分离CO_2固定载体膜传质机理及其膜过程模拟和优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固定载体膜因其中的活性载体可以与CO_2发生可逆化学作用,大大促进了CO_2在膜中的传递,因此这类膜具有良好的CO_2分离性能和很大的应用潜力。目前,固定载体膜的传质机理尚未完全探明,对固定载体膜应用过程的研究更是缺乏。本文研究了固定载体膜的促进传递机理,对分离CO_2固定载体膜的应用过程进行了模拟和优化。研究结果对固定载体膜的开发和应用具有重要指导作用。
     本文以两种含胺基固定载体膜为例,对固定载体膜促进传递过程的一般特征和规律进行了实验验证,为固定载体膜传质机理的研究提供了数据基础。
     对固定载体膜促进传递过程微观机制进行分析,提出了平衡浓度区理论,进而建立了新的传质数学模型。利用该模型得到固定载体膜内传质阻力的非均匀分布和固定载体膜渗透速率与膜厚度的非线性关系。通过对不同温度条件下实验数据的拟合,得到固定载体膜内CO_2扩散过程和CO_2与载体相互作用的表观活化能,数值均在文献报道范围内。
     对伊春海博士提出的促进传递模型进行改进,得到了考虑渗透侧压力影响的渗透速率数学模型。利用模型分析的结果表明,在不同的渗透侧压力条件下,组分的渗透速率是不同的,较低的渗透侧压力有利于提高固定载体膜中的渗透速率。据此,本文提出了针对固定载体膜的进料侧加压(压力保持在较低范围)和渗透侧抽真空相结合的压力操作模式。
     针对天然气脱除CO_2和燃烧尾气捕集CO_2两个重要的分离CO_2过程,分析了并流模型、逆流模型和错流模型的模拟结果,证明错流模型适用于两种过程,而且具有简易的特点。利用错流模型对固定载体膜在两种分离CO_2过程中的应用潜力进行了研究,比较了单级过程和带有循环流二级过程的分离性能。结果表明,对上述两个分离CO_2过程,固定载体膜都比现有商品膜更容易实现分离目标;与单级过程相比,带有循环流二级过程的分离效果显著提高。对带有循环流二级过程的操作压力进行优化,使分离CO_2的成本大大降低,并可与胺吸收法相竞争,说明固定载体膜在燃烧尾气捕集CO_2领域具有良好的应用潜力。
     本文还对带有循环流二级过程进行了参数分析。结果表明,对于分离因子较大的膜,提高慢气(渗透速率较低的气体组分)渗透速率,可以减少过程所需膜面积;对于分离因子较小的膜,提高分离因子,循环气流量降低,过程所需膜面积减少。采用较高分离因子的膜和较低的操作压力比,可以得到更高CO_2浓度渗透气,有利于对富含CO_2的渗透气的后续处理(例如地下埋存)。
Because of the reversible chemical interaction between CO_2 and the carrier, the CO_2 transport in the fixed carrier membrane is facilitated remarkably. Hence, the fixed carrier membrane has excellent separation performance and great application potential. Currently, the mass transport mechanism of the fixed carrier membrane is still not quite clear and the application study of the fixed carrier membrane is needed. In this paper, the mechanism of the facilitated transport of the fixed carrier membrane is further studied. The application process of the fixed carrier membrane is simulated and optimized. The results can offer guidance for the development and application of the fixed carrier membrane.
     The characteristics of the facilitated transport process of the fixed carrier membrane were investigated experimentally, taking PEI-PVA/PS and PAAm-PAM/PS composite membranes as examples. The experimental data offered foundation for the research of the mechanism of the fixed carrier membrane.
     The microscopic mechanism of the facilitated transport of the fixed carrier membrane was analyzed, and an equilibrium region theory was proposed according to which novel mathematical model was founded. Analysis was carried out by using the novel model. The nonlinear distribution of the transport resistance and the relationship between the permeance of fixed-carrier membrane and the membrane thickness were obtained. The apparent activation energies for the CO_2 diffusion and collision between the CO_2 molecular and the active site in the fixed-carrier membrane were obtained by fitting the experiment data. The calculation results were in good agreement with the literature.
