液相色谱填料粒内传质参数识别及简化General Rate模型的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效液相色谱技术作为一种有效的分离手段,已经在生化和医药等诸多领域得到广泛应用。在这些领域的分离问题中,粒内传质过程的影响已表现得比较突出,因此吸引了众多色谱研究者对这一问题的关注。目前,虽然有关色谱粒内传质过程的研究已经在各个层面展开,但仍然有一些与色谱的应用和研究实践密切相关的问题尚待解决。首先,表征粒内传质过程需要应用能全面反映各种扩散、传质阻力因素影响的GR(General Rate)模型,而GR模型中包含的粒内传质参数尚缺乏准确、有效的方法来确定。其次,GR模型求解难度较大,因而限制了GR模型的实际应用,尤其是在复杂色谱系统、如模拟移动床(SMB)中的应用。本文工作正是围绕这些问题而开展的。
     探索有效易行的粒内传质参数识别方法。在文献调研基础上确立了以矩分析法为主的参数识别方法。本文首先对谱带三阶中心矩测量误差的影响因素进行了实验分析,在此基础上改进测量条件并获得了相对误差小于10%的三阶中心矩的测量结果,进一步分析表明,在本文所涉及的各反相液相色谱体系中都存在相同的谱带三阶中心矩与流动相流速的定量关系。综合分析该定量关系、GR模型矩方程及谱带二阶中心矩测量结果,得出外部传质系数正比于流动相流速的结论。在这一结论的基础上,只需利用二阶中心矩测量结果,就可以方便地计算出粒内传质参数的数值。
     给出了GR模型的简化模型。在上面所推导的GR模型矩方程基础上,导出了与GR模型等效的MED(Modified Equilibrium-Dispersion)模型。由于MED模型仅能保证所计算出的谱带与GR模型计算结果有相同的一、二阶矩,所以两模型的等效性还需进一步验证。本文比较了两个模型的数值解分别对不同水平粒内传质参数、非线性效应及流动相流速的响应情况,结果表明两模型数值解在各种参数条件下都具有很好的一致性。这可极大地简化GR模型的求解过程。
     讨论了粒内传质参数对模拟移动床(SMB)可分离区间及分离结果的影响。以上述MED模型替代GR模型,用数值算法分别计算了不同水平的粒内传质参数条件下SMB可分离区间及分离产品的纯度、回收率及富集率。结果表明粒内有效扩散系数对SMB分离过程的影响始终大于外部传质系数;粒内传质过程与非线性浓度效应共同影响SMB可分离区间,且随粒内传质参数值的减小,SMB可分离区间缩小,分离产品纯度下降,但产品回收率及富集率增加。
High Performance Liquid Chromatography is a highly effective separation method used widely in biochemical and Pharmaceutical fields. In practice, the remarkable effect of intraparticle mass transfer processes in column on separation result has been extensively studied by many chromatographic researchers. So far, there have been many reports focusing on the problem. However, some difficulties baffle the researchers and prevent them from understanding further the intraparticle mass transfer processes in chromatographic column. First, the General Rate (GR) model is necessary to describe detailedly the mass transfer processes in column, but the parameters involved in GR model are difficult to determine accurately. Second, the numerical calculation of GR model is complicated and time consuming. Thus, the practical application of GR model, especially the application in complicated chromatographic systems, is limited.
     In this dissertation, the identification of intraparticle mass transfer parameters involved in GR model is discussed. And the moment analysis method is adopted in this work. Because the accurate measuring result of the third central moment is difficult to obtain, the factors which result in the error of measurement of the third central moment of eluted band profiles are investigated experimentally in this work. The experimental conditions for the measurement of the third central moment have been optimized. Under this improved condition, the third central moments of band profiles are measured with their relative standard deviations below than 10%. Further analysis about the measurement results of the third central moments indicates thatμ3u0 4(whereμ3 is the third central moment of band profile and u0 the surperficial velocity of mobile phase) is always proportional to u0 under all the experimental conditions in this work. And then it can be deduced that the external mass transfer coefficient is proportional to u0 according to the measurement results of the moments and the moment equations of GR model calculated in this work,. Consequently, the intraparticle mass transfer parameters can be determined from the measurement result of the second central moments of band profiles which can be measured accurately in practice.
     Secondly, the Modified Equilibrium-Dispersion (MED) model equivalent to the GR model is developed based on the moment equations of GR model deduced in this work. Although the first and second moments of the band profiles calculated from MED model are same with those from GR model, the equivalence between the two models is investigated under the conditions of different levels of intraparticle mass transfer parameters, nonlinearity and velocity of mobile phase, respectively. And the results show that the band profiles calculated from the two models always match well with each other. Therefore, the numerical solution of the GR model can be substituted by that of the MED model to simplify the calculation of GR model greatly.
     At last, the effects of intraparticle mass transfer parameters on the separation region and performance parameters of SMB (Simulated Moving Bed) are discussed in this work. The MED model above is adopted to replace the GR model as the mathematical model for the single column of SMB, and the separation regions (99% purity) as well as the purities, recoveries and enrichments of separation products of SMB are calculated under different levels of intraparticle mass transfer parameters. The calculated results indicate the following conclusions. The effect of effective diffusivity on SMB process is always more remarkable than that of external mass transfer coefficient. Both nonliearity and intraparticle mass transfer process influence the separation region of SMB obviously. The separation region of SMB shrinks, while the recovery and enrichment of separation products increases with the decrease of intraparticle mass transfer parameters.
引文
[1]林炳昌.模拟移动床色谱技术[M].北京:化学工业出版社,2007.
    [2]于世林.高效液相色谱方法及应用[M].北京:化学工业出版社,2005.
