鲁棒数据校正理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业过程数据的准确性和可靠性是操作分析与改进,过程控制与优化以及工厂管理的基础,但是,由于仪表失灵,测量偏差和装置泄漏等原因,工业测量数据中不可避免地存在各种误差,数据校正的任务就是利用各种过程冗余信息对测量数据中的误差进行处理,使其满足过程内在的物料平衡、能量平衡以及其它关系式。目前,数据校正技术的研究主要包括三个方面的内容。第一方面的研究是将显著误差的侦破与数据协调分开进行,先采用假设统计检验的方法识别并剔除显著误差,再以最小二乘为目标函数进行数据校正。第二方面的研究主要是将数据协调技术与过失误差侦破同步进行,研究既能抵抗显著误差(污染)又具有较好估计效率的估计方法,从理论上把传统的不含显著误差的基本假设扩展到顾及显著误差存在的理论体系,即把理论体系直接建立在污染误差模型上。第三方面的研究是寻找符合实际情况,能准确反映测量值实际分布的分布模式,并以此分布为目标函数进行数据校正。
     以上第二、三方面的研究实质是将鲁棒估计(Robust Estimation)理论引入到了数据校正技术中,寻求一种在偏离理想误差分布模式情况下仍旧可靠的参数估计方式,本文将这类方法统称为鲁棒数据校正。鲁棒估计方法已广泛用于数理统计、测量测绘和信号处理等领域,然而在数据校正中的研究与应用却很少,本论文试图在这方面做一些尝试,针对鲁棒数据校正的各项关键技术,从变量的敏感性和冗余度分析,低冗余数据的鲁棒数据校正以及鲁棒校正技术在线性约束、双线性约束、非线性约束、以及动态数据校正问题中的应用等方面对鲁棒数据校正方法进行了较全面深入的研究,提出了用于低冗余数据系统的改进鲁棒校正方法,基于影响函数矩阵的鲁棒非线性数据校正方法,鲁棒自适应数据校正方法,以及基于连续误差检验的鲁棒非线性动态数据校正方法,并结合上海焦化厂碳一工序实际生产过程,对非线性鲁棒数据校正方法的应用进行了讨论。
     本论文主要取得的成果包括以下几个方面:
     1.定性定量地分析了基于污染分布模型的鲁棒数据校正方法,其校正精度和显著误差统计量对变量测量值和变量冗余度的敏感程度,指出采用鲁棒数据校正方法,权值因子的引入降低了估计结果对测量误差的敏感程度,增大了变量的局部冗余度,提高了数据的校正精度,同时也增强了显著误差的可识别性。
     2.针对传统鲁棒最小二乘数据校正方法难以适用于低冗余系统以及迭代计算中可能出现显著误差“误判”以及估计结果可能出现负值的不足,提出了一种适用于低冗余系统的改进鲁棒最小二乘数据校正算法,该算法将变量的冗余度信息纳入显著误差检验统计量的同时,对Huber估计的权函数进行改进,增加淘汰区,将每次迭代中误差统计量最大的可疑数据进行淘汰,以消除显著误差的影响,同时降低了“误判”的可能。为了避免校正值出现负数的可能,该算法还考虑了变量的约束上下限问题,为参数的准确估计奠定了基础。
     3.针对过程数据被显著误差污染,同时线性化方程又呈病态的情况,提出采用广义极大似然正则化函数作为数据协调目标的鲁棒正则化数据校正方法,该方法与直接在协调目标函数中引入影响函数矩阵的鲁棒正则化方法实质是一样的,从而为复杂非线性过程的鲁棒数据校正提供了依据,即直接在非线性协调目标函数中引入影响函数矩阵,并通过非线性规划方法进行求解,既避免了非线性约束Taylor展开带来的误差和线性化方程求解的不适定问题,同时又具有较好的鲁棒性。
     4.针对污染正态分布数据校正方法的不足,提出了鲁棒自适应误差分布模型,该模型具有与标准正态分布相似的密度函数形式,不同之处在于采用鲁棒自适应可变权重因子调节误差方差,通过放大显著误差方差,降低其对参数估计的影响。将该模型用于双线性约束过程的数据校正问题,推导出鲁棒自适应最小二乘分析解,同时将鲁棒自适应数据校正方法进行扩展,使之适用于测量相关问题,具有更好的实用性。
     5.针对传统非线性动态数据校正方法以测量噪声正态分布为假设前提以及可能出现估计滞后的不足,提出了基于误差连续检验的鲁棒非线性动态数据校正方法。该方法将鲁棒估计函数通过置信度函数矩阵的形式引入校正目标,对离群显著误差赋予较小权值,以减小其对参数估计的影响。为了尽可能利用过程的有效信息,该算法提出了置信度矩阵的两步构权方法。同时,考虑到设定值的改变也会引起Mahalanobis距离产生较大变化,导致“误判”,提出了离群误差的连续检验算法,以区分设定值的改变和离群值的发生,对于检测到的设定值改变,重新获取历史移动时间窗数据进行校正,避免了估计滞后的现象,同时减少了对设定值改变的“误判”。
     6.针对化工数据协调问题中常见的带分流节点的双线性数据协调问题,提出了一种稳定性高、通用性强的数据分类算法。该算法通过对系统约束方程组进行线性化处理,给出雅可比矩阵的分析表达式,并将系统的自由度分析与投影矩阵、QR分解等算法结合起来进行数据的冗余性和可观性分析,不仅适用于含有强度约束条件的双线性数据分类问题,同时也可以处理用劈分因子表示的三线性数据分类问题,另外,该算法同样适用于含有反应节点的过程网络以及其它多线性数据分类问题。
     7.针对上海某焦化公司碳一车间MES系统中的数据校正模块,将鲁棒非线性数据校正方法用于该多组分双线性过程的数据校正中,给出了实用的数据校正算法以及数据校正结果。
     最后,总结全论文的工作,并对未来鲁棒数据校正技术的进一步研究与发展进行了展望。
Reliable process data is the foundation of process monitoring, control performance evaluation, process control, optimization and statistical quality control. However, due to various sources such as measurement irreproducibility, instrument degradation and malfunction, human error, process-related errors, and other unmeasured errors, measurements can be contaminated with errors (random and/or gross). Rational use of the large volume of data generated by chemical plants requires the application of suitable techniques to improve their accuracy. Data reconciliation (DR) is a procedure of optimally adjusting measured data so that the adjusted values obey the conservation laws and other constraints. So far, the researches on data rectification include conventional DR, simultaneous data reconciliation and gross error detection, and DR based error possible density function (PDF) estimation. Conventional DR is based on the assumption of normal distribution, firstly detect and eliminate gross errors and then proceed DR. Simultaneous strategy assume measurement errors have normal-like distribution functions with heavy tails or combining two distributions to account for the contamination caused by the outliers (gross errors) and the generalized maximum likelihood objective functions are taken as the reconciliation objects. DR based error PDF estimation need to estimate the real error distribution and precede the DR with the real PDF.
     In this dissertation, a further study and research on robust data reconciliation was carried out, putting more attention on the sensitivity ananlyses and redundancy calculation, improved robust least square algorithms in linear, nonlinear and dynamic systems. This dissertation studies the problems of robust data reconciliation systematically, and makes progresses in the following aspects:
