基于微分—代数混合方程机理模型的非线性预测控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在节能减排要求的不断提高及生产成本的日益增加下,生产过程变工况运行的要求越来越迫切。大范围变工况控制必须考虑非线性动态特性的影响,因此对非线性控制器问题的研究具有重要的理论意义和应用价值。另一方面,预测控制作为一种面向工业过程发展起来的计算机控制算法,具有控制性能较好、鲁棒性强、能有效处理约束等特点,一直深受控制界的关注。基于机理模型的非线性预测控制具有清晰的物理意义,适合工作点大范围变动。流程工业中,往往采用微分-代数方程组(DAEs)描述其动态机理模型,然而这类模型不仅求解困难,而且难以从理论上保证优化求解过程的稳定性。本文通过研究实际运行的生产过程模型特点,深入研究非线性预测控制器的相关理论和算法设计,以及相应的变负荷优化控制命题,构造出适于该类机理模型的通用的非线性预测控制算法,并以高温气冷堆核电站的集总参数模型为例进行变负荷控制的仿真验证。
     本文的主要内容和创新点包括:
     1.分析DAEs特征,在全联立算法框架下,研究正交配置离散算法以及各种常用的正交配置点的计算原理与性质,并提出相应的判别公式,避免配置点选择不当引起自由度不够,导致系统无解,为DAEs的离散化和数值求解奠定基础。最后,以连续和不连续两种优化命题对算法进行仿真验证。
     2.研究有限元正交配置法模拟求解DAEs的存在惟一性和基于Radau正交配置点的全联立算法的稳定性,从而为稳定地模拟求解DAEs模型提供依据。提出开环动态优化问题的两层结构,该结构采用统一的非线性过程模型,可在变负荷情况下,同时实现暂态控制性能与稳态经济指标的优化。
     3.完成了基于一类DAEs机理模型的通用非线性预测控制系统软件原型设计。首先针对实际运行的流程工业系统模型特点,采用理论联系工业实际的方法分析DAEs优化问题解的存在惟一性与DAEs模型的index特点,为联立算法在滚动优化中的应用提供保障。然后构造出前馈补偿与反馈校正结合的闭环控制结构,并证明该系统的稳定性。最后,对于工业过程存在的不确定干扰或模型失配,本文提出的根据在线误差进行模式切换的控制系统具有一定的抗干扰能力。
     4.采用基于Radau正交配置点的联立法求解核电站的反应堆模型。该方法不仅保证了离散的精度,对于求解刚性问题也有很好的稳定性。针对不同变量扰动的仿真表明联立法比传统的嵌套算法具有更高的效率,能够实现系统的快速仿真。
     5.分析高温气冷堆核电站机理模型的特点,对模型进行验证。并提出非线性模型预测控制器与PID控制器相结合的控制方法以及相应的block技术,以实现对该大规模系统的实时控制。针对高温气冷堆核电站模型,设计从反应堆到蒸汽机以及从蒸汽机到反应堆的不同变负荷的控制方案,进行仿真验证。
     最后,对全文进行了总结,并指出若干有待于今后进一步研究的内容。
With the pressure from energy saving and increasing production costs, chemical processes are more than ever expected to operate under variable conditions. Process control need to consider nonlinear dynamics of the process under significant changes. Therefore research on nonlinear controller is important in theory and applications. As a kind of computer control algorithm developed for industrial processes, predictive control method has been attracting considerable attentions for its good performance, strong robustness and ability to deal with constraints. Nonlinear predictive control based on first principle models has clear physical meaning and adapts to wide range of operating points. Differential-algebraic equations (DAEs) arise naturally as dynamic models of chemical applications which is difficult to solve and to guarantee the stability of optimization based on this kind of model. This dissertation studies the theory and algorithms of nonlinear predictive control for varying load processes, which can be described as Hessenberg DAEs. Numerical tests on a high temperature gas cooled reactor pebble bed module (HTR-PM) of a nuclear power plant validate the research on varying load control.
     The main research work and contributions of the thesis are listed as follows:
     1. Characteristics of DAEs are analyzed firstly. Discretization strategies with different orthogonal collocation points are studied in the frame of simultaneous approach, and criteria are put forward to ensure the degrees of freedom of the resulting NLP. At last, continuous and discontinuous cases are presented to compare these strategies and conclusions are drawn from the results.
     2. The uniqueness of solutions to DAEs and the stability of the simultaneous approach based on Radau collocation points are studied. A two-layer optimization is presented for open-loop dynamic optimization. Here the same process model is used for both layers and the optimization of control performance and economic benefit can be implemented synchronously. The upper layer is a steady state optimization whose objective is the economic maximization in the terminal time. This layer is used to compute the set points for the controlled variables and the manipulated variables in the lower layer. The lower layer is a dynamic optimization whose objective includes both economic objective and terminal conditions.