    [3]朱彭龄,云自厚,谢光华.现代液相色谱[M].兰州:兰州大学出版社,1989.
    [4]刘国诠,余兆楼.色谱柱技术(第二版)[M].北京:化学工业出版社,2006.
    [5]E.L.柯斯乐著.王宇新,姜忠义译.扩散流体系统中的传质(第二版)[M].北京:化学工业出版社,2002.
    [6]Giddings J C. Dynamics of chromatography:principles and theory [M]. New York:Marcel Dekker, Inc.,1965.
    [7]van Deemter J J, Zuiderweg F J, Klinkenberg A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in Chromatography [J]. Chemical Engineering Science.1956,5:271-289.
    [8]Horvath Cs, Lin H J. Movement and band spreading of unsorbed solutes in liquid chromatography [J]. Journal of Chromatography.1976,126:401-420.
    [9]Knox J H. Practical aspects of LC theory [J]. Journal of Chromatographic Science.1977, 15:352-364.
    [10]Tallarek U, Bayer E, Guiochon G. Study of Dispersion in packed chromatographic columns by pulsed field gradient nuclear magnetic resonance [J]. Journal of the American Chemical Society.1998,120:1494-1505.
    [11]Knox J H. Band dispersion in chromatography-a new view of A-term dispersion [J]. Journal of Chromatography A.1999,831:3-15.
    [12]Knox J H. Band dispersion in chromatography-a universal expression for the contribution from the mobile zone [J]. Journal of Chromatography A.2002,960:7-18.
    [13]Kirkup L, Foot M, Mulholland M. Comparison of equations describing band broadening in high-performance liquid chromatography [J]. Journal of Chromatography A.2004,1030: 25-31.
    [14]Siouffi A M. About the C term in the van Demeter's equation of plate height in monoliths [J]. Journal of Chromatography A.2006,1126:86-94.
    [15]Gritti F, Guiochon G. General HETP equation for the study of mass-transfer mechanisms in RPLC [J]. Analytical Chemistry.2006,78:5329-5347.
    [16]Billen J, Gzil P, De Smat J et al. Slow analyte diffusion effects on the A-term band broadening in macromolecular liquid chromatography separations [J]. Analytica Chimica Acta. 2006,557:11-18.
    [17]Usher K M, Simmons C R, Dorsey J G. Modeling chromatographic dispersion:A comparison of popular equations [J]. Journal of Chromatography A,2008,1200:122-128.
    [18]Chen H, Horva'th Cs. High-Speed High-Performance Liquid Chromatography of Peptides and proteins [J]. Journal of Chromatography.1995,705:3-20.
    [19]Horvath J, Boschetti E, Guerrier L et al. High Performance Protein Separations with Novel Strong Ion-Exchangers [J]. Journal of Chromatography A.1994,679:11-22.
    [20]Kopaciewicz W, Kellard E. High Velocity Reversed Phase Chromatography of Proteins and Peptides:Use of Conventional C18,300 A,15μm Particles [J]. Journal of Chromatography. 1995,690:9-19.
    [21]Farnan D, Frey D D, Horvath Cs. Intraparticle Mass Transfer in High-Speed Chromatography of Proteins [J]. Biotechnology Progress.1997,13:429-439.
    [22]Wei J X, Shi Z G, Chen F, Feng Y Q et al. Synthesis of penetrable macroporous silica spheres for high-performance liquid chromatography [J]. Journal of Chromatography A.2009, 1216:7388-7393.
    [23]格雷格S J,辛K S W著,高敬琮等译.吸附、比表面与孔隙率[M].北京:化学工业出版社,1989.
    [24]Bale A E, Schmidt P W. Small-angle X-ray scattering investigation of submicroscople porosity with fractal properties [J]. Physical Review Letters.1984,53:596-599.
    [25]Schaefer D W, Fractal geometry of colloidal aggregates [J]. Physical Review Letters. 1984,52:2371-2374.
    [26]Guan H, Guiochon G. Study of physico-chemical properties of some packing materials. I. Measurements of the external porosity of packed columns by inverse size-exclusion chromatography [J]. Journal of Chromatography A.1996,731:27-40.
    [27]Guan H, Guiochon G. Coffey D et al. Study of the physico-chemical properties of some packing materials. Ⅱ. General properties of the particles [J]. Journal of Chromatography A.1996,736:21-30.
    [28]Guan-Sajonz H, Guiochon G, Davis E et al. Study of the physico-chemical properties of some packing materials. Ⅲ. Pore size and surface area distribution [J]. Journal of Chromatography A.1997,773:33-51.
    [29]Halasz I, Martin K. Pore Sizes of Solids [J]. Angewandte Chemie International Edition in English.1978,17:901-908.
    [30]Crispin T, Halasz I. Determination of the pore size distribution by exclusion chromatography of ion-exchange polymers which swell in water [J]. Journal of Chromatography A.1982,239:351-362.
    [31]Werner W, Halasz I. Pore structure of chemically modified silica gels determined by exclusion chromatography [J]. Journal of chromatographic Science.1980,18:277-283.
    [32]Knox J H, Scott H P. Theoretical models for size-exclusion chromatography and calculation of pore size distribution from size-exclusion chromatography data [J]. Journal of Chromatography A.1984,316:311-332.
    [33]Knox J H, Ritchie H J. Determination of pore size distribution curves by size-exclusion chromatography [J]. Journal of Chromatography A.1987,387:65-84.
    [34]Vilenchik L Z, Asrar J, Ayotte R C et al. Macromolecular porosimetry [J]. Journal of Chromatography.1993,648:9-17.