     1. The quantitative and qualitative contribution of diferent measurement variables to the estimation precision, variable local redundency and the gross eror detection in robust data rectification, based contaminated normal distribution, was investigated. Based on this information, decisions can be taken: addition of weight factor to suspicious measurements result in reduction of sensitivity of estimations to gross error, unnecessary measurements, enhancement of variable local redundancy and gross error detectability and significant improvement in the quality of the process validation.
     2. Conventional robust least square data rectification iterative algorithm is subjected to the disability of detecting gross error in weak redundancy variable and occurrence of false-detection. An improved iterative algorithm is proposed to deal with above problems by taking local redundancy and inequation constraints into account. During iteration, elimination of suspicious measurement with the largest statistical or the measurement with second largest statistical when the estimation violate bounds, the method results in a significant improvement in the estimation and gross error detection.
     3. By solving the generalized maximum likelihood DR problem with regularization objective function can improve effectively the singularity of iterative solution of nonlinear data reconciliation. This is also obtained by addition a influence function matrix to regularized objective function, which leads to a more pratical iterative robust nonlinear data reconciliation algorithm, using SQP to solve the nonlinear optimization during iterations. Simulation results validate the efficiency of the proposed approachs.
     4. Contaminated Gaussian distribution based method is robust for data rectification for its ability of taking probability distributions of random error and gross error into account simultaneously. But its application is limited because the precision of estimation depends on the selection of priori model parameters, which is difficult to obtain in practice. To avoid providing these parameters, a robust adaptive data rectification approach is proposed in this paper. First, a robust adaptive probability distribution model of errors is constructed. Then, Lagrange method is used to obtain the iterative algebraic solution. Application to bilinear constraints process validates the efficiency of proposed robust adaptive data rectification method.
     5. A novel robust method is proposed by introducing a trust function matrix in conventional least-square objective function of nonlinear dynamic data reconciliation. To avoid the loss of data information, element-wise Mahalanobis distance is proposed, as an improvement on vector-wise distance, to construct a penalty function matrix, which is called two-step-method. Howerer, above methods, as well as NDDR, show a significant delay for the input estimation when a step occurs, which also causes some delay in the estimation of output variables. So a continuous error test was included as a part of the GED logic to detect set-point change. When the set-point change is sensed, a new historic data window is obtained to tracks the new set-point. The correlation of measurement error is also considered in this article.
     6. A general and robust classification algorithm is given to analyze the redundancy and observability of process variables for large-scale bilinear balances with splitters found in industrial processes when data reconciliation is applied. In the algorithm, the degree of freedom is first used to examine redundancy and observability and then a coefficient matrix of linearized constraints from the Taylor’s expansion at the initial estimates is used to further examine the observability for entire process based on Crowe’s method and QR fractorization. This classification method is not only suitable for the bilinear process with intensive constraints but also the trilinear constraints with multi-split-fractions.