     3. A two-layer closed-loop control structure combining feedforward compensation with feedback correction is constructed to deal with the nonlinear production process under varying load. Existence and uniqueness of the solution in rolling optimization are investigated from the practical point of view and asymptotic stability is proved under certain assumptions. The proposed algorithm has anti-interference ability in the presence of uncertain disturbances. An universal NMPC system based on DAEs model is completed.
     4. A simultaneous approach based on Radau collocation points is presented to solve the DAEs model of the reactor of a nuclear plant. This approach has good accuracy in discretization as well as has very good stability in solving stiff problems. Simulation results of the varying load processes demonstrate high efficiency of the approach, which takes much less time than the nested approach.
     5. Characteristics of HTR nuclear mechanism model are analyzed, and the model is verified. A controller combining nonlinear model predictive control with PID control is proposed to deal with the large-scale model, and the block technique is applied to achieve the purpose of online real-time applications. Different control schemes of varying load are designed and simulation results verify the effectiveness of the controller.
     At the end of the dissertation, contributions of this research are concluded and possible extensions in future research are discussed.
引文
[1]M. Abuayyad, R. Dubay and J. Hernandez. Application of Infinite Model Predictive Control Methodology to Other Advanced Controllers [J]. ISA Transactions.2009, 48(1):54-61
    [2]F. Allgower, T. A. Badgwell, J. S. Qin, et al. Nonlinear Predictive Control and Moving Horizon Estimation-an Introductory Overview [J]. Advances in Control. Highlights of ECC'99|Advances in Control. Highlights of ECC'99.1999:391-449
    [3]F. T. Antonio, L. T. Biegler and S. v. G. Enrique. Dynamic Optimization of Hips Open-Loop Unstable Polymerization [J]. Ind. Eng. Chem. Res..2005, 44:2659-2674
    [4]U. M. Ascher. On Numerical Differential Algebraic Problems with Application to Semiconductor Device Simulation [J]. SIAM journal on numerical analysis.1989, 26(3):517-518
    [5]U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations [M]. USA:Society for Industrial and Applied Mathematics,1998
    [6]M. Athans, D. Castanon, K. P. Dunn, et al. Stochastic Control of F-8c Aircraft Using a Multiple Model Adaptive-Control (Mmac) Method.1. Equilibrium Flight [J]. IEEE Transactions on Automatic Control.1977,22(5):768-780
    [7]B. Aufderheide and B. W. Bequette. Extension of Dynamic Matrix Control to Multiple Models [J]. Computers & Chemical Engineering.2003,27(8-9):1079-1096
    [8]R. D. Bartusiak and R. W. Fontaine. Feedback Method for Controlling Nonlinear Process [J].1997,5682309
    [9]H. Benitez-Perez. Real-Time Distributed Control:A Fuzzy and Model Predictive Control Approach for a Nonlinear Problem [J]. Nonlinear Analysis:Hybrid Systems. 2008,2(2):474-490
    [10]J. T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming [M]. USA:SIAM,2001
    [11]S. Bian and M. A. Henson. Nonlinear State Estimation and Model Predictive Control of Nitrogen Purification Columns [J]. Ind. Eng. Chem. Res.2005, 44:153-167
    [12]L. Biegler and V. Zavala. Large-Scale Nonlinear Programming Using Ipopt:An Integrating Framework for Enterprise-Wide Dynamic Optimization [J]. Computers & Chemical Engineering.2009,33(3):575-582
    [13]L. T. Biegler. Differential-Algebraic Equations (Daes) [M].2000. http://dvnopt.cheme.cmu.edu.
    [14]L. T. Biegler. An Overview of Simultaneous Strategies for Dynamic Optimization [J]. Chemical Engineering and Processing:Process Intensification.2007, 46(11):1043-1053
    [15]L. T. Biegler. Nonlinear Programming:Concepts,Algorithms,and Applications to Chemical Process [M]. Siam,2010
    [16]L. T. Biegler, A. M. Cervantes and A. Wachter. Advances in Simultaneous Strategies for Dynamic Process Optimization [J]. CES.2002:575-593
    [17]L. T. Biegler, J. Nocedal and C. Schmid. A Reduced Hessian Method for Large-Scale Constrained Optimization [J]. SIAM Journal on Optimization.1995, 5(2):314-347
    [18]H. H. J. Bloemen, C. T. Chou, T. J. J. van den Boom, et al. Wiener Model Identification and Predictive Control for Dual Composition Control of a Distillation Column [J]. Journal of Process Control.2001,11 (6):601-620
    [19]B. Bodenheimer and P. Bendotti. Optimal Linear Parameter Varying Control Design for a Pressurized Water Reactor [C]. Proceeding of the 34th conference on decision and control,1995.