    [35]Jerabek K, Revillon A, Puccilli E. Pore structure characterization of organic-inorganic materials by inverse size exclusion chromatography [J]. Chromatographia. 1993,36:259-262.
    [36]Mazsaroff I, E Regnier F. Phase ratio determination in an ion-exchange column having pores partially accessible to proteins [J]. Journal of Chromatography A.1988,442:15-28.
    [37]Phillips P D, Lenhoff A M. Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography [J]. Journal of Chromatography A.2000, 883:39-54.
    [38]Hagel L, Ostberg M, Andersson T. Apparent pore size distributions of chromatography media [J]. Journal of Chromtography A.1996,743:33-42.
    [39]Ousalem M, Zhu X X, Hradil J. Evaluation of the porous structures of new polymer packing materials by inverse size-exclusion chromatography [J]. Journal of Chromatography A.2000, 903:13-19.
    [40]Laschober S, Sulyok M, Rosenberg E. Tailoring the macroporous structure of monolithic silica-based capillary columns with potential for liquid chromatography [J]. Journal of Chromatography A.2007,1144:55-62.
    [41]Zhong H, Zhu G, Wang P et al. Direct synthesis of hierarchical monolithic silica for high performance liquid chromatography [J]. Journal of Chromatography A.2008,1190: 232-240.
    [42]Unger K K, Skudas R, Schulte M M. Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal [J]. Journal of Chromatography A.2008,1184:393-415.
    [43]杨俊佼,王丹.扫描电镜法研究硅胶填料的孔结构[J].硅酸盐通报.2008,27:169-187.
    [44]Maodelbrot B B. The fractal geometry of nature [M]. San Francisco:Freeman,1983.
    [45]Farin D, Peleg S, Yavin D et al. Applications and limitations of boundary-line fractal analysis of irregular surfaces:proteins, aggregates and porous materials [J]. Langmuir. 1985,1:399-407.
    [46]Rottman C, Grader G S, Hazan Y D et al. Sol-Gel entrapment of ET(30) in ormosils. Interfacial polarity-fractality correlation [J]. Langmuir.1996,12:5505-5508.
    [47]盛永刚,徐耀,李志宏等.气体吸附法测定二氧化硅干凝胶的分形维数[J].物理学[J].2005,54:221-227.
    [48]Aikawa K, Kaneko K. Porous silica of self-similar morphology [J]. Langmuir.1998,14: 3041-3044.
    [49]郭国霖,陈月华,唐有祺.表面分散过程的分形研究[J].物理化学学报.1991,7:202-206.
    [50]Maire M L, Ghazi A, Martin M et al. Cailibration curves for size-exclusion chromatography:Description of HPLC gels in terms of porous fractals [J]. Journal of Biochemistry.1989,106:814-817.
    [51]Brochard F, Ghazi A, Maire M L et al. Size exclusion chromatography on porous fractals [J]. Chromtographia.1989,27:257-263.
    [52]Porcar Ⅰ, Garcia R, Soria Ⅴ et al. Porous fractal gels:secondary effects in SEC [J]. Journal of non-crystalline solids.1992,147-148:170-175.
    [53]Garcia-Lopera R, Irurzun I, Abad C et al. Fractal calibration in size-exclusion chromatography [J]. Journal of Chromatography A.2003,996:33-43.
    [54]Garcia R, Recalde I B, Figueruelo J E et al. Quantitative evaluation of the swelling and crosslinking degrees in two organic gel packings for SEC [J]. Macromolecular Chemistry and Physics.2001,202:3352-3362.
    [55]Garcia R, Gomez C M, Codoner A et al. Comparative evaluation of the swelling and degrees of cross-linking in three organic gel packings for SEC through some geometric parameters [J]. Journal of Biochemical and Biophysical Methods.2003,56:53-67.
    [56]Garcia-Lopera R, Gomez C M, Abad C et al. Separation Efficiency of Two SEC Packings: Comparison of Chromatographic, Thermodynamic, and Fractal Parameters [J]. Journal of Liquid Chromatography and Related Technologies.2004,27:573-593.
    [57]Garcia-Lopera R, Codoner A, Bano M C et al. Size-exclusion chromatographic determination of polymer molar mass averages using a fractal calibration [J]. Journal of Chromatographic Science.2005,43:226-234.
    [58]Garcia-Lopera R. Figueruelo J E, Porcar Ⅰ et al. The fractal approach to secondary mechanisms in SEC [J]. Journal of Liquid Chromatography and Related Technologies.2007, 30:1227-1249.
    [59]Porcar Ⅰ, Garcia-Lopera R. Abad C et al. The fractal calibration method applied to the characterization of polymers in solvent mixtures and in mixed gel packings by SEC [J]. Journal of Separation Science.2007,30:2037-2045.
    [60]Duca D, Deganello G. Analysis by size exclusion chromatography (SEC) of catalytic materials:The fractal properties and the pore size distribution of pumice [J]. Journal of Molecular Catalysis A:Chemical.1996:112:413-421.
    [61]Guillaume Y C, Robert J F, Peyrin E et al. Fractal considerations in chromatography: Column efficiency and the multimicrocolumn system [J]. Journal of Physical Chemistry A. 2000,104:8951-8954.
    [62]Guillaume Y C, Robert J F, Guinchard C. A mathematical model for hydrodynamic and size exclusion chromatography of polymers on porous particles [J]. Analytical Chemistry.2001, 73:3059-3064.
    [63]Liapis A I, McCoy M A. Theory of perfusion chromatography [J]. Journal of Chromatography A.1992,599:87-104.
    [64]McCoy M A, Liapis A I, Unger K K. Applications of mathematical modelling to the simulation of binary perfusion chromatography [J]. Journal of Chromatography A.1993,644: 1-9.