     7. For the problem of the quasi-static, multi-components system with bilinear constraints in Menthol Joint-production Plant of Shanghai Coke Production Factory, the practical robust data rectification algorithm flowsheet was introduced and the result of data rectification was analyzed. The dissertation is also concluded with a summary and prospect of future robust data reconciliation researches.
引文
[1] Narasimhan, S. and C. Jordache, Data Reconciliation and Gross Error Detection: An Intelligent Use of Process Data [M]. Houston: Gulf Publishing Company, 2000.
    [2] José A. Romagnoli and Mabel Cristina Sanchez, Data Processing and Reconciliation for Chemical Process Operations [M]. London: Academic Press, 2000.
    [3] 袁永根, 李华生, 过程系统测量数据校正技术[M]: 中国石化出版社, 北京, 1996.
    [4] Tjoa, I. B. and L. T. Biegler, Simultaneously strategies for data reconciliation and gross error detection of nonlinear systems [J]. Computers and Chemical Engineering, 1991, 15(10): 679-690.
    [5] Albuquerque, J. S. and L. T. Biegler, Data reconciliation and gross-error detection for dynamic systems [J]. AICHE J., 1996, 42: 2841-2856.
    [6] Arora, N. and L. T. Biegler, Redescending estimators for data reconciliation and parameter estimation [J]. Computers & Chemical Engineering, 2001, 25(11-12): 1586-1599.
    [7] Alhaj-Dibo, M. et al. Data reconciliation: A robust approach using a contaminated distribution [J]. Control enginerring practice, 2007, 1-11.
    [8] Ozyurt, D. B. and R. W. Pike, Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes [J]. Computers & Chemical Engineering, 2004, 28(3): 381-402.
    [9] Kuehn, D. R. and H. Davidson, Computer control II: Mathemarics of control [J]. Chemical Engineering Progress, 1961, 57(6): 45-47.
    [10] Nogita, S., Statistical test and adjustment of process data [J]. Ind. Eng. Chem. Process Des. Dev., 1972, 11: 198-200.
    [11] Murthy, A. K. S., Material balance around a chemical reactor. I. Ind. Eng. Chem. Process Des. Dev., 1973, 12(3): 247-248.
    [12] Madron, T., V. Veverka, and V. Venecek, Statistical analysis of material balance of a chemical reactor. AIChE J., 1977, 23: 483-486.
    [13] Knepper, J. C. and J. W. Gorman, Statistical analysis of constrained data sets [J]. AIChE J., 1980, 26(2): 260-264.
    [14] Crowe, C. M., Y. A. G. Campos, and A. Hrymak, Reconciliation of process flow rates by matrix Projection. I: Linear case [J]. AIChE Journal, 1983, 29: 881-888.
    [15] Crowe, C. M., Reconciliation of process flow rates by matrix projection. II: The Nonlinear case [J]. AIChE Journal, 1986, 32: 617-623.
    [16] Sanchez, M. and J. Romagnoli, Use of orthogonal transformations in data classification and reconciliation [J]. Computers & Chemical Engineering, 1996, 20(5): 484-493.
    [17] Kelly, J. D., On finding the matrix projection in the data reconciliation solution [J]. Computers & Chemical Engineering, 1998, 22(11): 1554-1557.
    [18] Kelly, J. D., Reconciliation of process data using other projection matrices [J]. Computers &Chemical Engineering, 1999, 23(6): 786-789.
    [19] Vaclavek, V., Studies on system engineering III: Optimal choice of the balance measurements in complicated chemical systems [J]. Chemical Engineering Science, 1969, 24: 948-955.
    [20] Vaclavek, V. and M. Loucka, Selection of measurements necessary to achieve multicomponent mass balances in chemical plant [J]. Chemical Engineering Science, 1976, 31(12): 1199-1205.
    [21] Mah, R. S. H., G. M. Stanley, and D. W. Downing, Reconciliation and Rectification of Process. Flow and Inventory Data [J]. Ind. & EC Proc. Des. Dev., 1976, 15: 176-183.
    [22] Crowe, C. M., Observability and Redundancy of Process Data for Steady-State Reconciliation [J]. Chemical Engineering Science, 1989, 44(12): 2909-2917.
    [23] Veverka, V., A method of reconciliation of measured data with nonlinear constraints [J]. Applied Mathematics and Computation, 1992, 49(3-3): 141-176.
    [24] Zhang, P. M., G. Rong, and Y. Wang, A new method of redundancy analysis in data reconciliation and its application [J]. Computers & Chemical Engineering, 2001, 25(8-8): 941-949.
    [25] 陈剑, 古勇等, 化工过程数据校正中的数据分类问题[J]. 仪器仪表学报, 2000, 21(6): 626-628
    [26] Kretsovalis, A. and R. S. H. Mah, Observability and Redundancy classification in multicomponent Process Networks [J]. AIChE Journal, 1987, 33(1): 70-82.