    [20]F. Breitenecker and N. Popper. Classification and Evaluation of Features in Advanced Simulators [C]. proceedings MATHMOD 09 Vienna, Vienna, 2009.1445-1467
    [21]K. E. Brenan, S. L. Campbell and L. R. Petzold. Numerical Solution of Initial Value Problems in Differential Algebraic Equations [M]. republished by SIAM, 1989
    [22]C. Canuto and M. Y. Hussaini. Spectral Methods in Fluid Dynamics [M]. Springer-Verlag,1988
    [23]Y. M. Chao and B. Joseph. Performance and Stability Analysis of Lp-Mpc and Qp-Mpc Cascade Control Systems [J]. Aiche Journal.1999,45(7):1521-1534
    [24]L. Chen and K. S. Narendra. Nonlinear Adaptive Control Using Neural Networks and Multiple Models [J]. Automatica.2001,37(8):1245-1255
    [25]X. Chen, Q. Li and S. Fei. Constrained Model Predictive Control in Ball Mill Grinding Process [J]. Powder Technology.2008,186(1):31-39
    [26]Z. Chen, M. A. Henson, P. Belanger, et al. Nonlinear Model Predictive Control of High Purity Distillation Columns for Cryogenic Air Separation [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.2010,18(4)
    [27]D. W. Clarke, C. Mohtadi and P. S. Tuffs. Generalized Predictive Control--Part Ⅰ. The Basic Algorithm [J]. Automatica.1987,23(2):137-148
    [28]D. W. Clarke, C. Mohtadi and P. S. Tuffs. Generalized Predictive Control--Part Ⅱ. Extensions and Interpretation [J]. Automatica.1987,23(2):149-160
    [29]D. W. Clarke and R. Scattolini. Constrained Receding-Horizon Predictive Control [J]. Control Theory and Applications, IEE Proceedings D 1991,138(4):347-354
    [30]A. A. R. Coelho, F. J. Gomes and W. C. Amaral. Comparison of Self-Tuning and Predictive Control Algorithms Applied to a Nonlinear Process [C]. in In Proceedings of the 28th IEEE Conference on Decision and Control, 1989, pp.1058-1059.
    [31]P. Colonna and H. van Putten. Dynamic Modeling of Steam Power Cycles.:Part Ⅰ--Modeling Paradigm and Validation [J].Applied Thermal Engineering.2007, 27(2-3):467-480
    [32]J. E. Cuthrell and L. T. Biegler. Simultaneous Optimization and Solution Methods for Batch Reactor Control Profiles [J]. Comput. Chem. Eng..1989,13:49-62
    [33]C. R. Cutler. Dynamic Matrix Control:An Optimal Multivariable Algorithm with Constraints [D]. University of Houston. Ph.D Thesis.1983
    [34]Z. Dong, X. Huang, J. Feng, et al. Dynamic Model for Control System Design and Simulation of a Low Temperature Nuclear Reactor [J]. Nuclear Engineering and Design.2009,239(10):2141-2151
    [35]T. F. Edgar, D. M. Himmelbau and L. S. Lasdon. Optimization of Chemical Process [M]. McGraw-Hill,2001
    [36]H. Eliasi, H. Davilu and M. Menhaj. Adaptive Fuzzy Model Based Predictive Control of Nuclear Steam Generators [J]. Nuclear Engineering and Design.2007, 237(6):668-676
    [37]A. Engelsone, S. L. Campbell and J. T. Betts. Direct Transcription Solution of Higher-Index Optimal Control Problems and the Virtual Index [J]. Applied Numerical Mathematics.2007,57(3):281-296
    [38]W. F. Feehery, J. R. Banga and P. I. Barton. A Novel Approach to Dynamic Optimization of Ode and Dae Systems as High Index Problems [C].1995 Annual Meeting, Miami,1995.