    [65]Liapis A I, McCoy M A. Perfusion chromatography:Effect of micropore diffusion on column performance in systems utilizing perfusive adsorbent particles with a bidisperse porous structure [J]. Journal of Chromatography A.1994,660:85-96.
    [66]Liapis A I, Xu Y, Crosser O K et al. "Perfusion chromatography". The effects of intra-particle convective velocity and microsphere size on column performance [J]. Journal of Chromatography A.1995,702:45-57.
    [67]Heeter G A, Liapis A I. Multi-component perfusion chromatography in fixed bed and periodic counter current column operation [J]. Journal of Chromatography A.1996,734: 105-123.
    [68]Xu Y, Liapis A I. Modelling and analysis of the elution stage of "perfusion chromatography" effects of intraparticle convective velocity and microsphere size on system performance [J]. Journal of Chromatography A.1996,724:13-25.
    [69]Heeter G A, Liapis A I. Perfusion chromatography:performance of periodic countercurrent column operation and its comparison with fixed-bed operation [J]. Journal of Chromatography A.1995,711:3-21.
    [70]Heeter G A, Liapis A I. Effects of structural and kinetic parameters on the performance of chromatographic columns packed with perfusive and purely diffusive adsorbent particles [J]. Journal of Chromatography A.1996,743:3-14.
    [71]Heeter G A, Liapis A I. Affinity adsorption of adsorbates into spherical monodisperse and bidisperse porous perfusive and purely diffusive adsorbent particles packed in a column parameter estimation in the Laplace transform domain [J]. Journal of Chromatography A.1997, 760:55-69.
    [72]Heeter G A, Liapis A I. Estimation of pore diameter for intraparticle fluid flow in bidisperse porous chromatographic particles [J]. Journal of Chromatography A.1997,761: 35-40.
    [73]Heeter G A, Liapis A I. Model discrimination and estimation of the intraparticle mass transfer parameters for the adsorption of bovine serum albumin onto porous adsorbent particles by the use of experimental frontal analysis data [J]. Journal of Chromatography A.1997,776:3-13.
    [74]Meyers J J, Liapis A I. Network modeling of the intraparticle convection and diffusion of molecules in porous particles packed in a chromatographic column [J]. Journal of Chromatography A,1998,827:197-213.
    [75]Meyers J J, Liapis A I. Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column [J]. Journal of Chromatography A,1999,852:3-23.
    [76]Liapis A I, Meyers J J, Crosser 0 K. Modeling and simulation of the dynamic behavior of monoliths Effects of pore structure from pore network model analysis and comparison with columns packed with porous spherical particles [J]. Journal of Chromatography A,1999,865: 13-25.
    [77]Meyers J J, Nahar S, Ludlow D K et al. Determination of the pore connectivity and pore size distribution and pore spatial distribution of porous chromatographic particles from nitrogen sorption measurements and pore network modeling theory [J]. Journal of Chromatography A,2001,907:57-71.
    [78]Loh K C, Wang D I C. Characterization of pore size distribution of packing materials used in perfusion chromatography using a network model [J]. Journal of Chromatography A. 1995,718:239-255.
    [79]Tennikov M B, Gazdina N V, Tennikova T B et al. Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins [J]. Journal of Chromatography A.1998,798:55-64.
    [80]Gzil P, Baron G V, Desmet G. Computational fluid dynamics simulations yielding guidelines for the ideal internal structure of monolithic liquid chromatography columns [J]. Journal of Chromatography A,2003,991:169-188.
    [81]Vervoort N, Gzil P, Baron G V et al. Model column structure for the analysis of the flow and band-broadening characteristics of silica monoliths [J]. Journal of Chromatography A.2004,1030:177-186.
    [82]Schure M R, Maier R S. How does column packing microstructure affect column efficiency in liquid chromatography? [J]. Journal of Chromatography A.2006,1126:58-69.
    [83]Laudone G M, Matthews G P, Gane P A C. Modelling diffusion from simulated porous structures [J]. Chemical Engineering Science.2008,63:1987-1996.
    [84]Guiochon G, Felinger A, Katti A M et al. Fundamentals of Preparative and Nonlinear Chromatography [M]. Amsterdam:Academic Press,2006.
    [85]林炳昌.色谱模型理论导引[M].北京:科学出版社,2004.
    [86]Miyabe K, Guiochon G. Measurement of the parameters of the mass transfer kinetics in high performance liquid chromatography [J]. Journal of Separation Science.2003,26: 155-173.
    [87]Rodrigues A E, Ramos A M D, Loureiro J M et al. Influence of adsorption-desorption kinetics on the performance of chromatographic processes using large-pore supports [J]. Chemical Engineering Science.1992,47:4405-4413.
    [88]Afeyan N, Gordon N, Mazsaroff L et al. Flow through particles for the high performance liquid chromatography separation of biomolecules:perfusion chromatography [J]. Journal of Chromatography A.1990,519:1-29.
    [89]Lloyd L L, Warner F P. Preparative high-performance liquid chromatography on a unique high-speed macroporous resin [J]. Journal of Chromatography A.1990,512:365-376.
    [90]Kaczmarski K, Antos D. Modified Rouchon and Rouchon-like algorithms for solving different models of multicomponent preparative chromatography [J]. Journal of Chromatography A.1996,756:73-87.
    [91]Cavazzini A, Kaczmarski K, Szabelski P et al. Modeling of the separation of the enantiomers of 1-phenyl-l-propanol on cellulose tribenzoate [J]. Analytical Chemistry. 2001,73:5704-5715.
