复杂流场光偏折层析的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂流场的全场显示与测量是气动力学领域仍未完全解决的热点问题,光偏折层析技术因其动态范围大、抗干扰能力强、可以实现非接触、三维、定量测试等优点而成为测量复杂流场的上佳方案。针对光偏折层析在关键技术上的不完善、缺乏完整的技术体系这一发展现状,本文系统地研究了光偏折层析的理论和实现方法,着重对光偏折层析的多方向投影获取、投影信息提取、以及重建算法三方面技术进行了深入研究。首先进行的流场中光偏折特性分析与实验验证,为偏折系统的设计与新重建算法的研究奠定了理论基础。在对莫尔条纹的成像机理和分布特点进行分析的基础上,研制了两种旋转莫尔偏折系统,实现了全场范围内莫尔条纹图的获取。偏折信息提取方面,分别对条纹位移法和相位展开法进行了原理与实验研究,并针对莫尔偏折图的条纹特性,使用小波去噪技术对经典的条纹位移分析法作了改进。对于光偏折层析重建算法这一最薄弱的技术环节,提出了两种解决思路与方法。其一是从光偏折公式中偏导数项的离散数值表达出发,建立了直接使用偏折角进行迭代修正的重建算法族,对多种场分布和重建条件下的大量模拟实验及误差分析验证了这些算法的重建效能。其二,从解决不适定的数学物理反问题的角度出发,建立光偏折层析的Tikhonov正则化重建技术,研究了偏折投影正则方程组的构建、正则参数与正则化矩阵的确定、正则投影方程组的求解等三部分内容。此外,对强偏折场的偏折层析重建技术作了探索性的研究,发展了一种结合光线追迹技术的正则化修正曲线路径反演算法。基于上述建立的光偏折层析技术体系,对大量的实际流场进行了测量或重建,包括小型喷焰温度场、非对称双峰温度场、三烛火焰温度场、火箭燃气流密度场、高超音速风洞中含激波密度场、超音速风洞中非对称密度场等,并使用各种实验或分析技术对重建结果进行了验证,从而证明了光偏折层析技术在复杂流场测量领域的重要实用价值。
The visualization and measurement of complex flow are of major importance inaerodynamics. Compared with other methods applied to flow visualization andmeasurement, deflectometric tomography, a noncoherent method for studying phaseobjects, has many merits such as simple optical configuration, large dynamic range,having no special requirement to light source, and adaptation to tough environment. In thisthesis, a basically complete theoretical system for deflectometric tomography isconstructed, which is supposed to give its guidance in investigating beam deflectionperformances, designing testing configurations, projection extraction methods, andoptimum reconstruction algorithms. Two kinds of rotatable deflectometric systems aredesigned, which is able to capture projection data over an angular range of 180°. Based onthe research of fringe analysis techniques and wave-front retrieval techniques forprojection extraction, a further data processing method is supposed, in which thedeflectometric data are denoised by wavelet-based procedure after projection datareduction. Two kinds of new algorithms are developed to improve the reconstructionaccuracy and applicability of deflectometric tomography. First, a new iterative algorithm,deflection angle revision reconstruction technique, is derived from the basic deflectionformula and distinguished by a high degree of flexibility in reconstructing a distributionfrom limited view-angles projections. A smoothing scheme is supplied for the ill-posedreconstruction. The precision and convergence of the algorithm are analyzed through anumerical simulation. Second, Tikhonov regularization method is developed fordeflectometric tomography to reconstruct two-dimensional distribution. A modifiedregularization technique is applied to the linear projection equations and the conjugategradient method is used to compute the regularized solution for the least-square equations.In numerical simulation, the approach produces reliable reconstructions by computingunderdetermined equations and overdetermined equations respectively for asymmetricaldistribution. Besides, a curved ray algebraic inversion technique, associated geometricalray tracing algorithm, is suggested for the reconstruction of strongly refracting fields.Furthermore, the deflectometric tomography technique is employed to measure orreconstruct the temperature field of butane flame, asymmetric temperature distribution with double-peak-like structure, three-candle flame temperature field, density field inrocket exhausted jet, symmetric and asymmetric density fields in supersonic flow. Someother methods, such as direct thermocouple measurement and computing fluid dynamicalanalysis, verify the validity of the reconstruction results of deflectometric tomography, andprove the important value of the technology in measuring complex flow field.