    [27] Kretsovalis, A. and R. S. H. Mah, Observability and Redundancy Classification in Generalized Process Networks .1. Theorems [J]. Computers & Chemical Engineering, 1988, 12(7): 671-687.
    [28] Kretsovalis, A. and R. S .H. Mah, Observability and Redundancy Classification in Generalized Process Networks .2. Algorithms [J]. Computers & Chemical Engineering, 1988, 12(7): 689-703.
    [29] Schraa, O.J. and C.M. Crowe, The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods [J]. Computers & Chemical Engineering, 1998, 22(9): 1216-1228.
    [30] Simpson, D. E., V. R. Voller, and M. G. Everett, An efficient algorithm for mineral processing data adjustment [J]. Int. J. Miner. Proc., 1991, 31: 74-96.
    [31] 李华生, 董文葆, 袁一. 反应器测量数据的校正. 第三届化工过程的数学模拟分析年会[C]. 1990.
    [32] Stephenson, G. R. and C. F. Shewchuck, Reconciliation data with process simulation [J]. AIChE Journal, 1986, 32: 248-254.
    [33] Serth, R. W., C. M. Valero, and W. A. Heenan, Detection of gross errors in nonlinearly constrained data: A case study [J]. Chem. Eng. Comm., 1987, 51: 89-104.
    [34] Britt, H. I. and R. H. Luecke, The estimation of parameters in nonlinear implicit models [J]. Technometrics, 1973, 15: 234-247.
    [35] Kelly, J. D., Formulating large-scale quantity-quality bilinear data reconciliation problems [J]. Computers & Chemical Engineering, 2004, 28(3): 358-362.
    [36] Kelly, J. D., A regularization approach to the reconciliation of constrained data sets [J]. Computers & Chemical Engineering, 1998, 22(12): 1771-1788.
    [37] Kelly, J. D., Techniques for solving industrial nonlinear data reconciliation problems [J]. Computers & Chemical Engineering, 2004, 28(12): 2838-2843.
    [38] Ramamurthi, Y. and B. W. Bequette. Data Reconciliation of Systems with Unmeasured VariablesUsing Nonlinear Programming Techniques[C]. AIChE Spring National Meeting. 1990, Orlando, Fla.
    [39] Liebman, M. J., T. F. Edgar, and L. S. Lasdon, Efficient data reconciliation and estimation for dynamic process using non-linear programming techniques [J]. Comput. Chem. Eng., 1992, 16: 964-986.
    [40] Pai, C. C. D. and G. D. Fisher, Application of Broyden's method to reconciliation of nonlinearly constrained data[J]. AIChE Journal, 1988, 34(55): 874-876.
    [41] Chiari, M., et al., On-line data reconciliation and optimisation: Refinery applications [J]. Computers & Chemical Engineering, 1997, 21: S1186-S1190.
    [42] Almasy, G.A., Principles of dynamic balancing. AIChE Journal, 1988, 34(8): 1321-1331.
    [43] Jang, S. S., J. B., and H. Mukal, Comparison of two approaches to online parameter and state estimation of nonlinear systems [J]. Ind. Eng. Chem. Pro. Des. Dev., 1986, 25: 809-814.
    [44] Islam, K. A., G. H. Weiss, and J. A. Romagnoli, Nonlinear data reconciliation for an industrial pyrolysis reactor[J]. Computers & Chemical Engineering, 1994, 18: S218-S221.
    [45] Karjala, T. W. and D. M. Himmelblau, Dynamic data rectification by recurrent neural networks vs. traditional methods [J]. AIChE Journal, 1994, 40(11): 1866-1875.
    [46] Shuanghua, B., D. D. McLean, and J. Thibault, Autoassociative neural networks for robust dynamic data reconciliation. AIChE Journal, 2007, 53(2): 439-448.
    [47] Bai, S.H., D. D. McLean, and J. Thibault, Impact of model structure on the performance of dynamic data reconciliation [J]. Computers & Chemical Engineering, 2007, 31(3): 128-135.
    [48] Luo, K. Y. and H. P. Huang, A wavelet enhanced integral approach to linear dynamic data reconciliation [J]. Journal of Chemical Engineering of Japan, 2005, 38(12): 1036-1048.
    [49] Bakshi, B. R., P. Bansal, and M. N. Nounou, Multiscale rectification of random errors without fundamental process models [J]. Computers and Chemical Engineering, 1997, 21: S1168-S1172.
    [50] Darouach, M. and M. Zasadzinski, Data reconciliation in generalized linear dynamic systems. AIChE Journal, 1991, 37(2): 194-210.
    [51] Bagajewicz, M. J. and Q. Y. Jiang, Integral approach to plant linear dynamic reconciliation [J]. AIChE Journal, 1997, 43(10): 2547-2558.
    [52] Bagajewicz, M. J. and Q. Y. Jiang, Comparison of steady state and integral dynamic data reconciliation [J]. Computers & Chemical Engineering, 2000, 24(11): 2368-2383.