    [92]Kaczmarski K, Antos D, Sajonz H et al. Comparative modeling of breakthrough curves of bovine serum albumin in anion-exchange chromatography [J]. Journal of Chromatography A.2001,925:1-17.
    [93]Rodrigues A E, Zuping L U, Loureiro J M. Residence time distribution of inert and linearly adsorbed species in a fixed bed containing "large-pore" supports:applications in separation engineering [J]. Chemical Engineering Science.1991,46:2765-2773.
    [94]Rodrigues A E, Lopes J C, Lu Z P et al. Importance of intraparticle convection in the performance of chromatographic processes [J]. Journal of Chromatography.1992,590:93-100.
    [95]Carta G, Rodrigues A E. Diffusion and convection in chromatographic processes using permeable supports with a bidisperse pore structure [J]. Chemical Engineering Science.1993, 48:3927-3935.
    [96]Berninger J A, Whitley R D, Zhang X et al. A versatile model for simulation of reaction and nonequilibrium dynamics in multicomponent fixed-bed adsorption processes [J]. Computers Chemical Engineering.1991,15:749-768.
    [97]Kaczmarski K, Mazzotti M, Storti G et al. Modeling fixed-bed adsorption columns through orthogonal collocations on moving finite elements [J]. Computers Chemical Engineering.1997, 21:641-660.
    [98]Costa C, Rodrigues A. Intraparticle diffusion of phenol in macroreticular adsorbents: Modelling and experimental study of batch and CSTR adsorbers [J]. Chemical Engineering Science.1985,40:983-993.
    [99]Costa C, Rodrigues A. Design of cyclic fixed-bed adsorption processes. Part Ⅰ:Phenol adsorption on polymeric adsorbents [J]. AIChE Journal.1985,31:1645-1654.
    [100]Gu T, Truei Y H, Tsai G J et al. Modeling of gradient elution in multicomponent nonlinear chromatography [J]. Chemical Engineering Science.1992,47:253-262.
    [101]Gu T, Zheng Y. A study of the scale-up of reversed-phase liquid chromatography [J]. Separation and Purification Technology.1999,15:41-58.
    [102]Li Z, Gu Y, Gu T. Mathematical modeling and scale-up of size-exclusion chromatography [J]. Biochemical Engineering Journal.1998,2:145-155.
    [103]Kaczmarski K, Cavazzini A, Szabelski P et al. A pplication of the general rate model and the generalized Maxwell-Stefan equation to the study of the mass transfer kinetics of a pair of enantiomers [J]. Journal of Chromatography A.2002,962:57-67.
    [104]Kaczmarski K, Gubernak M, Zhou D et al. Application of the general rate model with the Maxwell-Stefan equations for the prediction of the band profiles of the 1-indanol enantiomers [J]. Chemical Engineering Science.2003,58:2325-2338.
    [105]马正飞,殷翔.数学计算方法与软件的工程应用[M].北京:化学工业出版社,2002.
    [106]霍兰C D,利亚比斯A I著.黄朝伟等译.求解动态分离问题的计算机方法.北京:科学出版社,1988.
    [107]王际达,林炳昌.非线性色谱的数值计算[M].徐州:中国矿业大学出版社,2002.
    [108]王中来,李志福,叶长森等.用正交配置法求解搅拌槽液相吸附动力学模型-以权函数w(x)=1-x2和球形吸附剂为基础[J].计算机与应用化学.1997,14:273-280.
    [109]王中来,李志福,叶长森等.用正交配置法求解搅拌槽液相吸附动力学模型-以权函数w(x)=1和球形吸附剂为基础[J].计算机与应用化学.1998,15:23-28.
    [110]李庆扬.常微分方程数值解法(刚性问题与边值问题)[M].北京:高等教育出版社,1991.
    [111]Gu T. Chromulator2.0 [CP/OL]. Procedure available on http://www. ent. ohiou. edu/-guting/.
    [112]许永兴,瞿海斌,陈赞等.葛根素大孔吸附树脂层析分离动力学[J].高等化学工程学报.2005,19:751-756.
    [113]Gritti F, Felinger A, Guiochon G. Influence of the errors made in the measurement of the extra-column volume on the accuracies of estimates of the column efficiency and the mass transfer kinetics parameters [J]. Journal of Chromatography A.2006,1136:57-72.
    [114]Bokari M A, Cherrak D, Guiochon G. Determination of the porosities of monolithic columns by inverse size-exclusion chromatography [J]. Journal of Chromatography A.2002, 975,275-284.
    [115]Hong L, Gritti F, Guiochon G et al. Rate constants of mass transfer kinetics in reversed phase liquid chromatography [J]. AIChE Journal.2005,51:3122-3133.
    [116]Lameloise M L, Viard V. Choice of a tracer for external porosity measurement in ion-exchange resin beds [J]. Journal of Chromatography A.1994,679:255-259.
    [117]Altenhoner U, Meurer M, Strube J et al. Parameter estimation for the simulation of liquid chromatography [J]. Journal of Chromatography A.1997,769:59-69.
    [118]Hejtmanek V, Schneider P. Axial dispersion under liquid-chromatography conditions [J]. Chemical Engineering Science.1993,48:1163-1168.
    [119]Miyabe K, Guiochon G. A Study of Mass Transfer Kinetics in an Enantiomeric Separation System Using a Polymeric Imprinted Stationary Phase [J]. Biotechnology Progress.2000,16: 617-629.
    [120]Ruthven D M. Principles of adsorption and adsorption process [M]. New York:John Wiley & Sons,1984.
    [121]Wilke C R, Chang P. Correlation of diffusion coefficients in dilute solutions [J]. AIChE Journal.1955,1:264-270.