    [39]R. Findeisen and F. Allgower. Nonlinear Model Predictive Control for Index-One Dae System [J]. Progress in Systems and Control Theory.2000,26,Part Ⅰ:145-161
    [40]J. F. Forbes and T. E. Marlin. Design Cost:A Systematic Approach to Technology Selection for Model-Based Real-Time Optimization Systems [J]. Computers & Chemical Engineering.20(6-7):717-734
    [41]J. F. Forbes and T. E. Marlin. Model Accuracy for Economic Optimizing Controllers-the Bias Update Case [J]. Industrial & Engineering Chemistry Research.1994,33(8):1919-1929
    [42]J. B. Froisy. Model Predictive Control--Building a Bridge between Theory and Practice [J]. Computers & Chemical Engineering.2006,30(10-12):1426-1435
    [43]C. E. Gacria and M. Morari. Internal Model Control I. A Unifying Review and Some New Results [J]. Industrial Engineering Chemical Process Design and Development.1982,21(2):308-323
    [44]W. Gao, G. F. Ma, M. L. Zhou, et al. Parameter Identification and Adaptive Predictive Control of Time-Varying Delay Systems [C]. Proceedings of International Conference on Machine Learning and Cybernetics,2005.609-613
    [45]C. E. Garcia. Quadratic Dynamic Matrix Control of Nonlinear Process:An Application to a Batch Reactor Process [C]. in AICHE Annual Meeting, San Francisco,1984.
    [46]C. E. Garcia and M. Morari. Internal Model Control--Part 1:A Unifying Rewiew and Some New Results [J]. Industrial Engineering Chemical Process Design and Development.1982,21 (2):308-323
    [47]C. E. Garcia and A. M. Morshedi. Quadratic Programming Solution of Dynamic Matrix Control(Qdmc) [J]. Chem. Eng.Commun.1986,46:73-87
    [48]P. E. Gill, W. Murray and M. A. Saunders. Snopt:An Sqp Algorithm for Large-Scale Constrained Optimization [J]. SIAM Journal on Optimization.2002, 47(1):99-131
    [49]Q. Gong, W. Kang and I. M. Ross. A Pseudospectral Method for the Optimal Control of Constrained Feedback Linearizable Systems [J]. IEEE Transactions on Automatic Control.2006,51(7):1115-1129
    [50]W. W. Hager. Runge-Kutta Methods in Optimal Control and the Transformed Adjoint System [J]. Numer. Math.2000,87:247-282
    [51]E. Hairer, S. P. Norsett and G. Wanner. Solving Ordinary Differential Equations ⅰ -Nonstiff Problems [M]. Second edition. Science Press,2006
    [52]E. Hairer and G. Wanner. Solving Ordinary Differential Equations ⅱ-Stiff and Differential-Algebraic Problems [M]. Second edition. Science Press,2006
    [53]K. M. Hangos and I. T. Cameron. Process Modelling and Model Analysis [M]. USA:Academic Press,2001:124-161
    [54]M. A. Henson. Nonlinear Model Predictive Control:Current Status and Future Directions [J]. C&CE.1998,23:187-202
    [55]K. Holmstrom, A. O. Goran and M. M. Edvall. User's Guide for Tomlab 7 [Ol] [C]. Inc.TOMLAB,2008.
    [56]R. Huang, V. M. Zavala and L. T. Biegler. Advanced Step Nonlinear Model Predictive Control for Air Separation Units [J]. Journal of Process Control.2009, 19(4):678-685
    [57]Y. L. Hwang. Nonlinear Wave Theory for Dynamics of Binary Distillation Columns [J]. AIChE Journal.1991,37(5):705-723
    [58]M. J.Tenny, S. J.Wright and J. B.Rawlings. Nonlinear Model Predictive Control Via Feasibility-Pertubed Sequential Quadratic Programming [C]. optimization technical report-modeling and control consortium report, Texas-Wisconsin,2002. univ of Wisconsin,computer sciences dept.,
    [59]J. V. Kadam and W. Marquardt. Intergration of Economical Optimization and Control for Intentionally Transient Process Operation [C]. in Assessment and future directions of nonlinear model predictive control, Freudenstadt-Lauterbad, 2005, pp.419-434.