引文
1. J. Radon. Uber die Bestimmung yon Funktionen dutch iher Integralwerte langs gewisser Mannigfaltigkeiten, Berich Sachsische Akademie der Wissenchaften, Leipzip, Math.—Phys. K1., 1917, 69: 262-267
    2. A. M. Cormack. Representation of a function by its line integrals with some radiological application. J. Appl. Phys., 1963, 34: 2722-2727
    3. D. E. Kuhl, R. Q. Edwards. Image separation radioisotope scanning. Radiology, 1963, 80: 653-662
    4. G. H. Hounsfield. A method and apparatus for examination of a bady by radiation such as X or gamma radiation. Image separation radioscope scanning, Patent Specification 1283915, 1972
    5. B. Zhang, Y. Song, Y. Z. Song, A. Z. He. A new reconstruction algorithm for moire tomography in flow field measurements. Opt. Eng., 2006, 45(11)
    6.贺安之,阎大鹏.激光瞬态干涉度量学.北京:机械工业出版社,1993
    7. D. W. Sweeny, C. M. Vest. Reconstruction of three-dimensional refractive index field from multi-direction interferometric data. Appl. Opt., 1973, 12(11): 2649-2664
    8. O. Kafri. Noncoherent method for mapping phase objects. Opt. Lett., 1980, 5(12): 555-557
    9. E. Keren, E. Bar-Ziv, I. Glatt, O. Kafri. Measurement of temperature distribution of flames by moire deflectometry. Appl. Opt., 1981, 20(24): 4263-4266
    10. E. Bar-Ziv, S. Sgulim, O. Kafri, E. Keren. Tmeperature mapping in flames by moire deflectometry. Appl. Opt., 1983, 22(5): 698-705
    11. O. Kafri. Moire deflectometry: a ray deflection approach to optical testing. Opt. Eng., 1985, 24(6): 944-960
    12. G. T. Herman. Image reconstruction from projections. New York: Academic, 1980
    13. D. L. Wu, Z. D. Wang, W. Yao, A. Z. He. Three-dimensional tomography for asymmetric field containing opaque object. Opt. Eng., 1998, 37(8): 2255-2258
    14.高益庆,龚勇清.用莫尔计算机层析技术诊断三维电弧温度场.光学学报,1998,18(3):376-380
    15. R. Synder, L. Hesselink. Optical tomography for flow visualization fo the density field around a revolving helicopter rotor blade. Appl. Opt., 1984, 23(20): 3650-3656
    16.阎大鹏,贺安之,苗鹏程,王海林.火箭发动机燃气射流流场的光学显示方法研究.航空动力学报,1993,8(1):1-5
    17. D. Reuss, P. H. Schultz. Interferometric temperature measurements of a flame in a cylindrical tube using holography. Appl. Opt., 1987, 26(9): 1661-1667
    18. C. Soller, R. Wenskus, P. Middendorf, G. E. A. Meier, F. Obermeier. Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow. Appl. Opt., 1994, 33(14): 2921-2932
    19. D. P. Towers, C. E. Towers, P. J. Bryanston-Cross, K. Fry. Visualization and analysis of three dimensional transonic flows by holographic interferometry. Proc. SPIE, 1991, 1553: 388-403
    20. S. S. Garg. A direction-indicating color schlieren system. AIAA, 1970, 8(12): 2282-2284
    21. J. K. Thomas, G. H. William. Schlieren analysis goes to color. Astronautics and Aeronautics, 1996, 1: 38-40
    22. C. M. Vest. Holographic interferometry. New York: Wiley, 1979
    23. S. Yokozeki, S. Mihara. Moire interferometry. Appl. Opt., 1979, 18(8): 1275-1280
    24. O. Kafri, A. Livnat, E. Keren. Infinite fringe moire deflectometry. Appl. Opt., 1982, 21(21): 3884-3886