     A mathematical model reflecting the effect of the permeate side pressure was derived from the macroscopic model founded by Dr. Yi of our research group. The new model was used to analyze the effect of the permeate side pressure. Results showed that under different permeate pressures, the permeance was different. High permeance could be obtained by increasing the permeate side pressure. Therefore, the operating model of the combination of feed compression and permeate vacuum pumping was suggested.
     The calculation results of the cocurrent flow model, the countercurrent flow model and the cross flow model were analysed for the processes of the CO_2 removal from the natural gas and the CO_2 capture from the post-combustion gas. The cross-flow model proved simple and suitable for the two processes and was thus used in the analysis in this paper. The application potential of the fixed carrier membrane in the two processes was investigated, and the separation performance of the two stage system with recycle was compared with that of the single stage system. Results showed that the separation target could be achieved more easily by using the fixed carrier membrane than using the current commercial membranes; the separation performance of the two stage system with recycle is much better than that of the single stage system. The operating pressures of the two stage system was optimized and the CO_2 separation cost decreased remarkably. The cost of the optimized two stage system was competitive with the amine absorption method and the application potential of the fixed carrier membrane in the field of the CO_2 capture from the post-combustion gas was verified.
     Parametric analysis was carried out for the two stage system with recycle. Results indicated that for the membrane with high selectivity the membrane area could be reduced by increasing the slow gas (the gas component with low permeance) permeance. For the membrane with low selectivity, as the selectivity increases the recycle flowrate decreases and membrane area requirement decreases. The permeate gas with higher CO_2 concentration, which is beneficial to the further treatment of the permeate gas rich in CO_2 (for example, geo-sequestration), can be obtained by adopting membrane with high selectivity and low operating pressure ratio.
引文
[1] Bojic M., Mourdoukoutas P., Energy saving does not yield CO2 emissions reductions: the case of waste fuel use in a steel mill, Applied Thermal Engineering, 2000, 20(11):963~975
    [2] Dey G. R., Chemical reduction of CO2 to different products during photo catalytic reaction on TiO2 under diverse conditions: an overview, Journal of Natural Gas Chemistry, 2007, 16(3):217~226
    [3] Chen T., Lina C., Greenhouse gases emissions from waste management practices using Life Cycle Inventory model, Journal of Hazardous Materials, 2008, 155(1-2):23~31
    [4]吴昊,应对二氧化碳浓度上升问题的研究:CO2的捕获、储存与利用,中国安全科学学报,2008,18(8):5~11
    [5]徐孝纯,中国与全球气候变化,技术经济与管理研究,2008,5:69~72
    [6]魏哲,魏薇,魏兰军,EOR应用中CO2的压缩,国外油田工程,2003,19(6):5~6
    [7]罗小勇,天然气净化工艺技术研究与应用,天然气与石油,2006,4(2):30~34
    [8]王希勇,白兰君,姜子昂,周子,中国油气资源技术发展现状及趋势对比分析,中国能源,2005,27(10):28~31
    [9]王晓刚,李立清,唐琳,CO2资源化利用的现状及前景,化工环保,2006, 26(3): 198~203
    [10]汪一笕,赵康泰,提高采收率(EOR)技术的发展及研究,海洋石油,1999,2:9~16
    [11]夏明珠,严莲荷,雷武等,二氧化碳的分离回收技术与综合利用,现代化工,1991,19(5):46~48
    [12] Yang H., Xu Z., Fan M., et al, Progress in carbon dioxide separation and capture: A review, J. Membr. Sci, 2008(20): 14~27
    [13] Koros, W. J., Mahajan R., Pushing the limits on possibilities for large scale gas separation: which strategies, J. Membr. Sci., 2000, 175(2):181~196