    [60]S. Kameswaran and L. Biegler. Simultaneous Dynamic Optimization Strategies: Recent Advances and Challenges [J]. Computers & Chemical Engineering.2006, 30(10-12):1560-1575
    [61]S. Kameswaran and L. T. Biegler. Convergence Rates for Direct Transcription of Optimal Control Problems Using Collocation at Radau Points [J]. Computational Optimization and Applications.2008,41(1):81-126
    [62]S. Kameswaran and L. T. Biegler. Convergence Rates for Direct Transcription of Optimal Control Problems with Final-Time Equality Constraints Using Collocation at Radau Points [C]. Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, June 14-16,2006.165-171
    [63]M. V. Kothare, B. Mettler, M. Morari, et al. Level Control in the Steam Generator of a Nuclear Power Plant [J]. Control Systems Technology, IEEE Transactions on. 2000,8(2):55-69
    [64]K. Kovarova-Kovar, S. Gehlen, A. Kunze, et al. Application of Model-Predictive Control Based on Artificial Neural Networks to Optimize the Fed-Batch Process for Riboflavin Production [J]. Journal of Biotechnology.2000,79(1):39-52
    [65]A. Kumar and P. Daoutidis. Control of Nonlinear Differential Algebraic Equation Systems with Applocations to Chemical Process [M]. CRC Press LLC,1999:6-9
    [66]M. J. Kurtz and M. A. Henson. Input-Output Linearizing Control of Constrained Nonlinear Processes [J]. Journal of Process Control.1997,7(1):3-17
    [67]W. Kwon and A. Pearson. A Modified Quadratic Cost Problem and Feedback Stabilization of a Linear System [J]. IEEE Transactions. Automatic Control.1977, 22(5):838-842
    [68]W. Kwon and A. Pearson. On Feedback Stabilization of Time-Varying Discrete Linear Systems [J]. IEEE Transactions. Automatic Control.1978,23(3):479-481
    [69]J. H. Lee and N. L. K. Ricker. Extended Kalman Filter Based Nonlinear Model Predictive Control [J]. Industrial & engineering chemistry research.1994, 33(6):1530-1541
    [70]Y. I. Lee, B. Kouvaritakis and M. Cannon. Constrained Receding Horizon Predictive Control for Nonlinear Systems [J]. Automatica.2002, 38(Compendex):2093-2102
    [71]D. Y. li, W. Q. xian and J. C. sheng. Adaptive Predictive Control of near-Space Vehicle Using Functional Link Netwok [J]. Transactions of Nan jing University of Aeronautics&Astronautics 2010,27(2)
    [72]H. Li, X. Huang and L. Zhang. A Lumped Parameter Dynamic Model of the Helical Coiled Once-through Steam Generator with Movable Boundaries [J]. Nuclear Engineering and Design.2008,238(7):1657-1663
    [73]H. Li, X. Huang and L. Zhang. Operation and Control Simulation of a Modular High Temperature Gas Cooled Reactor Nuclear Power Plant [J]. IEEE transactions on nuclear science.2008,55(4):2357-2365
    [74]H. Li, X. Huang and L. Zhang. A Simplified Mathematical Dynamic Model of the Htr-10 High Temperature Gas-Cooled Reactor with Control System Design Purposes [J]. Annals of Nuclear Energy.2008,35(9):1642-1651
    [75]J. S. Logsdon and L. T. Biegler. Accurate Solution of Differential-Algebraic Optimization Problem [J]. Industrial & Engineering Chemistry Research.1989, 28:1628-1639
    [76]C. Lv. System Simulation and Modelling on Large Power Unit [M]. Tsinghua Press, 2002
    [77]J. M. Maciejowski. Predictive Control with Constraints [M]. Prentice Hall,2002
    [78]S. Mahmoodi, J. Poshtan, M. R. Jahed-Motlagh, et al. Nonlinear Model Predictive Control of a Ph Neutralization Process Based on Wiener-Laguerre Model [J]. Chemical Engineering Journal.2009,146(3):328-337
    [79]B. R. Maner, F. J. Doyle, B. A. Ogunnaike, et al. Nonlinear Model Predictive Control of a Simulated Multivariable Polymerization Reactor Using Second-Order Volterra Models [J]. Automatica.1996,32(9):1285-1301
    [80]F. Martinsen, L. T. Biegler and B. A. Foss. A New Optimization Algorithm with Application to Nonlinear Mpc [J]. Journal of Process Control.2004,14(8):853-865
    [81]E. S. Meadows and J. B. Rawlings. Model Predictive Control [M]. Prentice-Hall, 1997
    [82]M. G. Na and D. W. Jung. A Model Predictive Controller for Load-Following Operation of Pwr Reactor [J]. IEEE transactions on nuclear science.2005,52(4)
    [83]N. N. Nandola and S. Bhartiya. A Multiple Model Approach for Predictive Control of Nonlinear Hybrid Systems [J]. Journal of Process Control.2008,18(2):131-148
    [84]W. Ni. Some Problems on Thermal Power System Modelling and Control. [M]. Science Press,1996
    [85]J. Nocedal and S. Wright. Numerical Optimization [M]. Springer,1999
    [86]S. J. Norquay, A. Palazoglu and J. A. Romagnoli. Application of Wiener Model Predictive Control (Wmpc) to an Industrial C2-Splitter [J]. Journal of Process Control.1999,9(6):461-473
    [87]R. Pearson and B. Ogunnaike. Nonlinear Process Identification [M]. Prentice-Hall, Inc. Upper Saddle River,,1997
    [88]L. R. Petzold. Differential/Algebraic Equations Are Not Odes [J]. Siam J. Sci. Stat. Comput.1982,3:367-384
    [89]S. Piche, B. Sayyar-Rodsari, D. Johnson, et al. Nonlinear Model Predictive Control Using Neural Networks, IEEE Control Systems Magazine [J]. IEEE Control Systems Magazine.2000,20(3):53-62
    [90]A. Poloski. Application of Model Predictive Control to Batch Processes [J]. Computers & Chemical Engineering.2003,27(7):913-926
    [91]S. J. Qin and T. A. Badgwell. A Survey of Industrial Model Predictive Control Technology [J]. Control Engineering Practice.2003,11(7):733-764
    [92]J. B. RAWLINGS. Tutorial Overview of Model Predictive Control [J]. IEEE Control Systems Magazine.2000,20(3):38-52
    [93]G. W. Reddien. Collocation at Gauss Points as a Discretization in Optimal Control [J]. SIAM J. Control Optim.1979,17:298-306
    [94]H. Reutler and G. H. Lohnert. The Modular High-Temperature Reactor [J]. Nuclear Technology.1983,62:22-30
    [95]J. Richalet, E. Abu, C. Arber, et al. Predictive Functional Control--Application to Fast and Accurate Robots [C]. in 10th IFAC the World Congress Munich,1987, pp. 251-258.