    25. P. Barker, A. Bishop, H. Rubinsztein-Dunlop. Supersonic velocimetry in a shock tube using laser enhanced ionization and planar laser induced fluorescence. Appl. Phys., 1997, B(64), 369-376
    26. M. J. Dyer, D. R. Crosley. Two-dimensional imaging of on laser induced fluorescence in a flame. Opt. Lett., 1982, 7(8): 382-384
    27. G. Kychakoff, K. Knapp, R. K. Howe, R. K. Hanson. Flow visualization in combustion gases using Nitric Oxide fluorescence. AIAA, 1984, 22(1): 153-154
    28. S. White, D. Burleigh. Thermographic monitoring of material under re-entry condition. AIAA, 91-0696
    29. Y. Huang, Y. Yan, G. Riley. Vision-based measurement of temperature distribution in a 500kW model furnace using the two-color method. Measurement, 2000, 28: 175-183
    30. D. P. Correia, R Ferrao, A. Calderira-Pires. Advanced 3D emission tomography flame temperature sensor. Combust. Sci. and Tech., 2001, 163: 1-24
    31.王式民,赵延军,汪风林.光学分层热成像法重建火焰三维温度场分布的研究.工程热物理学报,2002,23(S1):233-236
    32. J. Stricker, O. Kafri. A new method for density gradient measurements in compressible flows. AIAA. 1982, 20(6): 820-823
    33. A. K. Agrawal, B. W. Albers, D. W. Griffin. Abel inversion of deflectometric measurements in dynamic flows. Appl. Opt., 1999, 38(15): 3394-3398
    34. J. D. Posner, D. Dunn-Rankin. Temperature field measurements of small, nonpremixed flames with use of an Abel inversion of holographic interferograms. Appl. Opt., 2003, 42(6): 952-959
    35. J. Stricker. Analysis of 3-D phase objects by moire deflectometry. Appl. Opt., 1984, 23(20): 3657-3659
    36. R. Snyder, L. Hesslink. High speed optical tomography for flow visualization. Appl. Opt., 1985, 12: 4046-4051
    37. G. W. Faris, R. L. Byer. Beam-deflection optical tomography. Opt. Lett., 1987, 12(2): 72-74
    38. G. W. Faris, R. L. Byer. Beam-deflection optical tomography of a flame. Opt. Lett., 1987, 12(3): 155-157
    39. G. W. Faris, R. L. Byer. Three-dimensional beam-deflection optical tomography of a supersonic jet. Appl. Opt., 1988, 27(24): 5202-5212
    40. M. Hino, T. Aono, M. Nakajima, S. Yuta. Light emission computed tomography system for plasma diagnostics. Appl. Opt., 1987, 26(22): 4742-4746
    41. D. P. Yah, A. Z. He, X. W. Ni. New method of asymmetric flow field measurement in hypersonic shock tunnel. Appl. Opt., 1991, 30(7): 770-774
    42. D. J. Cha, S. S. Cha. Holographic interferometric tomography for limited data reconstruction. AIAA, 1996, 34(5): 1019-1026
    43. D. L. Wu, W. Yao, A. Z. He. Rotary interferometer used in the optical CT. Microw. Opt. Techn. Let., 1998, 19(1): 64-66
    44. A. K. Agrawal, N. K. Butuk, S. R. Gollahalli, D. Griffin. Three-dimensional rainbow schlieren tomography of a temperature field in gas flows. Appl. Opt., 1998, 37(3): 479-485
    45. D. R Yah, S. S. Cha. Computational and interferometric system for real-time limited-view tomography of flow fields. Appl. Opt., 1998, 37(7): 1159-1164
    46. G. N. Blinkov. Speckle tomography of a gas flame. Exp. Fluids, 1989, 8: 72-76
    47. A. J. Decker, S. H. Izen. Three-dimensional computed tomography from interferometric measurements within a narrow cone of views. Appl. Opt., 1992, 12: 7696-7706