    [14]黄仲涛,曾昭槐,钟邦克等,无机膜技术及其应用,北京:中国石化出版社,1998
    [15]董子丰,气体膜分离技术在石油工业中的应用,膜科学与技术,2000,20(3):38~49
    [16] Mitchell J. K., On the penetrativeness of fluids, American Journal of Medicine, 1830, 13:36~67
    [17] Mitchell J. K., On the penetration of gases, American Journal of the Medical Sciences, 1833, 25:100~112
    [18] Graham T., On the molecular mobility of gases, Journal of the Chemical Society of London, 1864, 17: 334~339
    [19] Graham T., On the adsorption and dialytic separation of gases by colloid septa, Philadelphia Magazine, 1866, 32:401
    [20] Weller S., Steiner W. A., Separation of gases by fractional permeation through membranes, J. Appl. Phys., 1950, 21:279~283
    [21] Mulder M., Basic principles of membrane technology, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1996
    [22] Meares P., The diffusion of gases through polyvinyl acetate, Journal of the American Chemical Society, 1954, 76: 3415~3422
    [23] Bubaker D. W., Kammermeyer K., Separation of gases by plastic membranes: Permeation rates and extent of separation, Ind. Eng. Chem. Res., 1954, 46:733~739
    [24] Stern S. A., Sinclair T. F., Gareis P. J., et al., Helium recovery by permeation, Ind. Eng. Chem. Res, 1965, 57(2):49~64
    [25] Henis J. M. S., Tripodi M. K., A novel approach to gas separations using composite hollow fiber membranes, Sep. Puri. Tech., 1980, 15:1059~1068
    [26] Baker R. W., Future directions of membrane gas separation technology, Ind. Eng. Chem. Res., 2002, 41:1393~1411
    [27] Henis J. M. S., Paul D. R., Yampol Skii Y. P., Commercial and practical aspects of gas separation membranes, in Polymeric Gas Separation Membranes, Eds.: CRC Press: Boca Raton, FL,1994
    [28]张菀乔,张雷,廖礼,战役,气体膜分离技术的应用,天津化工,2008,3(22):20~22
    [29]陶凤云,张新妙,马润宇,酸性气体CO2的膜分离技术研究进展,北京化工大学学报(自然科学版),2006,20(2):23~26
    [30]刘茉娥等,膜分离技术,北京:化学工业出版社[M],1998
    [31] Koros W. J., Fleming G. K., Membrane-based gas separation, J. Membr. Sci., 1993, 83(1):1~80
    [32]刘丽,邓麦村,袁权,气体分离膜研究和应用新进展,现代化工,2000,20(1):17~21
    [33] Centeno T. A., Fuertes A. B., Supported carbon molecular sieve membranes based on a phenolic resin, J. Membr. Sci., 1999, 160:201~211
    [34]邹静,董维阳,龙英才,MFI型沸石膜的渗透分离性能及应用,上海化工,1999,24(9):4~6
    [35]王金渠,李铮,A型沸石膜的制备及其在气体脱湿中的应用,膜科学与技术,1998,24(9):4~6
    [36] Casanave D, Ciavarella P., Fiaty K., et al., Zeolite membrane reactor for isobutane dehydrogenation: Experimental results and theoretical modeling, Chem. Eng. Sci., 1999, 54(13-14):2087~2815
    [37] Tanaka K., Yoshikawa R., Ying C., et al., Application of zeolite membranes to esterification reactions, Catalysis Today, 2001, 67(1-3):121~125
    [38]汪锰,王湛,李政雄编著,膜材料及其制备,北京:化学工业出版社(材料科学与工程出版中心),2003
    [39]时钧,袁权,高从堦,膜技术手册,北京:化学工业出版社,2001
    [40] Hu C., Chang C., Ruaan R., Effect of free volume and sorption on membrane gas transport, J. Membr. Sci, 2003, 226:51~61
    [41] Freeman M., Membranes for gas separation, Chem. Eng. News, 2005, 83(40):49~57
    [42] Hagg M., Lindbr?then A., CO2 capture from natural gas fired power plants by using membrane technology, Ind. Eng. Chem. Res., 2005, 44:7668~7675
    [43] Zhang Y., Wang Z., Wang S., Novel fixed carrier membranes for CO2 separation, J. App. Poly. Sci., 2002, 86:2222~2226
    [44] El-Azzamia L. A., Grulke E. A., Carbon dioxide separation from hydrogen and nitrogen: Facilitated transport in arginine salt–chitosan membranes, J. Membr. Sci., 2009, 328(1-2):15~22
    [45] Marcel Mulder著,李琳译, Basic principles of membrane technology second edition,膜技术基本原理,北京:清华大学出版社[M],1999