    [96]J. Richalet, A. Rault, J. L. Testud, et al. Model Predictive Heuristic Control:Application to Industrial Process [J]. Automatica.1978,14(5):413-418
    [97]N. L. Ricker and J. H. Lee. Nonlinear Model Predictive Control of the Tennessee Eastman Challenge Process [J]. Computers & Chemical Engineering.1995,19(9): 961-981
    [98]C. Robbins and C. Hoggett-Jones. Modular Simulation Software for Modelling the Impacts of Alternative Spent Fuel Management Practices in the Nuclear Power Industry [J]. Simulation Modelling Practice and Theory.2002,10(3-4):153-168
    [99]E. Robert E. Young. Evolution of an Industrial Nonlinear Model Predictive Controller [C].6th Conference on Chemical Process Control, Tucson Arizona, USA,2001.
    [100]B. Roffel, B. H. L. Betlem and J. A. F. d. Ruijter. First Principles Dynamic Modeling and Multivariable Control of a Cryogenic Distillation Process [J]. Comput. Chem. Eng.2000,24:111-123
    [101]J. A. Roubos, S. Mollov, R. Babuska, et al. Fuzzy Model-Based Predictive Control Using Takagi-Sugeno Models [J]. International Journal of Approximate Reasoning.22(1-2):3-30
    [102]R. Rouhani and R. K. Mehra. Model Algorithmic Control(Mac) Basic Theoretical Properties [J]. Automatica.1982,18(4):401-414
    [103]F. F. Sanders. Key Factors for Successfully Implementing Advanced Control [J].IS A Transactions.1997,36(4):267-272
    [104]R. Scattolini. Architectures for Distributed and Hierarchical Model Predictive Control-a Review [J]. Journal of Process Control.2009,19(5):723-731
    [105]D. E. Seborg, T. F. Edgar and D. A. Mellichamp. Process Dynamics and Control [M]. John Wiley & Sons Inc 2004
    [106]J. S. Shamma. The Necessity of the Small-Gain Theorem for Time-Varying and Nonlinear Systems [J]. Automatic Control, IEEE Transactions on.1991, 36(10):1138-1147
    [107]J. Shen and T. Tang. Spectral and High-Order Methods with Applications [M]. BeiJing:Science Press,2006:12-17
    [108]S. Shirazi, A. Mousavi, C. Aghanajafi, et al. Design, Construction and Simulation of a Multipurpose System for Precision Movement of Control Rods in Nuclear Reactors [J]. Annals of Nuclear Energy.2010,37(12):1659-1665
    [109]P. Tatjewski. Advanced Control of Industrial Processes:Structures and Algorithms [M]. Springer,2007
    [110]J. Tobias, L. T. Biegler and A. Wachter. Dynamic Optimization of the Tennessee Eastman Process Using the Optcontrolcentre [J]. Computers & Chemical Engineering.2003,27(11):1513-1531
    [111]A. Y. Tsen, J. S. Shang and D. Shan. Predictive Control of Quality in Batch Polymerization Using Hybrid Ann Model [J]. Aiche Journal.1996,42(2):455-465
    [112]V. S. Vassiliadis, R. W. H. Sargent and C. C. Pantelides. Solution of a Class of Multistage Dynamic Optimization Problems.1. Problems without Path Constraints [J]. Ind. Eng. Chem. Res.1994,33(9):2111-2122
    [113]V. S. Vassiliadis, R. W. H. Sargent and C. C. Pantelides. Solution of a Class of Multistage Dynamic Optimization Problems.2. Problems with Path Constraints [J]. Ind. Eng. Chem. Res.1994,33(9):2123-2133
    [114]M. Z. Victor. Computational Strategies for the Optimal Operation of Large-Scale Chemical [D]. Carngie Mellon University.2008
    [115]A. Wachter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering [D]. Carnegie Mellon University.2002
    [116]K. X. Wang, A. P. Jiang, Z. J. Shao, et al. Rsqp Toolbox for Use with Matlab-User's Guide [M]. MATLAB Central,2006. http://www.mathworks.com/mmatlabcentral/fileexchange/13046.