    48. D. W. Watt, C. M. Vest. Turbulent flow visualization by interferometric integral imaging and computed tomography. Exp. Fluids, 1990, 8: 301-311
    49. T. L. Spatz, D. Poulikakos. Holographic interferometry experiments the growth of ice from a horizontal pipe. Int. J. Heat. Mass. Transfer, 1991, 7: 1847-1859
    50. L. W. Carr, Y. H. Yu. The Use of interferometry in the study of rotor craft aerodynamics. Opt. Laser Eng., 1992, 17: 121-146
    51. B. Timmerman, D. W. Watt. Tomographic holographic interferometry for unsteady compressible flows. Proc. SPIE, 1995: 287-296
    52.万雄.发射光谱层析算法研究及其三维流场重建应用.博士学位论文,南京:南京航空航天 大学.2004
    53. O. Kafri, B. Ashkenazi. Line thinning algorithm for nearly straight moire fringes. Opt. Eng., 1985, 25(3): 495-498
    54. J. D. Trolinger. Automated data reduction in holographic interferometry. Opt. Eng., 1985, 5: 1454-1461
    55. F. Beker, Y. H. Yu. Digital fringe reduction techniques applied to the measurement of three-dimensional transonic flow fields. Opt. Eng., 1985, 24(3): 429-434
    56. G. T. Reid. Automatic fringe analysis-A review. Opt. Laser Eng., 1986, 7: 37-68
    57. D. W. Robinson. Automatic fringe analysis with a computer image analysis system. Appl. Opt., 1983, 22: 2169-2176
    58. T. Yatagai, S. Nakadate. Automatic fringe analysis using digital image processing techniques. Opt. Eng., 1982, 7: 432-435
    59. M. Servin, R. Rodriguez-Vera, M. Carpio, A. Morales. Automatic fringe detection algorithm used for moire deflectometry. Appl. Opt., 1990, 29(22): 3266-3270
    60. T. Yatagai. Automated fringe analysis technique in Japan. Opt. Laser Eng., 1991, 15: 79-91
    61. W. Joo, S. S. Cha. Automated interferogram analysis based on an integrated expert system. Appl. Opt., 1995, 34(32): 7486-7496
    62.阀大鹏,朱兆清,鲁江陵,张健,贺安之.含冲击波流场干涉图的图像处理方法研究.光学学报,1993,13(5):439-443
    63. D. J. Bone, H. A. Bachor. Fringe pattern analysis using 2-D Fourier transform. Appl. Opt., 1986, 25(10): 1653-1660
    64. D. J. Bone. Fourier fringe analysis: the two dimensional phase unwrapping problem. Appl. Opt., 1991, 25(30): 3627-3632
    65. Y. M. Kreis. Fourier-transform evaluation of holographic interference patterns. Proc. SPIE, 1987, 814: 365-371
    66. C. Roddier, F. Roddier. Interferogram analysis using Fourier transform techniques. Appl. Opt., 1987, 26(9): 1668-1673
    67. D. W. Robinson, G. Reid. Interferogram analysis. Bristol: IOP Publishing Ltd., 1990
    68. X. Y. Su, W. J. Chert, Q. C. Zhang, Y. P. Chao. Dynamic 3-D shape measurement method based on FTP. Opt. Laser Eng., 2001, 36: 49-64
    69. X. Y. Su, L. Xue. Phase unwrapping algorithm based on fringe frequency analysis in Fourier transform profilometry. Opt. Eng., 2001, 40(4): 637-643
    70. T. Xian, X. Y. Su. Area modulation grating for sinusoidal structure illumination on. phase-measuring profilometry. Appl. Opt., 2001, 40(8): 1201-1206
    71.王鸣,钟金刚,李达成.次条纹积分法解调位相的三维面形测量.光学学报,1997,17(10):1462-1465
    72. W. Yao, D. L. Wu, A. Z. He. Real three-dimensional reconstruction of temperature field based on wavefront retrieval. Opt. Eng., 1998, 37: 2710-2716
