thermoelectroelastic solution for edge cracks originating from a circularhole in a piezoelectric solid[C]. In9thInternational Congress on Thermal Stresses2011, Budapest,2011.
    [149] Guo, J.H., Lu, Z.X., Han, H.T., et al.. The behavior of two non-symmetrical permeable cracksemanating from an elliptical hole in a piezoelectric solid[J]. European Journal of Mechanics-A/Solids,2010,29(4):654-663.
    [150] Guo, J.H., Lu, Z.X., Han, H.T., et al.. Exact solutions for anti-plane problem of two asymmetricaledge cracks emanating from an elliptical hole in a piezoelectric material[J]. International Journalof Solids and Structures,2009,46(21):3799-3809.
    [151] Bowie, O.L.. Analysis of an infinite plate containing radial cracks originating at the boundary ofan internal circular hole[J]. Journal of Mathematical Physics,1956,35(1):60-71.
    [152] Muskhelishvili, N.I.. Some basic problems of the mathematical theory of elasticity[M].Groningeng: Noordhoof,1963.
    [153] Eshelby, J., Read, W., Shockley, W.. Anisotropic elasticity with applications to dislocationtheory[J]. Acta Metallurgica,1953,1(3):251-259.
    [154] Barnett, D.M., Lothe, J.. Dislocations and line charges in anisotropic piezoelectric insulators[J].Physica Status Solidi (B),1975,67(1):105-111.
    [155] Barnett, D.M., Lothe, J., Gavazza, S.D., et al.. Considerations of the existence of interfacial(Stoneley) waves in bonded anisotropic elastic half-spaces[J]. Proceedings of the Royal Societyof London. A. Mathematical and Physical Sciences,1985,402(1822):153-166.
    [156] Ting, T.C.T.. Anisotropic Elasticity: Theory and Applications[M]. England: Oxford UniversityPress,1996.
    [157] Ting, T.C.T.. Some identities and the structure of Ni in the Stroh formalism of anisotropicelasticity[J]. Quarterly of Applied Mathematics,1988,46109-120.
    [158]Li, Q., Ting, T.C.T.. Line inclusions in anisotropic elastic solids[J]. Journal of Applied Mechanics,1989,56556-563.
    [159] Ting, T.C.T., Yan, G.. The anisotropic elastic solid with an elliptic hole or rigid inclusion[J].International Journal of Solids and Structures,1991,27(15):1879-1894.
    [160]丁启财,王敏中.各向异性弹性力学一般边值问题的广义Stroh公式[J].力学学报,1993,25(3):283-301.
    [161] Ting, T.C.T.. Symmetric Representation of Stress and Strain in the Stroh Formalism and PhysicalMeaning of the Tensors L, S, L (θ) and S (θ)[J]. Journal of Elasticity,1998,50(1):91-96.
    [162] Shen, S., Kuang, Z.B.. Interface crack in bi-piezothermoelastic media and the interaction with apoint heat source[J]. International Journal of Solids and Structures,1998,35(30):3899-3915.
    [163] Suo, Z.. Singularities, interfaces and cracks in dissimilar anisotropic media[J]. Proceedings of theRoyal Society of London. A. Mathematical and Physical Sciences,1990,427(1873):331-358.
    [164] McMeeking, R.M.. Crack tip energy release rate for a piezoelectric compact tension specimen[J].Engineering Fracture Mechanics,1999,64(2):217-244.
    [165] Schneider, G.A.. Influence of electric field and mechanical stresses on the fracture offerroelectrics[J]. Annual Review of Materials Research,2007,37491-538.
    [166] Suo, Z., Zhao, X., Greene, W.H.. A nonlinear field theory of deformable dielectrics[J]. Journal ofthe Mechanics and Physics of Solids,2008,56(2):467-486.
    [167] Li, W., McMeeking, R.M., Landis, C.M.. On the crack face boundary conditions inelectromechanical fracture and an experimental protocol for determining energy release rates[J].European Journal of Mechanics-A/Solids,2008,27(3):285-301.
    [168] Garcia-Sanchez, F., Sáez, A., Dominguez, J.. Anisotropic and piezoelectric materials fractureanalysis by BEM[J]. Computers&Structures,2005,83(10):804-820.
    [169] Hsu, Y.C.. The infinite sheet with cracked cylindrical hole under inclined tension or in-planeshear[J]. International Journal of Fracture,1975,11(4):571-581.
    [170] Tweed, J., Melrose, G.. Cracks at the edge of an elliptic hole in out of plane shear[J]. EngineeringFracture Mechanics,1989,34(3):743-747.
    [171]徐芝纶.弹性力学(上册)[M].北京:人民教育出版社,1979.
    [172]闻国椿,殷慰萍.复变函数的应用[M].北京:首都师范大学出版社,1999.
    [173]黄先春.保形映照手册[M].武汉:华中工学院出版社,1985.
    [174] Henrici, P.. Applied and Computational Complex Analysis[M]. New York: Wiley ClassicsLibrary Edition,1986.
    [175] Schinzinger, R., Laura, P.A.A.. Conformal Mapping: Methods and Applications[M]. New York:Dover Pubns,2003.
    [176] Ellacott, S.W.. On the approximate conformal mapping of multiply connected domains[J].Numerische Mathematik,1979,33(4):437-446.
    [177] Gaier, D., Papamichael, N.. On the comparison of two numerical methods for conformalmapping[J]. IMA Journal of Numerical Analysis,1987,7(3):261-282.