    [117]W. Wang. Generalized Predictive Control of Nonlinear Systems of the Hammerstein Form [J]. Control Theory and Application.1994, 11(6):672-680
    [118]S. J. Wright and M. J. Tenny. A Feasible Trust-Region Sequential Quadratic Programming Algorithm [J]. Siam Journal on Optimization.2004,14(4):1074-1105
    [119]X. Xia, J. Zhang and A. Elaiw. An Application of Model Predictive Control to the Dynamic Economic Dispatch of Power Generation [J]. Control Engineering Practice.2011,
    [120]Z. Xu, Z. Jun and J. Qian. Nonlinear Mpc Using an Identified Lpv Model [J]. Ind. Eng. Chem. Res.2009,48(6):3043-3051
    [121]V. Zavala and L. Biegler. The Advanced-Step Nmpc Controller:Optimality, Stability and Robustness [J]. Automatica.2009,45(1):86-93
    [122]J. Zhan and M. Ishida. The Multi-Step Predictive Control of Nonlinear Siso Processes with a Neural Model Predictive Control (Nmpc) Method [J]. Computers & Chemical Engineering.1997,21(2):201-210
    [123]Z. Zhang, Z. Wu, Y. XU, et al. Design of Chinese Modular High-Temperature Gas-Cooled Reactor Htr-Pm [C]. Proceedings of the 2nd International Topical Meeting on High Temperature Reator Technology, Beijing.China,2004.D15
    [124]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[C].
    [125]牛健.双时标预测控制算法的研究[D].浙江大学博士论文.2009
    [126]王可心.大规模过程系统非线性优化的简约空间理论与算法研究[D].浙江大学.2008
    [127]王杉林.一类非凸二次规划问题的全局最优性充分条件[J].重庆师范大学学报(自然科学版).2008,25(4):5-7
    [128]王昕,李少远.多模型自适应控制方法的研究[C].in 2003年中国智能自动化会议论文集(上册),2003.
    [129]王寅,王树青,荣冈.基于t-S模糊模型的非线性预测控制策略[J].控制理论与应用.2003,19(4):599-603
    [130]王殿辉,柴天佑.基于ann模型的非线性自校正预测控制器[J].自动化学报. 1997,23(3):396-399
    [131]安德森.默尔.线性最优控制[M].科学出版社,1982
    [132]朱华.核电与核能[M].浙江大学出版社,2009:120-124
    [133]江爱朋.大规模简约空间sqp算法及其在过程系统优化中的应用[D].浙江大学博士论文.2005
    [134]江爱朋,邵之江,钱积新.大规模过程系统优化的一种改进简约空间sqp算法[J].浙江大学学报(工学版).2005,39(10):1470-1474
    [135]何小荣.化工过程优化[M].清华大学出版社,2003
    [136]李海鹏.模块式高温气冷堆核电站控制方法与控制特性研究[D].清华大学.2009
    [137]李国勇.过程控制系统[M].电子工业出版社,2009
    [138]李庆扬,关治,白峰杉.数值计算原理[M].清华大学出版社,2001:367-369
    [139]李柠,李少远,席裕庚Mimo系统的多模型预测控制[J].自动化学报.2003,33(11):1182-1188
    [140]沈桦,赵均,徐祖华.高温气冷核反应堆变负荷过程的非线性模型预测控制[C].in中国过程系统工程年会,北京,2011,pp.278-285.