    [53] Kim, I. W., M. J. Liebman, and T. F. Edgar, A sequential error-in-variables method for nonlinear dynamic systems [J]. Computers & Chemical Engineering, 1991, 15(9): 664-670.
    [54] McBrayer, K. F., et al., The application of nonlinear dynamic data reconciliation to plant data [J]. Computers and Chemical Engineering, 1998, 22(12): 1908-1911.
    [55] Vachhani, P., et al., Recursive estimation in constrained nonlinear dynamical systems. AIChE Journal, 2004, 51(3): 947-959.
    [56] Vachhani, P., S. Narasimhan, and R. Rengaswamy, Robust and reliable estimation via unscented Recursive Nonlinear Dynamic Data Reconciliation [J]. Journal of Process Control, 2006, 16(10): 1076-1086.
    [57] Hodouin, D. and S. Makni, Real-time reconciliation of mineral processing plant data using bilinear material balance equations coupled to empirical dynamic models [J]. InternationalJournal of Mineral Processing, 1996, 48(4-4): 246-264.
    [58] Bai, S. H., D. D. McLean, and J. Thibault, Enhancing controller performance via dynamic data reconciliation. Canadian Journal of Chemical Engineering, 2005, 83(3): 516-526.
    [59] Ripps, D. L., The adjustment of experimental data. Chem. Eng. Proc., 1965, 61(55): 9-13.
    [60] Mah, R. S. H. and A. C. Tamhane, Detection of gross errors in process data [J]. AIChE Journal, 1982, 28: 829-830.
    [61] Narasimhan, S. and R. S. H. Mah, Generalized likelihood ratio method for gross error identification [J]. AIChE Journal, 1987, 33: 1515-1521.
    [62] Tong, H., Detection of gross errors in data reconciliation by principal component analysis [J]. AIChE Journal, 1995, 41(7): 1713-1722.
    [63] Tong, H. and C. M. Crowe, Detecting persistent gross errors by sequential analysis of principal components [J]. AIChE Journal, 1997, 43(5): 1243-1249.
    [64] Serth, R. W., C. M. Valero, and W.A. Heenan, Gross error detection and data reconciliation in steam-metering systems[J]. AIChE Journal, 1986, 32: 734-742.
    [65] Rosenberg, J., R. S. H. Mah, and C. Iordache, Evaluation of schemes for detecting and identifying gross errors in process data [J]. Chem. Proc. Des. Dev., 1987, 26(3): 556-564.
    [66] Rollins, D. K., Y. Cheng, and S. Devanathan, Intelligent selection of tests to enhance gross error identification [J]. Comput. Chem. Eng., 1996, 20: 518-530.
    [67] Keller, J., M. Darouach, and G. Karzala, Fault detection of multiple biases or process leaks in linear steady-state systems [J]. Computer & Chemical Engineering, 1994, 18: 1001-1004.
    [68] Rollins, D.K. and J. Davis, Unbiased estimation of gross errors in process measurements [J]. AIChE Journal, 1992, 38(4): 564-572.
    [69] Sanchez, M., et al., Simultaneous estimation of biases and leaks in process plants [J]. Computers & Chemical Engineering, 1999, 23(7): 841-857.
    [70] Jiang, Q. Y. and M. J. Bagajewicz, On a strategy of serial identification with collective compensation for multiple gross error estimation in linear steady-state reconciliation [J]. Industrial & Engineering Chemistry Research, 1999, 38(5): 2119-2128.
    [71] Bagajewicz, M., Q. Jiang, and M. Schez, Removing singularities and assessing uncertainties in two efficient gross error collective compensation methods [J]. Chemical Engineering Communications, 2000, 178: 1-20.
    [72] Jiang, Q. Y., M. Sanchez, and M. Bagajewicz, On the performance of principal component analysis in multiple gross error identification [J]. Industrial & Engineering Chemistry Research, 1999, 38(5): 2006-2012.
    [73] Kim, I. W., et al., Robust data reconciliation and gross error detection: The modified MIMT using NLP [J]. Computers & Chemical Engineering, 1997, 21(7): 776-782.
    [74] Renganathan, T. and S. Narasimhan, A strategy for detection of gross errors in nonlinear processes [J]. Industrial & Engineering Chemistry Research, 1999, 38(6): 2391-2399.
    [75] Kao, C., A. C. Tamhane, and R. S. H. Mah, Gross error detection in serially correlated process data 2: Dynamic systems [J]. Industrial Engineering and Chemical Research, 1992. 31(1): 255- 262.
    [76] Rollins, D.K. and S. Devanathan, Unbiased estimation in dynamic data reconciliation [J]. Proc.Sys. Eng., 1993, 39: 1330-1334.
    [77] Narasimhan, S. and R.S.H. Mah, Generalized likelihood ratios for gross error identification in dynamic processes [J]. AICHE J, 1998, 34(8): 1321-1331.
    [78] Bagajewicz, M. J. and Q. Y. Jiang, Gross error modeling and detection in plant linear dynamic reconciliation [J]. Computers & Chemical Engineering, 1998, 22(12): 1789-1809.