    [122]Mihlbachler K, Kaczmarski K, Seidel-Morgenstern A et al. Measurement and modeling of the equilibrium behavior of the Troger's base enantiomers on an amylose-based chiral stationary phase [J]. Journal of Chromatography A.2002,955:35-52.
    [123]Chung S F, Wen C Y. Longitudinal dispersion of liquid flowing through fixed and fluidized beds [J]. AIChE Journal.1968,14:857-866.
    [124]Gunn D J. Axial and radial dispersion in fixed beds [J]. Chemical Engineering Science. 1987,42:363-373.
    [125]Hong L, Felinger A, Kaczmarski K et al. Measurement of intraparticle diffusion in reversed phase liquid chromatography [J]. Chemical Engineering Science.2004,59: 3399-3412.
    [126]Kim H, Kaczmarski K, Guiochon G. Isotherm parameters and intraparticle mass transfer kinetics on molecularly imprinted polymers in acetonitrile/buffer mobile phases [J]. Chemical Engineering Science.2006,61:5249-5267.
    [127]Kaczmarski K, Gritti F, Guiochon G. Thermodynamics and mass transfer kinetics of phenol in reversed phase liquid chromatography [J]. Chemical Engineering Science.2006, 61:5895-5906.
    [128]Persson P, Kempe H, Zacchi G et al. A Methodology for Estimation of Mass Transfer Parameters in a Detailed Chromatography Model Based on Frontal Experiments [J]. Chemical Engineering Research and Design.2004,82:517-526.
    [129]Persson P, Kempe H, Zacchi G et al. Estimation of adsorption parameters in a detailed affinity chromatography model based on shallow bed experiments [J]. Process Biochemistry. 2005,40:1649-1659.
    [130]Chang C, Lenhoff A M. Comparison of protein adsorption isotherms and uptake rates in preparative cation-exchange materials [J]. Journal of Chromatography A.1998,827: 281-293.
    [131]Fernandez M A, Carta G. Characterization of protein adsorption by composite silica-polyacrylamide gel anion exchangers.1. Equilibrium and mass transfer in agitated contactors [J]. Journal of Chromatography A.1996,746:169-183.
    [132]Fernandez M A, Laughinghouse W S, Carta G. Characterization of protein adsorption by composite silica-polyacrylamide gel anion exchangers.2. Mass transfer in packed columns and predictability of breakthrough behavior [J]. Journal of Chromatography A.1996,746: 185-198.
    [133]Miyabe K, Sotoura S, Guiochon G. Retention and mass transfer characteristics in reversed-phase liquid chromatography using a tetrahydrofuran-water solution as the mobile phase [J]. Journal of Chromatography A.2001,919:231-244.
    [134]Miyabe K, Cavazzini A, Gritti F et al. Moment analysis of mass-transfer kinetics in C18-silica monolithic columns [J]. Analytical Chemistry.2003,75:6975-6986.
    [135]Miyabe K, Guiochon G. Comparison of the characteristics of adsorption equilibrium and surface diffusion in liquid-solid and gas-solid adsorption on C18-silica gels [J]. Journal of physical chemistry B.2004,108:2987-2997.
    [136]Miyabe K, Matsumoto Y, Guiochon G. Peak parking-moment analysis. A strategy for the study of the mass-transfer kinetics in the stationary phase [J]. Analytical Chemistry.2007, 79:1970-1982.
    [137]Miyabe K, Guiochon G. Correlation between surface diffusion and molecular diffusion in reversed-phase liquid chromatography [J]. Journal of physical chemistry B.2001,105: 9202-9209.
    [138]Miyabe K, Guiochon G. Restricted diffusion model for surface diffusion in reversed-phase liquid chromatography [J]. Analytical Chemistry.2000,72:1475-1489.
    [139]Miyabe K, Guiochon G. Analysis of the surface diffusion of alkylbenzenes and p-alkylphenols in reversed-phase liquid chromatography using the surface-restricted molecular diffusion model [J]. Analytical Chemistry.2001,73:3096-3106.
    [140]Miyabe K, Guiochon G. New model of surface diffusion in reversed-phase liquid chromatography [J]. Journal of Chromatography A.2002,961:23-33.
    [141]Wilson E J, Geankoplis C J. Liquid mass transfer at very low Reynolds numbers in packed beds [J]. Industrial and Engineering Chemistry Research Fundamentals.1966,5,9-14.
    [142]Tallarek U, Bayer E, Guiochon G. Study of dispersion in packed chromatographic columns by pulsed field gradient nuclear magnetic resonance [J]. Journal of The American Chemical Society.1998,120:1494-1505.
    [143]Bourdin V, Grenier P, Meunier F et al. Thermal frequency response method for the study of mass-transfer kinetics in adsorbents [J]. AIChE Journal.1996,42:700-712.
    [144]Gunn D J, England R. Dispersion and diffusion in beds of porous particles [J]. Chemical Engineering Science.1971,26:1413-1423.
    [145]Naphtali L M, Polinski L M. A novel technique for characterization of adsorption rates on heterogeneous surfaces [J]. The Journal of Physical Chemistry.1963,67:369-375.
    [146]Dunnebier G, Engell S, Klatt K-U. Modeling of simulated moving bed chromatographic processes with regard to process control design [J]. Computers and chemical engineering. 1998,22:S855-S858.
    [147]Dunnebier G, Weirich I, Klatt K-U. Computationally efficient dynamic modeling and simulation of simulated moving bed chromatographic processes with linear isotherms [J]. Chemical Engineering Science.1998,53:2537-2546.