    [46] Robeson L. M., Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci, 1991, 62:165~185
    [47] Mun S. H., Kang S. W., Cho J. S., Koh S. K, Kang Y. S., Enhanced olefin carrier activity of clean surface silver nanoparticles for facilitated transport membranes, J. Membr. Sci., 2009, 332(1-2):1~5
    [48] Noble R. D., Kinetic efficiency factor for facilitated transport membranes, Sep. Sci. Tech, 1985, 20:577~585
    [49] Ward W. J., Robb W. L., Carbon dioxide-oxygen separation: facilitated transport of carbon dioxide across a liquid film, Science, 1967, 156: 1481~1484
    [50] Ward W. J., Robb W. L., Liquid membranes for use in the separation of gases, US. Patent 3. 396.510, 1968
    [51] Teramoto M., Takeuchi N., Maki T., Matsuyama H., Facilitated transport of CO2 through liquid membrane accompanied by permeance of carrier solution, Sep. Puri. Tech., 2002, 27: 25~31
    [52] de Gyves J., de San Miguel E. R., Metal ion separations by supported liquid membranes, Ind. Eng. Chem. Res., 1999, 38:2182~2202
    [53] Kemperman A. J. B., Bargeman D., Strathmann H., Stability of supported liquid membranes: State of the art, Sep. Sci. Technol, 1996, 31:2733~2762
    [54] Mitiche L., Tingry S., Seta P., Sahmoune A., Facilitated transport of copper(II) across supported liquid membrane and polymeric plasticized membrane containing 3-phenyl-4-benzoylisoxazol-5-one as carrier, J. Membr. Sci., 2008, 325(2):605~611
    [55] Quinn R., Appleby J. B., Pez G. P., New facilitated transport membranes for the separation of carbon dioxide from hydrogen and methane, J. Membr. Sci., 1995, 104:139~146
    [56] Quinn R., Laciak D. V., Polyelectrolyte membranes for acid gas separations, J. Membr. Sci., 1997, 131:49~60
    [57] Noble R. D., Koval C. A., Facilitated transport membrane systems, Chem. Eng. Prog., 1989 (3):58~70
    [58] Leblanc O. H., Ward W. J., Matson S. L., et al., Facilitated transport in ion-exchange membranes, J. Membr. Sci, 1980, 6: 339~343
    [59] Way J. D., Noble R. D., Reed D. L., et al, Facilitated transport of CO2 in inon-exchange membranes, AIChE J, 1987, 33: 480~487
    [60] Matsuyama H., Teramoto M., Sakakura H., et al, Facilitated transport of CO2 through various ion exchange membranes prepared by plasma graft polymerization, J. Membr. Sci., 1996, 117:251~262
    [61] Shao L., Low B. T., Chunga T., Greenberg R. A., Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future, J. Membr. Sci., 2009, 327(1-5):18~31
    [62]吴礼光,沈江南,陈欢林,Co2+固载PVA促进传递膜渗透汽化分离环己烯/环己烷的研究,石油化工,2003,32(10):881~884
    [63] Kim J. H., Min B. R., Won J., et al., Complexation mechanism of olefin with silver ions dissolved in a polymer matrix and its effect on facilitated olefin transport, Chem. Eur. J., 2002, 8(3): 650~654
    [64] Kim C. K., Kim H. S., Won J., et al., Density functional theory on reaction mechanism of silver ions with ethylene in facilitated transport membranes: A modeling study, J. Phys. Chem., 2001, 105: 9024~9028
    [65] Park Y. S., Won J., Kang Y. S., Facilitated transport of olefin through solid PAAm and PAAm-graft composite membranes with silver ions, J. Membr. Sci., 2001, 183(2):163~170
    [66] Kim H. S., Kim Y. J., Kim J. J., et al., Spectroscopic characterization of cellulose acetate polymer membranes containing Cu(1,3-butadiene) OTf as a facilitated olefin transport carrier, Chemistry of Materials, 2001, 13(5):1720~1725
    [67] Morisato A., He Z. J., Pinnau I., et al, Transport properties of PA12-PTMO/AgBF4 solid polymer electrolyte membranes for olefin/paraffin separation, Desalination, 2002, 145(1~3):347-351