    [79] Chen, J. and J. A. Romagnoli, A strategy for simultaneous dynamic data reconciliation and outlier detection [J]. Comput. Chem. Eng., 1998, 22(4/5): 559-562.
    [80] Chen, V. C. P., M. Melendez, and D. K. Rollins, The problem of too much power in detecting biases for a real chemical process [J]. ISA Transactions, 1998, 37(4): 329-336.
    [81] Abu-el-zeet, Z. H., V. M. Becerra, and P. D. Roberts, Combined bias and outlier identification in dynamic data reconciliation [J]. Computers & Chemical Engineering, 2002, 26(6): 921-935.
    [82] Zhou, L.K., H.Y. Su, and J. Chu, A modified outlier detection method in dynamic data reconciliation. Chinese Journal of Chemical Engineering, 2005, 13(4): 543-547.
    [83] 王希若, 数据协调中的显著误差检测方法(博士学位论文). 杭州:浙江大学, 1999.
    [84] 王秀萍, 数据校正技术理论及应用研究(博士学位论文). 杭州:浙江大学, 2000.
    [85] Chen Jian, Chen Zhen et al. Two-step method for gross error detection in process data. Proceedings of American control conference, Arlington, VA June 26-27, 2001
    [86] 杨友麒, 藤荣波, 过程工业测量数据中过失误差的侦破与校正[J]. 化工学报, 1996, 47(92): 249-253.
    [87] Mei, C. L., H. Y. Su, and J. Chu, An NT-MT combined method for gross error detection and data reconciliation [J]. Chinese Journal of Chemical Engineering, 2006, 14(5): 593-596.
    [88] Wang, F., et al., An improved MT-NT method for gross error detection and data reconciliation. Computers & Chemical Engineering [J], 2004, 28(11): 2189-2192.
    [89] Soderstrom, T.A., D.M. Himmelblau, and T.F. Edgar, A mixed integer optimization approach for simultaneous data reconciliation and identification of measurement bias [J]. Control Engineering Practice, 2001, 9(8): 869-876.
    [90] Almasy, G. A. and R. S. H. Mah, Estimation of measurement error variances from process data[J]. Ind. Eng. Chem. Process. Des. Dev., 1984, 23: 779-784.
    [91] Darouach, M., et al. Maximum Likelihood Estimator of Measurement Error Variances in Data Reconciliation [C]. IFAC. 1989, AIPAC Symp.
    [92] Keller, J. Y., M. Zasadzinski, and M. Darouacb, Analytical estimator of measurement error variances in data reconciliation [J]. Computers chem. Engng, 1992, 16(3): 186-188.
    [93] Chen, J., A. Bandoni, and J. A. Romagnoli, Robust estimation of measurement error variance/covariance from process sampling data [J]. Computers & Chemical Engineering, 1997, 21(6): 594-600.
    [94] Morad, K., W. Y. Svrcek, and I. McKay, A robust direct approach for calculating measurement error covariance matrix [J]. Computers & Chemical Engineering, 1999, 23(7): 889-897.
    [95] 赵豫红, 顾钟文等. 测量误差协方差矩阵的鲁棒估计[J]. 控制理论与应用, 2001, 18(5): 698-701
    [96] Bagajewicz, M. J. On the probability distribution and reconciliation of process plant data [J]. Computers and Chemical Engineering, 1996, 20(6/7): 814-819.
    [97] Wang, D. and J. A. Romagnoli, Generalized T distribution and its applications to process data reconciliation and process monitoring [J]. Transactions of the Institute of Measurement and Control, 2005, 27(5): 368-390.
    [98] Wang, D. and J. A. Romagnoli, A framework for robust data reconciliation based on a generalized objective function [J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 3076-3084.
    [99] Wongrat, W., T. Srinophakun, and P. Srinophakun, Modified genetic algorithm for nonlinear data reconciliation [J]. Computers & Chemical Engineering, 2005, 29(5): 1059-1067.
    [100] Johnston, L. P. M. and M. A. Kramer, Maximum likelihood data rectification: steady state systems [J]. AIChE Journal., 1995, 41(11): p. 2416-2426.
    [101] 周江文, 黄幼才等, 抗差最小二乘法[M], 1995, 武汉: 华中理工出版社.
    [102] 张贤达, 现代信号处理[M], 1999, 北京: 清华大学出版社.
    [103] Ragot, J., M. Chadli, and D. Maquin, Mass balance equilibration: A robust approach using contaminated distribution [J]. AIChE Journal., 2005, 51(5): 1569-1575.
    [104] 周凌柯, 数据校正技术的研究及应用(博士学位论文). 杭州:浙江大学, 2005.
    [105] 孔明放, 陈丙珍等, 数据协调与过失误差侦破的鲁棒估计同步方法. 清华大学学报自然科学版, 2000, 40(2): 47-50.
    [106] Morad, K., B.R. Young, and W.Y. Svrcek, Rectification of plant measurements using a statistical framework. Computers & Chemical Engineering, 2005, 29(5): 919-940.