    73.姚卫,吴东楼,王振东,贺安之.改进的多重网格法重建含遮挡物的干涉波前.光学学报,1999,19(2):171-180
    74. W. Yao, A. Z. He. Two-dimensional interferometric projection extraction by Gabor transform. J. Opt. Soc. Am. A., 1999, 16(2): 258-263
    75.钟金刚,王鸣,李达成.傅立叶变换莫尔偏折术用于自动测量气体温度场.中国激光,1997,24(3):275-280
    76. M. Wang, L. Ma. Subfringe integration method for automatic analysis of moire deflection tomography. Opt. Eng., 2000, 39(10): 2726-2733
    77. R. Rangayyan, A. P. Dhawan, R. Gordon. Algorithm for limited-view computed tomography: a annotated bibliography and a challenge. Appl. Opt., 1985, 24(23): 4000-4012
    78. R. M. Lewitt. Reconstruction algorithms: transform methods. Proc. IEEE, 1983, 71(3): 390-408
    79. Y. Censor. Finite series-expansion reconstruction methods. Proc. IEEE, 1983, 71(3): 409-419
    80. J. Stricker, E. Kerent, O. Kafri. Axisymmetric density field measurements by moire deflectometry. AIAA. 1983, 21(12): 1767-1769
    81. J. Stricker, O. Kafri, A new method for density gradient measurements in compressible flows. AIAA, 1982, 20(6): 820-823
    82. H. Stark, J. W. Woods, I. P. Paul, R. Hingorani. An investigation of computerized tomography by direct Fourier inversion and optimum interpolation. IEEE Trans. Biomed. Eng., 1981, BME-28: 496-505
    83. F. Natterer. Fourier reconstruction in tomography. Numer. Math., 1985, 47: 343-353
    84. C. M. Vest, I. Prikryl. Tomography by iterative convolution: empirical study and application to interferometry. Appl. Opt. 1984, 23(14): 2433-2440
    85.高益庆.用Radon变换迭代法重建含有遮挡物的三维折射率场.中国激光,1995,22(1):49-54
    86. K. M. Hanson, G. W. Wecksung. Local basis-function approach to computed tomography. Appl. Opt., 1985, 24(23): 4028-4039
    87. D. W. Watt. Fourier-Bessel harmonic expansion for tomography of partially opaque objects. Appl. Opt., 1996, 11: 7468-7473
    88. R. Gordon. A tutorial on ART. IEEE Trans. Nucl. Sci., 1974, NS-21: 78-93
    89. R. Gordon, R. Bender, G. T. Herman. Algebraic reconstruction techniques for three-dimensional electron microscopy and X-ray photography. J. Theo. Biol., 1970, 29: 471-481
    90. B. R. Guenther, C. W. Kerber, C. W. Killian, K. T. Smith, and S. L. Wagner. Reconstruction of objects from radiographs and the location of the brain tumors. Proc. Nat. Acad. Sci., 1974, 71: 4884-4886
    91. D. P. Yah, F. Liu, Z. D. Wang, A. Z. He. Moire tomography by ART. Proc. SPIE, 1996, 2861: 146-150
    92. D. Mishra, J. P. Longtin, R. P. Singh, et.al.. Performance evaluation of iterative tomography algorithms for incomplete projection data. Appl. Opt., 2004, 43(7): 1522-1532
    93. S. Cha, C. M. Vest. Interferometry and reconstruction of strongly refracting asymmetric refractive index fields. J. Opt. Soc. Am. A., 1979, 4(10): 311-313
    94. S. Cha, C. M. Vest. Tomographic reconstruction of strongly refracting fields and its application to interferometric measurement of boundary layers. Appl. Opt., 1981, 20(16): 2787-2794
    95. J. F. Greenleaf. Computerized tomography with ultrasound. IEEE, 1983, 71(3): 330-337