    [68] Pinnau I., Toy L. G., Solid polymer electrolyte composite membranes for olefin/paraffin separation, J. Membr. Sci., 2001, 184(1):39~48
    [69] Sunderrajan S., Freeman B. D., Hall C. K., et al., Propane and propylene sorption in solid polymer electrolytes based on poly(ethylene oxide) and silver salts, J. Membr. Sci., 2001, 182(1~2):1~12
    [70]吴礼光,沈江南,陈欢林,高从堦,固载促进传递膜的研究进展,膜科学与技术,2004,24(6):51~56
    [71] Sungpet A., Way J. D., Theon P. M., et al. Reactive polymer membranes for ethylene/ethane separation, J. Membr. Sci., 1997, 136:111~120
    [72] Nishide H., Kawakami H., Suzuki T., Effect of polymer matrix on the oxygen difusion via a cobalt porphyrin fixed in a membrane, Macromolecules, 1991 24(23):6306~6318
    [73] Davis J., Valus R., Eshraghi R., et al., Facilitated transport membrane hybrid systems for olein purification, Separation Science Technology, 1993, 28(3):463~476
    [74]黄兴溢,唐建国,王瑶,由银盐促进烯烃输送的聚合物复合膜,2005,68:1~6
    [75] Matsuyama H., Hirai K., Teramoto M., Selective permeation of carbon dioxide through plasma polymerized membrane from diisopropylamine, J. Membr. Sci, 1994, 92: 257~265
    [76] Matsuyama H., Teramoto M., Sakakura H., Selectivie permeation of CO2 through Polymembrane prepared by plasma-graft polymerization technique, J. Membr. Sci, 1996, 114:193~200
    [77] Matsuyama H., Terada A., Nakagawara T., et al., Facilitated transport of CO2 through polyethylenimine/poly(vinylalcohol) blend membrane, J. Membr. Sci, 1999, 163:221~227
    [78] Yoshikawa M, Ezaki T, Sanui K, et al., Selective permeation of carbon dioxide through synthetic polymer membranes having pyridine moiety as a fixed carrier, J. Appl. Poly. Sci, 1988, 35: 145~154
    [79] Yoshikawa M., Fujimoto K., Kinugawa H., et al., Selective permeation of carbon dioxide through synthetic polymeric membranes having amine moiety, Chem. Letter, 1994, 2:243~247
    [80] Yi C., Wang Z., Li M., et al., Facilitated transport of CO2 through polyvinylamine/ polyethylene glycol blend membranes, Desalination, 2006, 193:90~96
    [81] Zhang Y., Wang Z., Wang S. C., Selective permeation of CO2 through new facilitated transport membranes, Desalination, 2002, 145:385~388
    [82] Zhang Y., Wang Z., Wang S. C., Novel fixed-carrier membranes for CO2 separation, J. App. Poly. Sci., 2002, 86:2222~2226
    [83] Zhang Y., Wang Z., Zhao J., et al., Selective permeation of CO2 through modified PVSA/PS composite membrane, Chinese Chemical Letters, 2006, 17:277~280
    [84] Wang Z., Li M., Cai Y., et al., Novel CO2 selectively permeating membranes containing PETEDA dendrimer, J. Membr. Sci., 2007, 290:250~258
    [85] Cai Y., Wang Z., Yi C., et al., Gas transport property of polyallylamine- poly(vinylalcohol)/polysulfone composite membranes, J. Membr. Sci., 2008, 310:184~196
    [86] Barrier R. M., Diffusivities in glassy polymers for the dual model sorption model., J. Membr. Sci., 1984, 18:25~35
    [87] Nishide H., Ohyanagi M., Okada O., et al., Dual-mode transport of molecular oxygen in membrane containing a cobalt porphyrin complex as a fixed carrier, Macromolecules, 1987, 20(2): 417~422
    [75] Matsuyama H., Hirai K., Teramoto M., Selective permeation of carbon dioxide through plasma polymerized membrane from diisopropylamine, J. Membr. Sci, 1994, 92: 257~265
    [76] Matsuyama H., Teramoto M., Sakakura H., Selectivie permeation of CO2 through Polymembrane prepared by plasma-graft polymerization technique, J. Membr. Sci, 1996, 114:193~200