    [107] Gupta, G. and S. Narasimhan, Application of neural networks for gross error detection [J]. Ind. Eng. Chem. Res., 1993, 32(8): 1651-1657.
    [108] Aldrich, C. and V. Deventer, Identification of gross errors in material balance measurements by means of neural nets [J]. Chem. Eng. Sci., 1994, 49(9): 1358-1368.
    [109] Terry, P.A. and D. Himmelblau, M., Data rectification and gross error detection in a steady-state process via artificial neural networks [J]. Ind. Eng. Chem. Res., 1993, 32(12): 3020-3028.
    [110] Yang-guang, D. and D. Hodouin, Use of novel auto associative neural network for nonlinear steady-state data reconciliation [J]. AIChE Journal, 1997, 43(7): 1786-1796.
    [111] Aldrich, C. and V. Deventer, Comparison of different artificial neural nets for the detection and location of gross errors in process systems [J]. Ind. Eng. Chem. Res., 1995, 34(1): 217-224.
    [112] Barton, R.S. and D.M. Himmelblau, Identification and Dynamic Data Rectification using State Correcting Recurrent Neural Networks. 1996, 1, 174-177.
    [113] Mallat, S., A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans. Pattern Analysis and machine intelligence, 1989, 11: 675-693.
    [114] Donoho, D. L. and I. M. Johnstone Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, 90: 1200-1224.
    [115] Nounou, M. N. and B. R. Bakshi, Online multiscale filtering of random and gross errors without process models [J]. AIChE Journal, 1999, 45(5): 1041-1058.
    [116] Bakshi, B. R., Multiscale PCA with Application to multivariate statistical process monitoring [J]. AICHE J., 1998, 44(7): 1597-1610.
    [117] Bruce A G,Donoho I M,Martin R D.Denoising and robust nonlinear wavelet analysis [J].Wavelet Application,1994, 24(22):1-12.
    [118] Bakshi, B. R., et al., Multiscale bayesian rectification of data from linear steady state and dynamic system without accurate models [J]. Ind. Eng. Chem. Res 2001, 40: 261-274.
    [119] Ungarala, S. and B. R. Bakshi, A Multiscale Bayesian and Error-in-variables approach for linear dynamic data rectification [J]. Computers & Chemical Engineering, 2000, 24: 446-451
    [120] Shafer, G., A mathematical theory of evidence. 1976: Princeton Univ .Press.
    [121] Rakar, A., D. Juricic, and P. Balle, Transferable belief model in fault diagnosis [J]. Artificial Intelligence, 1999, 12: 556-567.
    [122] Rakar, A. and D. Juricic, Diagnostic reasoning under conflicting data: The application of the transferable belief model [J]. Journal of Process Control, 2002, 12: 56-67.
    [123] 周凌柯, 对证据理论检测显著误差的研究. 南京理工大学学报, 2005, 29(Supp): 165-171.
    [124] Pierucci, S., et al., An industrial application of an on-line data reconciliation and optimization problem. Computers & Chemical Engineering (Suppl.), 1996, 20: 1539-1544.
    [125] Weiss, G. H., J. A. Romagnoli, and K. A. Islam, Data reconciliation-An industrial case study [J]. Computers & Chemical Engineering, 1996, 20(12): 1441-1449.
    [126] Lee, M. H., et al., Hierarchical on-line data reconciliation and optimization for an industrial utility plant [J]. Computers & Chemical Engineering, 1998, 22: S248-S254.
    [127] Soderstrom, T. A., et al., Industrial application of a large-scale dynamic data reconciliation strategy [J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1684-1693.
    [128] Soderstrom, T. A., T. F. Edgar, and R. E. Young, The application of nonlinear dynamic data reconciliation to plant data [J]. Computers & Chemical Engineering, 1998, 22(12): 1908-1911.
    [129] Bagajewicz, M.J. and E. Cabrera, Data reconciliation in gas pipeline systems [J]. Industrial & Engineering Chemistry Research, 2003, 42(22): 5597-5606.
    [130] Sunde, S., et al., Data reconciliation in the steam-turbine cycle of a boiling water reactor [J]. Nuclear Technology, 2003, 143(2): 104-124.
    [131] 林孔元, 重油催化裂化稳态过程数据协调与检测[J]. 天津大学学报, 1996, 29(4): 631-636.
    [132] 周传光, 中型合成氨装置在线数据校正与模拟优化软件的设计与实现[J]. 青岛化工学院学报, 1998, 19(1): p. 70-74.
    [133] 周传光, 金思毅, 赵文, 常减压蒸馏装置在线数据校正与优化控制[J]. 青岛化工学院学报. 2000, 21(2): 135-138.
    [134] 周传光, 孔玲, 王晓红等,化工过程测量数据在线校正系统 CPDRS 的设计开发与应用(Ⅱ )-CPDRS 的系统设计与实现. 青岛科技大学学报, 2003, 24(6): 471-475.
    [135] 周传光, 孔玲, 王晓红等, 化工过程测量数据在线校正系统 CPDRS 的设计开发与应用(I)-数据校正技术与物性推算方法. 青岛科技大学学报, 2003, 24(5): 378-381.