    [148]Dunnebier G, Klatt K-U. Modeling and simulation of nonlinear chromatographic separation processes:a comparison of different modeling approaches [J]. Chemical Engineering Science.2000,55:373-380.
    [149]Klatt K-U, Hanisch F, Dunnebier G et al. Model-based optimization and control of chromatographic processes [J]. Computers and Chemical Engineering.2000,24:1119-1126.
    [150]Dunnebier G, Fricke J, Klatt K-U. Optimal design and operation of simulated moving bed chromatographic reactors [J]. Industrial and Engineering Chemistry Research.2000,39: 2290-2304.
    [151]Klatt K-U, Hanisch F, Dunnebier G. Model-based control of a simulated moving bed chromatographic process for the separation of fructose and glucose [J]. Journal of Process Control.2002,12:203-219.
    [152]Wang C, Klatt K-U, Dunnebier G et al. Neural network-based identification of SMB chromatographic processes [J]. Control Engineering Practice.2003,11:949-959.
    [153]Toumi A, Engell S, Ludemann-Hombourger O et al. Optimization of simulated moving bed and varicol processes [J]. Journal of Chromatography A.2003,1006:15-31.
    [154]Tayakout-Fayolle M, Jolimaitre E, Jallut C. Consequence of structural identifiability properties on state-model formulation for linear inverse chromatography [J]. Chemical Engineering Science.2000,55:2945-2956.
    [155]Kubin M. Contribution to the theory of chromatography II:influence of the diffusion outside and the adsorption within the sob-grains [J]. Collection of Czechoslovak Chemical Communications.1965,30:2900-2907.
    [156]Kucera E. Contribution to the theory of chromatography:linear non-equilibrium elution chromatography. Journal of chromatography.1965,19:237-248.
    [157]Grushka E, Myers M N, Schettler P D et al. Computers characterization of chromatographic peaks by plate height and higher central moments [J]. Analytical Chemistry. 1969,41:889-892.
    [158]Grushka E, Myers M N, Giddings J C. Moments analysis for the discernment of overlapping chromatographic peaks [J]. Analytical Chemistry.1970,42:21-26.
    [159]Grushka E. Characterization of exponentially modified Gaussian peaks in chromatography [J]. Analytical Chemistry.1972,44:1733-1738.
    [160]Grushka E. Chromatographic peak shapes:their origin and dependence on the experimental parameters [J]. Journal of Physical Chemistry.1972,76:2586-2593.
    [161]Boniface H A, Ruthven D M. The use of higher moments to extract transport data from chromatographic adsorption experiments [J]. Chemical Engineering Science.1985,40: 1401-1409.
    [162]Cram S P, Yang F J, Brown A C. Characterization of high performance glass capillary gas chromatography [J]. Chromatographia.1977,10:397-403.
    [163]Genga A, Lohb K C. Effects of adsorption kinetics and surface heterogeneity on band spreading in perfusion chromatography:a network model analysis [J]. Chemical Engineering Science.2004,59:2447-2456.
    [164]McCoy B J. Moment theory of band spreading, skewness, and resolution in programmed temperature gas chromatography [J]. Separation Science and Technology.1979,14:515-527.
    [165]Chesler S N, Cram S P. Effect of peak sensing and random noise on the precision and accuracy of statistical moment analyses from digital chromatographic data [J]. Analytical Chemistry.1971,43:1922-1933.
    [166]Chesler S N, Cram S P. Digitization errors in the measurement of statistical moments of chromatographic peaks [J]. Analytical Chemistry.1972,44:2240-2243.
    [167]Vidal-Madjar C, Guiochon G. Experimental characterization of elution profiles in gas chromatography using central statistical moments:study of the relationship between these moments and mass transfer kinetics in the column [J]. Journal of Chromatography.1977,142: 61-86.
    [168]Guiochon G, Lin B C. Modeling for Preparative Chromatography [M]. Amsterdam:Academic Press,2003.
    [169]Miyabe K, Guiochon G. The moment equations of chromatography for monolithic stationary phases [J]. Journal of Physical Chemistry B.2002,106:8898-8909.
    [170]Suzuki M, Smith J M. Kinetic studies by chromatography [J]. Chemical Engineering Science.1971,26:221-235.
    [171]刘宏友,彭锋.MATLAB 6.x符号运算及其应用[M].北京:机械工业出版社,2003.
    [172]胡斯文.装填条件对半制备柱性能影响的机理研究[D].鞍山:辽宁科技大学,2009.
    [173]Dyson N. Chromatographic integration methods (2nd ed.) [M]. Cambridge:Royal Society of Chemistry,1998.
    [174]Dwivedi P N, Upadhyay S N. Particle-fluid mass transfer in fixed and fluidized beds [J]. Industrial and Engineering Chemistry Process Design and Development.1977,16: 157-165.
    [175]Koloini T, Sopcic M, Zumer M. Mass transfer in liquid-fluidized beds at low Reynolds numbers [J]. Chemical Engineering Science.1977,32:637-641.
    [176]Rahman K, Streat M. Mass transfer in liquid fluidized beds of ion exchange particles [J]. Chemical Engineering Science.1981,36:293-300.
    [177]Bar-Ilan M, Resnick W. Gas-phase mass transfer in fixed beds at low Reynolds numbers [J]. Industrial and Engineering Chemistry.1957,49:313-320.
    [178]Williamson J E, Bazaire K E, Geankoplis C J. Liquid-phase mass transfer at low Reynolds numbers [J]. Industrial and Engineering Chemistry Research Fundamentals.1963,2:126-129.
    [179]Karabelas A J, Wegner T H, Hanratty T J. Use of asymptotic relations to correlate mass transfer data in packed beds [J]. Chemical Engineering Science.1971,26:1581-1589.