    [77] Matsuyama H., Terada A., Nakagawara T., et al., Facilitated transport of CO2 through polyethylenimine/poly(vinylalcohol) blend membrane, J. Membr. Sci, 1999, 163:221~227
    [78] Yoshikawa M, Ezaki T, Sanui K, et al., Selective permeation of carbon dioxide through synthetic polymer membranes having pyridine moiety as a fixed carrier, J. Appl. Poly. Sci, 1988, 35: 145~154
    [79] Yoshikawa M., Fujimoto K., Kinugawa H., et al., Selective permeation of carbon dioxide through synthetic polymeric membranes having amine moiety, Chem. Letter, 1994, 2:243~247
    [80] Yi C., Wang Z., Li M., et al., Facilitated transport of CO2 through polyvinylamine/ polyethylene glycol blend membranes, Desalination, 2006, 193:90~96
    [81] Zhang Y., Wang Z., Wang S. C., Selective permeation of CO2 through new facilitated transport membranes, Desalination, 2002, 145:385~388
    [82] Zhang Y., Wang Z., Wang S. C., Novel fixed-carrier membranes for CO2 separation, J. App. Poly. Sci., 2002, 86:2222~2226
    [83] Zhang Y., Wang Z., Zhao J., et al., Selective permeation of CO2 through modified PVSA/PS composite membrane, Chinese Chemical Letters, 2006, 17:277~280
    [84] Wang Z., Li M., Cai Y., et al., Novel CO2 selectively permeating membranes containing PETEDA dendrimer, J. Membr. Sci., 2007, 290:250~258
    [85] Cai Y., Wang Z., Yi C., et al., Gas transport property of polyallylamine- poly(vinylalcohol)/polysulfone composite membranes, J. Membr. Sci., 2008, 310:184~196
    [86] Barrier R. M., Diffusivities in glassy polymers for the dual model sorption model., J. Membr. Sci., 1984, 18:25~35
    [87] Nishide H., Ohyanagi M., Okada O., et al., Dual-mode transport of molecular oxygen in membrane containing a cobalt porphyrin complex as a fixed carrier, Macromolecules, 1987, 20(2): 417~422
    [102] Weller S., Steiner W. A., Engineering aspects of separation of gases, Chem. Eng. Prog., 1950, 46:585~590
    [103] Pan C. Y., Habgood H. W., An analysis of the single-stage gaseous permeation process, Ind. Eng. Chem. Fundam, 1974(13):323~331
    [104] Mark C. P., Handbook of industrial membrane technology, Noyes Publications, 1988, ISBN 0-8155-1205-8
    [105] Nunes S. P., Peinemann K. V., Membrance technology in chemical industry, Wiley-VCH, 2001, ISBN 3-527-28485-0
    [106] C. W. Saltonstall, Calculation of the membrane area required for gas separations, J. Memb. Sci., 1987, 32:185~193
    [107] Baker R. W. Membrane Technology and Applications; John Wiley and Sons, Ltd., 2004, ISBN 0-470-85445-6; p. 338~339
    [108]郑辉东,赵素英,王良恩,用正交配置法求解中空纤维气体膜分离过程的数学模型,2005,22(1):69~72
    [109] Hogsett J. E., Mazur W. H., Estimate membrane system area, Hydrocarbon Processing, 1983, 62:52~54
    [110] Qi R., Henson M. A., Approximate modeling of spiral-wound gas permeators, J. Membr. Sci., 1996, 121:11~24
    [111] Thundyil M. J., Koros W. J., Mathematical modeling of gas separation permeators for radial crossflow, countercurrent, and cocurrent hollow fiber membrane modules, J. Membr. Sci., 1997, 125:275~291
    [112] Razmjoo A., Babaluo A. A., Simulation of binary gas separation in nanometric tubular ceramic membranes by a new combinational approach, J. Membr. Sci., 2006, 282:178~188
    [113] Smith S. W., Hall C. K., Freeman B. D., Rautenbach R., Rapid communication corrections for analytical gas-permeation models for separation of binary gas mixtures using membrane modules, J. Membr. Sci., 1996, 118:289~294
    [114] Tessendorf S., Gani R., Michelsen M. L., Aspects of modeling, design and operation of membrane-based separation processes for gaseous mixtures, Computers Chem. Eng., 1996, 20:S653~S658