    [136] 周传光, 孔玲, 王晓红等, 化工过程测量数据在线校正系统 CPDRS 的设计开发与应用(III)-CPDRS 的系统考核与应用. 青岛科技大学学报, 2004, 25(1): 1-7.
    [137] 郭超, 金晓明, 荣冈, 数据校正技术在流程工业企业物料平衡中的应用. 化工自动化及仪表. 2005, 32(3): 39-41
    [138] 张亚乐, 徐博文等, 原油蒸馏过程中的数据协调与操作优化[J]. 清华大学学报(自然科学版), 1998, 38(3): 49-53.
    [139] 叶蕾, 侍洪波, 数据校正在焦化碳一中的应用[J]. 自动化仪表, 2006, 27(4): 29-31
    [140] Placido, J. and L. V. Loureiro, Industrial application of data reconciliation [J]. Computers & Chemical Engineering, 1998, 22: S1036-S1038
    [141] 李博,陈丙珍等, 稳态过程在线校正技术的工业实施. 石油化工, 2000, 29(10): 769-771.
    [142] 张溥明,流程工业数据协调模型与算法研究(博士学位论文). 杭州:浙江大学, 2001.
    [143] Stanley, G. M. and R. S. H. Mah, Observability and redundancy classification in process networks-theorems and algorithms [J]. Chemical Engineering Science, 1981, 36(12): 1941-1954.
    [144] Stanley, G. M. and R. S. H. Mah, Observability and redundancy in process data estimation [J]. Chemical Engineering Science, 1981, 36(2): 259-272.
    [145] Klapa, M. I. and G. Stephanopoulos, Observability and redundancy analysis of complex metabolic networks [J]. Faseb Journal, 2000, 14(8): A1314-A1313.
    [146] Ali, Y. and S. Narasimhan, Redundant sensor network design for linear processes [J]. AIChE Journal, 1995, 41(10): 2238-2249.
    [147] Bagajewicz, M. J. and M. C. Sanchez, Design and upgrade of nonredundant and redundant linear sensor networks [J]. AIChE Journal, 1999, 45(9): 1928-1938.
    [148] Heyen, G., E. Marechal, and B. Kalitventzeff, Sensitivity calculations and variance analysis in plant measurement reconciliation [J]. Computers & Chemical Engineering, 1996, 20: S539-S545.
    [149] Iordache, C. and R. S. H. Mah, Performance studies of the measurement test for detection of gross error in process data [J]. AICHE J, 1985, 31(7): 1188-1201.
    [150] Kretsovalis A. and R. S. H. Mah, Effect of redundancy on estimation accuracy in process data reconciliation [J]. Chemical Engineering Science, 1987, 42(9): 2216-2121.
    [151] Madron, F., Process Plant Performance: Measurement and data processing for optimization and retrofits [M]. 1992, New York: Ellis Horwood.
    [152] Ragot, J., D. Maquin, and A. Alhaj-Dibo, Linear mass balance equilibration: A new approach for an old problem [J]. ISA Transactions, 2005. 44(1): 24-34.
    [153] Crowe, C.M., Test of maximum power for detection of gross errors in process constraints [J]. AIChE Journal, 1989, 35(5): 869-872.
    [154] Britt, H. I. and R. H. Luecke, The estimation of parameters in nonlinear implicit models [J]. Technometrics, 1973, 15: 234-247.
    [155] Zhou, L.K., H.Y. Su, and J. Chu, A new method to solve robust data reconciliation in nonlinear process [J]. Chinese Journal of Chemical Engineering, 2006, 14(3): 358-363.
    [156] Laylabadi, M. and J.H. Taylor, ANDDR with Novel Gross Error Detection and Smart Tracking System, in Proc. 12th IFAC Symposium on Information Control Problems in Manufacturing (INCOM2006). 2006: Saint-Etienne, France.
    [157] Swartz, C. L. E. Data Reconciliation for Generalized Flowsheet Applications[C]. Amer. Chem. Society National Meeting. 1989. Dallas, Tex.
    [158] Huber, P. J. (1981). Robust statistics. New York: Wiley
    [159] Simpson, D. M., Everett, M. G., Voller, V. R. Reducing the number of unknows in a constrainted minimization problem: An application of material balances. Appl. Math. Modelling, 1988, 12(4): 205-212.
    [160] Chen, J. and Romagnoli, J. A. Data reconciliation via temporal and spatial redundancies. IFAC-ADCHEM: 648-653.
    [161] Hampel, F. R. A general qualitative definition of robustness. Ann. Math. Statist. 1971, 42 , 1887–1896.
    [162] Hampel, F. R. Influence curve and its role in robust estimation. JASA, 1974, 69: 1179-1186
    [163] Hampel, F.R., Ronchetti, E.M., Rousseeuw, P. J. and Stahel, W. A. The Approach Based on Influence Function. Robust Statistics, 1986.
    [164] Huber, P. J. Robust estimation of a location parameter. Ann Math Statist, 1964, 35:73-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700