    [141]周义仓,靳祯,秦军林.常微分方程及其应用:方法、理论、建模、计算机[M].科学出版社,2003:13-22
    [142]施大鹏,俞金寿.预测控制技术的发展现状及其工业应用[J].世界仪表与自动化.2002,6(4):47-50
    [143]胡健伟,汤怀民.微分方程数值方法[M].科学出版社,2008:50-55
    [144]席裕庚.预测控制[M].国防工业出版社,1993
    [145]席裕庚,王凡.非线性系统预测控制的多模型方法[J].自动化学报.1996,22(4):456-460
    [146]席裕庚,李慷.工业过程有约束多目标多自由度优化控制的可行性分析[J].控制理论与应用.1995,12(5):590-596
    [147]席裕庚,耿晓军,陈虹.预测控制性能研究的新进展[J].控制理论与应用. 2000,17(4):469-475
    [148]徐祖华.模型预测控制理论及应用研究[D].浙江大学.2004
    [149]徐祖华.复杂工业过程的预测控制理论及应用研究[D].博士后研究工作报告.2008
    [150]徐祖华,赵均,钱积新and Z. Yu-cai基于操作轨迹模型的非线性预测控制算法[J].电路与系统学报.2009,14(1):59-65
    [151]徐丽娜.神经网络控制[M].哈尔滨工业大学出版社,1999
    [152]柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战[J].自动化学报.2009,35(6):641-649
    [153]袁忠于,周凤岐.一种非线性系统自适应预测控制方法[J].火力与指挥控制.2011,36(1)
    [154]袁亚湘.非线性优化计算方法[M].科学出版社,2008:194-225
    [155]郭建,陈庆伟,朱瑞军,胡维礼.一类非线性系统的自适应预测控制[J].控制理论与应用.2002,19(1):68-72
    [156]傅若玮,宋执环.基于经济指标的分层递阶控制系统性能评估[J].浙江大学学报(工学版).2011,45(8):1490-1497
    [157]程正兴,李水根.数值逼近与常微分方程数值解[M].西安交通大学出版社,1998:151-156
    [158]蔡章生.核动力反应堆中子动力学[M].国防工业出版社,2005
    [159]冯少辉.模型预测控制工程软件关键技术及应用[D].浙江大学.2003
    [160]刘兵,冯纯伯,李长庚.具有间隙预补偿的非线性预测控制[J].控制理论与应用.1999,16(2):241-243
    [161]刘保坤,王慧,曹明.基于nn模型的直接优化预测控制[J].信息与控制.1998,27(5):386-390
    [162]刘富春.多变量有约束模型预测控制算法及软件实现研究与应用[D].浙江大学.2003
    [163]张正江,邵之江,陈曦,钱积新.大范围工况变化下联塔的严格机理模拟研 究[J].化工自动化及仪表.2006,33(6):7-10
    [164]张智焕,王树青,荣冈.基于精确线性化的mimo双线性系统预测函数控制[J].控制理论与应用.2003,20(3):477-480
    [165]杨健,钱积新,周春晖.非理想多元物系精馏塔动态数学模型[J].化工学报.1990,41(1):103-110
    [166]杨刚,孙建国.航天发动机多目标优化解耦控制设计方法[J].航空发动机.2006,32(4):31-35
    [167]杨剑锋.基于组合模型的预测控制算法及其应用研究[D].浙江大学博士论文.2007
    [168]杨剑锋,赵均,钱积新.变增益的非线性预测控制算法[J].化工自动化及仪表.2006,33(6):27-30
    [169]杨马英,俞立,张美玉,陈国定.约束预测控制的可行解与稳定性[J].浙江工业大学学报.1999,27(3)
    [170]谢生钢,周立芳,赵麟菱.污水处理过程的多目标多模型预测控制方法研究[J].化工自动化及仪表.2008,35(1):24-27
    [171]谢邦鹏,张雪敏,梅生伟Havc系统变电站多目标优化控制策略[J].控制理论与应用.2009,26(11):1251-1256
    [172]钱积新,赵均,徐祖华.预测控制[M].化学工业出版社,2007
    [173]陈希平,安爱民,张爱华,彭端云.非线性预测控制研究的进展及其若干问题的思考[J].控制工程.2003,10(S):1-4
    [174]陈希平,梁敏.非线性模型预测控制的理论及应用综述[J].控制工程.2003,vol(10):17-20
    [175]陈虹,刘志远,解小华.非线性模型预测控制的现状与问题[J].控制与决策.2001,16(4):385-391
    [176]黄克谨,钱积新.精馏塔动态数学模型(Ⅱ):塔压变化对数学模型的影响[J].石油炼制.1993,24(6):59-61
    [177]黄克谨,钱积新.精馏塔动态数学模型:Ⅰ.汽相滞留量对数学模型的影响[J]. 石油炼制.1993,24(6):52-56
    [178]黄克谨,钱积新,孙优贤,周春晖.精馏塔通用动态仿真软件及其在控制系统设计中的应用[J].系统仿真学报.1994,6(4):49-56
    [179]黄德先.组态与先进控制技术——流程工业综合自动化的支柱[J].2006,(5):23-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700