    [180]Acetis J D, Thodos G. Mass and heat transfer in flow of gases through spherical packings [J]. Industrial and Engineering Chemistry.1960,52:1003-1006.
    [181]McCune L K. Wilhelm R H. Mass and momentum transfer in a solid-liquid system [J]. Industrial and Engineering Chemistry.1949,41:1124-1134.
    [182]Pfeffer R. Heat and mass transport in multiparticle systems [J]. Industrial and Engineering Chemistry Research Fundamentals.1964,3:380-383.
    [183]Miyabe K, Sotoura S, Guiochon G. Retention and mass transfer characteristics in reversed-phase liquid chromatography using a tetrahydrofuran-water solution as the mobile phase [J]. Journal of Chromatography A.2001,919:231-244.
    [184]Miyabe K, Guiochon G. Kinetic study of the concentration dependence of the mass transfer rate coefficient in anion-exchange chromatography of bovine serum albumin [J]. Biotechnology Progress.1999,15:740-752.
    [185]Miyabe K, Guiochon G. Fundamental interpretation of the peak profiles in linear reversed-phase liquid chromatography [J]. Advances in Chromatography.2000,40:1-113
    [186]Kim H, Guiochon, G. Thermodynamic functions and intraparticle mass transfer kinetics of structural analogues of a template on molecularly imprinted polymers in liquid chromatography [J]. Journal of Chromatography A.2005,1097:84-97.
    [187]Kim H, Kaczmarski K, Guiochon G. Intraparticle mass transfer kinetics on molecularly imprinted polymers of structural analogues of a template [J]. Chemical Engineering Science. 2006,61:1122-1137.
    [188]Brown P N, Hindmarsh A C, Byrne G D[CP/OL]. Variable-Coefficient Ordinary Differential Equation Solver. Procedure available on.http://www.netlib.org.
    [189]Mazzotti M, Storti G, Morbidelli M. Optimal operation of simulated moving bed units for nonlinear chromatographic separations [J]. Journal of Chromatography A.1997,769: 3-24.
    [190]Mazzotti M. Local equilibrium theory for the binary chromatography of species subject to a generalized Langmuir isotherm [J]. Industrial and Engineering Chemistry Research.2006; 45:5332-5350.
    [191]Rajendran A, Paredes G, Mazzotti M. Simulated moving bed chromatography for the separation of enantiomers [J]. Journal of Chromatography A.2009,1216:709-738.
    [192]Pais LS, Loureiro JM, Rodrigues AE. Modeling simulation and operation of a simulated moving bed for continuous chromatographic separation of 1,1'-bi-2-naphthol enantiomers [J]. Journal of Chromatography A.1997,769:25-35.
    [193]Azevedo DCS, Pais LS, Rodrigues AE. Enantiomers separation by simulated moving bed chromatography Non-instantaneous equilibrium at the solid-fluid interface [J]. Journal of chromatography A.1999,865:187-200.
    [194]Pais LS, Loureiro JM, Rodrigues AE. Chiral separation by SMB chromatography [J]. Separation and Purification Technology.2000,20:67-77.
    [195]Rodrigues AE, Pais LS. Design of SMB chiral separations using the concept of separation volume [J]. Separation Science and Technology.2004,39:245-270.
    [196]Pais L S, Loureiro J M, Rodrigues A E. Separation of enantiomers of a chiral epoxide by simulated moving bed chromatography [J]. Journal of Chromatography A.1998,827:215-233.
    [197]Migliorini C, Gentilini A, Mazzotti M, Morbidelli M. Design of simulated moving bed units under nonideal conditions [J]. Industrial and Engineering Chemistry Research.1999, 38:2400-2410.
    [198]Rodrigues A E, Chenou C, De la Vega M R. Protein separation by liquid chromatography using permeable POROS Q/M particles [J]. The Chemical Engineering Journal and the Biochemical Engineering Journal.1996,61:191-201.
    [199]De la Vega M R, Chenou C, Loureiro J M, Rodrigues A E. Mass transfer mechanisms in Hyper D media for chromatographic proteins separation [J]. Biochemical Engineering Journal. 1998,1:11-23.
    [200]Miyabe K, Guiochon G. Thermodynamic characteristics of surface diffusion in reversed-phase liquid chromatography [J]. The Journal of Physical Chemistry B.1999,103: 11086-11097.
    [201]Gritti F, Piatkowski W, Guiochon G. Study of the mass transfer kinetics in a monolithic column [J]. Journal of Chromatography A.2003,983:51-71.
    [202]Szabelski P, Cavazzini A, Kaczmarski K, Liu X, Van Horn J V, Guiochon G. Experimental studies of pressure/temperature dependence of protein adsorption equilibrium in reversed-phase high-performance liquid chromatography [J]. Journal of Chromatography A. 2002,950:41-53.
    [203]Miyabe K, Guiochon G. Analysis of Surface Diffusion Phenomena in Reversed-Phase Liquid Chromatography. Analytical Chemistry.1999,71:889-896.
    [204]Miyabe K, Guiochon G. Kinetic study of the mass transfer of S-Tro"ger's base in the system cellulose triacetate and ethanol. Journal of Chromatography A.1999,849: 445-465.
    [205]Ma Z, Katti A, Lin B C et al. Simple wave effects in two-component nonlinear liquid chromatography:application to the measurement of competitive adsorption isotherms. Journal of Physical Chemistry.1990,94:6911-6922.
    [206]Lin B C, Ma Z, Goishan-Shirazi S et al. Theoretical analysis of non-linear preparative liquid chromatography. Journal of Chromatography.1990,500:185-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700