    96. R. J. Lytle, K. A. Dines. lterative ray tracing between boreholes for underground image reconstruction. IEEE Trans. Geosci. Remote Sensing, 1980, GE-18: 234-239
    97. C. M. Vest. Tomography for properties of materials that bend rays: a tutorial. Appl. Opt., 1985, 24(23): 4089-4094
    98. I. H. Lira, C. M. Vest. Refraction correction in holographic interferometry and tomography of transparent objects. Appl. Opt., 1987, 26(18): 3919-3928
    99. A. T. Dolovich, G. M. Gladwell. Convergence criteria for iterative schemes in holographic interferometry and the tomography of strongly refracting objects. Appl. Opt., 1989, 28(20): 4411-4418
    100. A. T. Dolovich, G. M. Gladwell. A generalized iterative approach to curved-ray tomography. Opt. Laser Eng., 1992, 17: 147-165
    101. O. Sasaki, T. Kobayashi. Beam-deflection optical tomography of the refractive-index distribution based on the Rytov approximation. Appl. Opt., 1993, 32(5): 746-751
    102.吴东楼.光学计算机层析理论及其在三维温度场定量测试中的应用研究.博士学位论文,南京:南京理工大学,1998
    103.姚卫.相位场干涉层析的理论和方法研究.博士学位论文,南京:南京理工大学,1998
    104.吴颖川.计算光学流动显示技术理论及应用研究.博士学位论文,南京:南京理工大学,2003
    105.王振东.非完全数据光学计算机层析及其应用研究.博士学位论文,南京:南京理工大学,2004
    106.吴颖川,乐嘉陵,贺安之.彩色计算干涉技术及应用.流体力学实验与测量.2002,16(1):80-86
    107. Y. C. Wu, J. L. Le, A. Z. He. Ray-casting method for integral calculation of computational flow imaging. Proc. SPIE, 2003, 5058: 385-392
    108. S. Yokozeki. Theoretical interpretation of the moire pattern. Opt. Commun., 1974, 11(4): 378-381
    109. O. Bryngdahl. Moire and higher grating harmonics. J. Opt. Soc. Am., 1975, 65(6): 685-694
    110. S. Yokozeki, Y. Kusaka, K. Patorski. Geometric parameters of moire fringe. Appl. Opt., 1976, 15(9): 2223-2227
    111. Y. Nakano, K. Murata. Measurements of phase objects using the Talbot effect and moire technique. Appl. Opt., 1984, 23(14): 2296-2299
    112. T. Yatagai, M. ldesawa, Y. Yamaashi, M. Suzuki. Interactive fringe analysis system: applications to moire contourogram and interferogram. Opt. Eng., 1982, 21(5): 901-906
    113. Q. Kemao, S. H. Soon, A. Asundi. Instantaneous frequency and its application to strain extraction in moire interferometry. Appl. Opt., 2003, 42(32): 6504-6511
    114.王海林.激光莫尔度量技术理论和应用研究.博士学位论文,南京:南京理工大学,1991
    115.贺安之,阎大鹏,倪晓武,王海林.实时大口径高灵敏度高精度莫尔偏折仪的设计和应用.中国激光,1991,18(11):827-831
    116.阎大鹏,张健,王海林,苗鹏程,贺安之.莫尔偏折仪及其在燃气射流冲击场中的应用.光学学报,1993,13(1):145-149
    117. Donald L. Snyder, Carl W. Helstrom, Aaron D. Lanterman, et.al.. Compensation for readout noise in CCD images. J. Opt. Soc. Am. A, 1995, 12(2): 272-283
    118.徐晨,赵瑞珍,甘小冰.小波分析与应用算法.北京:科学出版社,2004
    119. H. Sun, S. S. Cha. Computational tomographic reconstruction for limited ill-posed interferometric data. Opt. laser Eng., 1992, 17: 167-178
    120. D. Verhoeven. Limited-data computed tomography algorithms for physical sciences. Appl. Opt., 1993, 32(20): 3736-3754
    121. C. M. Vest. Format of images from projections: Radon and Abel transforms. J. Opt. Soc. Am., 1974, 64(9): 1215-1218
    122. M. Kaial, K. A. Nugent. Abel inversion using fast Fourier transforms. Appl. Opt., 1988, 27(10): 1956-1959