    [115] Charles. T. Blaisdell, Karl Kammermeyer, Counter-current and co-current gas separation, Chem. Eng. Sci.,1973, 28:1249~1255
    [116] Hao J., Rice P. A., Stern S. A., Upgrading low-quality natural gas with H2S- and CO2-selective polymer membranes Part I. Process design and economics of
    [102] Weller S., Steiner W. A., Engineering aspects of separation of gases, Chem. Eng. Prog., 1950, 46:585~590
    [103] Pan C. Y., Habgood H. W., An analysis of the single-stage gaseous permeation process, Ind. Eng. Chem. Fundam, 1974(13):323~331
    [104] Mark C. P., Handbook of industrial membrane technology, Noyes Publications, 1988, ISBN 0-8155-1205-8
    [105] Nunes S. P., Peinemann K. V., Membrance technology in chemical industry, Wiley-VCH, 2001, ISBN 3-527-28485-0
    [106] C. W. Saltonstall, Calculation of the membrane area required for gas separations, J. Memb. Sci., 1987, 32:185~193
    [107] Baker R. W. Membrane Technology and Applications; John Wiley and Sons, Ltd., 2004, ISBN 0-470-85445-6; p. 338~339
    [108]郑辉东,赵素英,王良恩,用正交配置法求解中空纤维气体膜分离过程的数学模型,2005,22(1):69~72
    [109] Hogsett J. E., Mazur W. H., Estimate membrane system area, Hydrocarbon Processing, 1983, 62:52~54
    [110] Qi R., Henson M. A., Approximate modeling of spiral-wound gas permeators, J. Membr. Sci., 1996, 121:11~24
    [111] Thundyil M. J., Koros W. J., Mathematical modeling of gas separation permeators for radial crossflow, countercurrent, and cocurrent hollow fiber membrane modules, J. Membr. Sci., 1997, 125:275~291
    [112] Razmjoo A., Babaluo A. A., Simulation of binary gas separation in nanometric tubular ceramic membranes by a new combinational approach, J. Membr. Sci., 2006, 282:178~188
    [113] Smith S. W., Hall C. K., Freeman B. D., Rautenbach R., Rapid communication corrections for analytical gas-permeation models for separation of binary gas mixtures using membrane modules, J. Membr. Sci., 1996, 118:289~294
    [114] Tessendorf S., Gani R., Michelsen M. L., Aspects of modeling, design and operation of membrane-based separation processes for gaseous mixtures, Computers Chem. Eng., 1996, 20:S653~S658
    [115] Charles. T. Blaisdell, Karl Kammermeyer, Counter-current and co-current gas separation, Chem. Eng. Sci.,1973, 28:1249~1255
    [116] Hao J., Rice P. A., Stern S. A., Upgrading low-quality natural gas with H2S- and CO2-selective polymer membranes Part I. Process design and economics of165~173
    [129]蔡彦,提高固定载体促进传递膜渗透性能的方法和理论研究[博士学位论文],天津大学,2008
    [130]张颖,分离CO2/CH4固定载体复合膜的制备与性能研究[博士学位论文],天津大学,2002
    [131]胡一杰, PVAm涂层厚度对PVAm/PS复合膜透过分离性能的影响[本科论文],天津大学,2007
    [132] Noble R. D., Carl K. A., Review of facilitated transport membranes, In: Yampelskij Y., Pinnau I., Freeman B., Eds, Materials science of membranes for gas and vapor separation, Chichester, England: John Wiley & Sons, 2006
    [133]远双杰,分离CO2固定载体复合膜制备装置及制备工艺研究[硕士学位论文],天津大学,2008
    [134] Huang J., Zou J., Ho W. S. W., Carbon dioxide capture using a CO2-selective facilitated transport membrane, Ind. Eng. Chem. Res., 2008, 47:1261~1267
    [135] Matsuyama H., Matsui K., Kitamura Y., et al., Effect of membrane thickness and membrane preparation condition on facilitated transport of CO2 through ionomer membrane, Sep. Pur. Tech., 1999, 17: 235~241
    [136] Chakma A., Meisen A., Solubility of CO2 in aqueous methyldiethanolamine and N, N-bis(hydroxyethyl) piperazine solutions, Ind. Eng. Chem. Res., 1987, 26: 2461~2466
    [137] Hedenqvist M., Gedde U. W., Diffusion of small-molecule penetrants in semicrystalline polymers, Prog. Poly. Sci.,1996, 21:299~333