    [178] Bj rstad, P., Grosse, E.. Conformal mapping of circular arc polygons[J]. SIAM Journal onScientific and Statistical Computing,1987,819.
    [179] Trefethen, L.N.. Computation and application of Schwarz–Christoffel transformations[J].Anonymous [Ano80],1980,165-171.
    [180]朱满座.数值保角变换及其在电磁理论中的应用[D].西安电子科技大学2008.
    [181]萨文.孔附近的应力集中[M].北京:科学出版社,1958.
    [182]王旭,王子昆.压电材料反平面应变状态的椭圆夹杂及界面裂纹问题[J].上海力学,1993,14(4):26-34.
    [183]张保文,李星.含界面中心裂纹的压电材料反平面问题[J].宁夏大学学报:自然科学版,2006,27(2):161-164.
    [184]王旭,沈亚鹏.压电多层材料中的电极-陶瓷界面裂纹和椭圆夹杂[J].力学学报,2002,34(6):881-894.
    [185]马鹏,冯文杰,靳静.压电压磁双层材料界面二维裂纹分析[J].工程力学,2011,28(6):163-169.
    [186] Gao, C.F., Tong, P., Zhang, T.Y.. Interfacial crack problems in magneto-electroelastic solids[J].International Journal of Engineering Science,2003,41(18):2105-2121.
    [187] Hetnarski, R.B., Ignaczak, J.. The Mathematical Theory of Elasticity (Second Edition)[M]. NewYork: Taylor&Francis,2011.
    [188] Noda, N., Hetnarsk, R.B., Tanigawa, Y.. Thermal Stresses (Second Edition)[M]. New York:Taylor&Francis,2003.
    [189] Hetnarski, R.B., Eslami, M.R.. Thermal Stresses: Advanced Theory and Applications[M].Springer,2008.
    [190] Ignaczak, J., Ostoja-Starzewski, M.. Thermoelasticity with Finite Wave Speeds[M]. New York:Oxford University Press,2010.
    [191] Tiersten, H.F.. On the nonlinear equations of thermo-electroelasticity[J]. International Jjournal ofEngineering Science,1971,9(7):587-604.
    [192] Chandrasekharaiah, D.S.. A generalized linear thermoelasticity theory for piezoelectric media[J].Acta Mechanica,1988,71(1):39-49.
    [193] Qin, Q.H.. Thermoelectroelastic solution for elliptic inclusions and application to crack-inclusionproblems[J]. Applied Mathematical Modelling,2000,25(1):1-23.
    [194] Gao, C.F., Zhao, Y.T., Wang, M.Z.. An exact and explicit treatment of an elliptic hole problem inthermopiezoelectric media[J]. International Journal of Solids and Structures,2002,39(9):2665-2685.
    [195] Hasebe, N., Bucher, C., Heuer, R.. Heat conduction and thermal stress induced by an electriccurrent in an infinite thin plate containing an elliptical hole with an edge crack[J]. InternationalJournal of Solids and Structures,2010,47(1):138-147.
    [196] Gao, C.F., Wang, M.Z.. Collinear permeable cracks in thermopiezoelectric materials[J].Mechanics of Materials,2001,33(1):1-9.
    [197] Norio, H., Hideaki, I., Takuji, N.. Stress intensity factors of cracks initiating from a rhombic holedue to uniform heat flux[J]. Engineering Fracture Mechanics,1992,42(2):331-337.
    [198] Vinh, P.C., Hasebe, N., Wang, X.F., et al.. Interaction between a cracked hole and a line crackunder uniform heat flux[J]. International Journal of Fracture,2005,131(4):367-384.
    [199] Ashida, F., Choi, J.S., Noda, N.. Control of elastic displacement in piezoelectric-based intelligentplate subjected to thermal load[J]. International Journal of Engineering Science,1997,35(9):851-868.
    [200]班努杰,白脫费尔德.工程科学中的边界元法[M].国防工业出版社,1988.
    [201] Jaswon, M., Ponter, A.. An integral equation solution of the torsion problem[J]. Proceedings ofthe Royal Society of London. Series A. Mathematical and Physical Sciences,1963,273(1353):237-246.
    [202] Jaswon, M.A.. Integral equation methods in potential theory. I[J]. Proceedings of the RoyalSociety of London. Series A. Mathematical and Physical Sciences,1963,275(1360):23-32.
    [203] Symm, G.T.. Integral equation methods in potential theory. II[J]. Proceedings of the RoyalSociety of London. Series A. Mathematical and Physical Sciences,1963,275(1360):33-46.
    [204] Wrobel, L.C., Aliabadi, M.H.. The boundary element method: Applications in thermo-fluids andacoustics[M]. New Jersey: John Wiley and Sons,2002.
    [205] Aliabadi, M.H.. The Boundary Element Method: Applications in Solids andStructures[M]. New Jersey: John Wiley and Sons,2002.
    [206]杨德全,赵忠生.边界元理论及应用[M].北京理工大学出版社,2002.
    [207] Kosmodamianskii, A.S., Chernik, V.I.. Stress state of a plate weakened by two elliptical holeswith parallel axes[J]. International Applied Mechanics,1981,17(6):576-581.
    [208] Ding, H.J., Wang, G.Q., Chen, W.Q.. A boundary integral formulation and2D fundamentalsolutions for piezoelectric media[J]. Computer methods in Applied Mechanics and Engineering,1998,158(1):65-80.
    [209]王绵森.工程数学:复变函数[M].北京:高等教育出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700