    123. K. T. Waish, J. Fielding, M. B. Long. Effect of light-collection geometry on reconstruction errors in Abel inversions. Opt. Lett., 2000, 25(7): 457-459
    124. K. M. Hanson, G. W. Wecksung. Local basis-function approach to computed tomography. Appl. Opt., 1985, 24(23): 4028-4039
    125. D. R Yan, F. Liu, Z. D. Wang. Moire tomography by ART. Proc. SPIE, 1996, 2861: 146-150
    126. S. F. Gull, T. J. Newton. Maximum entropy tomography. Appl. Opt., 1999, 25: 156-160
    127. K. M. Hanson, G. W. Wecksung. Bayesian approach to limited-angle reconstruction in computed tomography. J. Opt. Sci. Am, 1983, 73: 1501-1509
    128. D. Verhoeven. Multiplicative algebraic computed tomographic algorithms for the reconstruction of multidirectional interferometric data. Opt. Eng., 1993, 32(2): 410-419
    129. D. Mishra, K. Muralidhar, P. Munshi. A robust MART algorithm for tomographic applications. Numer. Heat Trans. B, 1999, 35: 485-506
    130. A. H. Andersen. Tomography transform and inverse in geometrical optics. J. Opt. Sci. Am. A, 1987, 4(8): 1385-1395
    131. P. F. C. Gilbert. lterative methods for three-dimensional reconstruction of an object from its projections. J. Theor. Biol., 1972, 36: 105-117
    132. D. W. Watt. Column-relaxed algebraic reconstruction algorithm for tomography with noisy data. Appl. Opt., 1994, 33(20): 4420-4427
    133.宋一中,贺安之.自相关代数迭代重建算法重建含遮挡物场.光电子激光,2006,17(3):352-355
    134.李春芳,张新峰,潘金虎,是度芳.改进的联合代数法及其有限角投影重建.光电子激光,2002,13(7):726-729
    135. Y. Z. Song, B. Zhang, Z. H. Li, A. Z. He. Iteration compensation of inside fringe in reconstructing field with an opaque object. Optoelectron. Lett., 2006, 2(2): 148-150
    136. Y. Censor, A. R. De Pierro, A. N. Iusem. On maximization of entropies and a generalization of Bregman's method for convex programming. Technique Report MIPG 113, Medical hnage Processing Group, Uni. Of Pennsylvania, 1986.
    137. N. J. Duasussory, I. E. Abdou. Some new multiapplication algorithms for image reconstruction from projections. Linear Algebra Appl., 1990, 130: 111-132
    138. Y. Censor, A. V. Lakshminarayanan, A. Len. Relaxation methods for large-scale entropy optimization problems, with application in image reconstruction. Information Linkage between Applied Meathematic and Industry (P. G. G. Wang et al, Eds), 1979
    139. R. Gordon, G. T. Herman. Three-dimensional reconstruction from projections: a review of algorithms. Int. Rev. Cytol., 1974, 38: 111-151
    140. A. Lent. Aconvergent algorithm for maximum entropy image restoration, with a medical x-ray application. Proc. SPIE Image Analysis and Evaluation, R. Shaw. Ed., 1977: 249-257
    141.阎大鹏,苗鹏程,王海林,贺安之.火箭燃气射流冲击场的实验研究.爆炸与冲击,1991, 11(4):309-314
    142. R. C. Gonzalez, R. E. Woods. Digital image processing. Beijing: Publishing House of Electronics Industry, 2003
    143. K. R. Castleman. Digital image processing. Beijing: Tsinghua University Press, 1998
    144. S. Mallat, S. Zhong. Characterization &signals from multiscale edges. IEEE Trans. PAMI, 1992, 14(7): 710-732
    145. F. Truchetet, O. Laligant, E. Bourenanne, J. M iteran. Frame of wavelets for edge detection. Proc. SPIE, 1994, 2303: 141-152.