    [138] Cussler E. L., Diffusion: mass transfer in fluid systems, Cambridge University Press, 2nd Edition, 1997
    [139]王正烈,周亚平,李松林,刘俊吉,物理化学,第四版,北京:高等教育出版社,2001
    [140] Paul S., Ghoshal A. K., Mandal B., Kinetics of absorption of carbon dioxide into aqueous solution of 2-(1-piperazinyl)-ethylamine, Chem. Eng. Sci., 2009, 64:313~321
    [141] Camacho F., Sanchez S., Pacheco R., Rubia M. D., Sanchez A., Kinetics of the reaction of pure CO2 with N-methyldiethanolamine in aqueous solutions, International Journal of Chemical Kinetics, 2009, 41(3):204~214
    [142] Sun, W. C., Yong, C. B., Li M. H., Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-l-propanol and piperazine,Chem. Eng. Sci., 2005, 60:503~516
    [143] Coady A. B., Davis J. A., CO2 recovery by gas permeation, Chem. Eng. Prog., 1982, 78:44~49
    [144] Baker R. W., Lokhandwala K., Natural gas processing with membranes: An overview, Ind. Eng. Chem. Res., 2008, 47:2109~2121
    [145] Datta A. K. , Sen P. K., Optimization of membrane unit for removing carbon dioxide from natural gas, J. Membr. Sci., 2006, 283:291~300
    [146] Lee A. L., Feldkirchner H. L., Stern S. A., Houde A. Y., Gamez J. P., Meyert H. S., Field tests of membrane modules for the separation of carbon dioxide from low-quality natural gas, Gas Sep. Pur., 1995, 9(1):35~43
    [147] Spillman R. W., Economics of gas separation by membranes, Chem. Eng. Prog. 1989, 85:41~62
    [148] Singh V., Rhinehart R. R., Narayan R. S., Tock R. W., Transport analysis of hollow fiber gas separation membranes, Ind. Eng. Chem. Res. 1996, 34:4472~4478
    [149] Fattah K. A., Haman S. M., Al-Enezi G., Ettonery H. M., Hughes R., A non-ideal model for analysis of gas separation permeates, J. Membr. Sci., 1992, 65:247~257
    [150] Narinsky A. G., Applicability conditions of idealized flow models for gas separation by asymmetric membrane, J. Membr. Sci., 1991, 55:333~347
    [151] Pan, C. Y., Gas separation by permeators with high-flux asymmetric membranes, AIChE J. 1983, 29:545~552.
    [152] Robeson L. M., Burgoyne W. F., Langsam M., Savoca A. C., Tien C. F., High performance polymers for membrane separation, Polymer, 1994, 35: 4970~4978
    [153] Grainger D., Hagg M., Techno-economic evaluation of a PVAm CO2-selective membrane in an IGCC power plant with CO2 capture, Fuel, 2008, (87):14~24
    [154] Herzog H. J., What future for carbon capture and sequestration?, Environ. Sci. Tech., 2001, 35:148~153
    [155] Powell C. E., Qiao G. G., Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, J. Membr. Sci., 2006, 279:1~49
    [156] Ho M. T., Allinson G., Wileya D. E., Comparison of CO2 separation options for geo-sequestration: are membranes competitive?, Desalination, 2006, 192:288~295
    [157] Favre E., Bounaceur R., Roizard D., Biogas, membranes and carbon dioxide capture, J. Membr. Sci., 2009, 328:11~14
    [158] Koros, W. J., Evolving beyond the thermal age of separation processes: Membranes can lead the way, AIChE J. 2004, 50 (10):2326~2334
    [159] Van der Sluijs J. P., Hendriks C. A., Blok K., Feasibility of polymer membranes for carbon dioxide recovery from flue gases, Energy Convers. Manage., 1992, 33:429~436
    [160] Abu-Zahra M. R. M., Niederer J. P. M., Feron P. H. M., Versteeg G. F., CO2 capture from power plants Part II. A parametric study of the economical performance based on mono-ethanolamine, International Journal of Greenhouse Gas Control, 2007, 1:135~142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700