    146. J. Canny. A computational approach to edge detection. IEEE Trans. PAMI, 1986, 8(6): 679-698
    147. C. W. Groetsch. Inverse Problems. Washnington: The Mathematical Association of America, 1999
    148. A. Bakushinsky, A. Goncharsky. Ⅲ-posed problems: theory and applications. Kluwer Acadimic Pulishers, 1994.
    149. H. W. Engle, M. Hanke, A. Neubauer. Regularization of inverse problems. Dordrecht: Kluwer Academic Publishers, 1996
    150. D. Calvetti, L. Reichel, F. Sgallari, G. Spaletta. A regularizing Lanczos iteration method for underdeterminedlinear systems. J. Comput. Appl. Math., 2000, 115: 101-120
    151. E. L. Piccolomini, F. Zama. The conjugate gradient regularization method in computed tomography problems. J. Comput. Appl. Math., 1999, 102: 87-99
    152. J. P. Holloway, S. Shannon, S. M. Sepke, M. L. Brake. A reconstruction algorithm for a spatially resolved plasma optical emission spectroscopy sensor. J. Quart. Spectrosc. Ra., 2001, 68: 101-115
    153. H. C. Zhou, C. Lou, Q. Cheng, et. al. Experimental investigations on visualization of three dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace. Proceedings of the Combustion Institute, 2005, 30: 1699-1706
    154. H. C. Zhou, S. D. Han, F. Sheng, C. G. Zheng. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: numerical studies. J. Quart. Spectrosc. Ra., 2002, 72: 361-383
    155.肖庭延,于慎根,王彦飞.反问题的数值解法.北京:科学出版社,2003
    156.刘继军.不适定问题的正则化方法及应用.北京:科学出版社,2005
    157. A. N. Tikhonov, A. S. Leonov, A. G. Yagola. Nonlinear Ⅲ-posed Problems. London: Chapman and Hall, 1998
    158. A. Kitsch. Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996
    159. A. N. Tikhonov, V. Y. Arsenin. Solutions of Ⅲ-Posed Problems. New York: John Wiley and Sons, 1977
    160. L. N. Vaserstein, C. C. Byrne. Introduction to Linear Programming. Beijing: China Machine Press, 2006
    161.曹志浩.变分迭代法.北京:科学出版社,2005
    162. P. Concus, G. H. Golub. A generalized conjugate gradient methods for nonsymmetric systems of linear equations. Technical Report STAN-CS-76-646, Stanford, CA, 1976
    163. H. A. Van der Vorst. Bi-CGSTAB: A fast and smoothing converging variant of Bi-CG for solution of non-symmetric linear system. SIAM J. Sci. Statist. Comput., 1992, 13: 631-644
    164. P. Sonneveld. CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Static. Comput., 1989, 10: 36-52
    165. H. Gfrerer. An a-posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Math. Comput., 1987, 49: 507-522
    166. L. Landweber. An iteration formula for Fredholm integaral equations of the first kind. Amer. J. Math., 1951, 73: 615-624
    167.康立山,谢云,尤矢勇,罗祖华.非数值并行算法:模拟退火算法.北京:科学出版社,2003
    168. N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 1984, 4: 373-395
    169. Hertog, D. Den. Interior Point Approach to Linear, Quadratic, and Convex Programming: Algorithms and Complexity. Boston: Kluwer Academic, 1994
    170. Y. R. Sivathanu, J. P. Gore. A tomographic method for the reconstruction of local probability density functions. J. Quant. Spectrosc. Radiat. Transfer, 1993, 50: 483-492
    171. M. R. Nyden, P. Vallikul, Y. R. Sivathanu. Tomographic reconstruction of the moments of local probability density functions in turbulent flow fields. J. Quant. Spectrosc. Radiat. Transfer, 1996, 55: 345-356
    172. N. C. Schoen. Ray tracing analysis for media with nonhomogeneous indices of refraction. Appl. Opt., 1982, 21(18): 3329-3331
    173. S. Doric. Ray tracing through gradient-index media: recent improvements. Appl. Opt., 1990, 29(28): 4026-4029
    174. A. H. Andersen, A. C. Kak. Digital ray tracing in two-dimensional refractive fields. J. Acoust. Soco Am., 1982, 72(5): 1593-1606
    175. C. M. Vest. Tomography for properties of materials that bend rays: a tutorial. Appl. Opt., 1985, 24(23): 4089-4094
    176. B. Richerzhagen. Finite element ray tracing: a new method for ray tracing in gradient-index media. Appl. Opt., 1996, 35(31): 6186-6189
    177.黄战华,程红飞,蔡怀宇,赵海山,张尹馨.变折射率介质中光线追迹通用算法的研究.光学学报,2005,25(5):589-592

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700