离散约束动力学系统的对称性质与守恒量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用无限小Lie变换群方法研究离散约束动力学系统的对称性质,利用对称性分析方法寻求系统的离散守恒量。第一章回顾约束力学系统对称性与守恒量的研究概况,给出对称性的普适定义,概述连续和离散约束系统对称性与守恒量研究的意义、方法、历史发展与现状,包括Noether对称性、Mei对称性、Lie对称性和几类联合对称性。第二章研究离散约束系统的动力学方程,给出包含时间变分的全变分原理,建立离散Lagrange系统、离散Hamilton系统、非保守Lagrange与Hamilton系统、离散变质量系统、非独立变量离散系统、非完整Chetaev型与非Chetaev型离散系统、单面约束离散系统的动力学方程与约束方程,包括离散Euler-Lagrange方程、离散正则方程、离散能量演化方程、完整与非完整的离散约束方程、非完整Chetaev型与非Chetaev型的离散约束条件方程等。第三章研究离散约束系统的Noether对称性与守恒量,给出离散Lagrange系统、离散Hamilton系统、非保守Lagrange与Hamilton系统、离散变质量系统、非独立变量离散系统、非完整Chetaev型与非Chetaev型离散系统、单面约束离散系统的Noether对称性的判据方程、离散约束限制方程和得到Noether守恒量的条件方程等。第四章研究离散约束系统的Mei对称性与守恒量,给出离散Lagrange系统、离散Hamilton系统、非保守Lagrange与Hamilton系统、离散变质量系统、非独立变量离散系统、非完整Chetaev型与非Chetaev型离散系统、单面约束离散系统的Mei对称性确定方程、Mei对称性离散限制方程和得到Mei守恒量的判据方程等。第五章研究离散约束系统的Lie对称性与守恒量,给出离散Lagrange系统、离散Hamilton系统、非保守Lagrange与Hamilton系统、离散变质量系统、非独立变量离散系统、非完整Chetaev型与非Chetaev型离散系统的Lie对称性确定方程、Lie对称性约束限制方程,Lie对称性得到Noether守恒量、Mei守恒量的条件方程等。第六章研究离散约束系统的几类联合对称性及其守恒量,讨论离散约束系统Noether对称性、Mei对称性、Lie对称性的关系,给出离散Lagrange系统的Noether-Lie对称性、Lie-Mei对称性、Noether-Mei对称性和统一对称性的判据方程。第七章总结研究的主要结果并展望未来研究的若干方向。
Using an infinitesimal Lie transformation group method, the symmetrical properties of the discrete constrained dynamical systems are investigated in this dissertation. Meanwhile, we employ symmetry analytical approach to exploring the discrete conserved quantities of the systems. In chapter one, the overview of the study on the symmetries and conserved quantities of constrained mechanical systems is presented, and the general definition of symmetry is given. Besides, a general discussion of the significance, the approach, the historical development, as well as the current research of the symmetries and conserved quantities for the continuous and discrete constrained systems, including the Noether symmetry, Mei symmetry, Lie symmetry, and several other symmetries, are developed. In chapter two, we investigate the dynamical equations of the discrete constrained systems. The total variational principle, including the time variational, is proposed. In addition, the dynamical equations and the constrained equations for discrete Lagrangian system, discrete Hamiltonian system, discrete non-conservative Lagrangian and Hamiltonian systems, discrete system with variable mass, discrete system with dependent variables, discrete nonholonomic systems with Chetaev also non-Chetaev type constrains, discrete system with unilateral constraints are constructed. The dynamical equations and the constrained equations are discrete Euler-Lagrange equations, discrete canonical equations of motion, discrete energy evolution equations, holonomic and nonholonomic discrete constrained equations, as well as nonholonomic Chetaev and non-Chetaev type constrained condition equations et al. In chapter three, we look into the Noether symmetries and conserved quantities for the discrete constrained systems. The criterion equations, the discrete constrained restricted equations, and the condition equations of obtaining Noether conserved quantities et al. are deduced for discrete Lagrangian system, discrete Hamiltonian system, discrete non-conservative Lagrangian and Hamiltonian systems, discrete system with variable mass, discrete system with dependent variables, discrete nonholonomic systems with Chetaev also non-Chetaev type constrains, discrete system with unilateral constraints. In chapter four, we make a study of the Mei symmetries and corresponding conserved quantities of the discrete constrained systems. The determining equations and the discrete restricted equations of the Mei symmetries, and the criterion equations of obtaining the Mei conserved quantities are derived for discrete Lagrangian system, discrete Hamiltonian system, discrete non-conservative Lagrangian and Hamiltonian systems, discrete system with variable mass, discrete system with dependent variables, discrete nonholonomic systems with Chetaev also non-Chetaev type constrains, discrete system with unilateral constraints. In chapter five, the Lie symmetries and conserved quantities of the discrete constrained systems are researched. Moreover, the determining equations and the constrained restricted equations of the Lie symmetries, the condition equations of obtaining the Noether also Mei conserved quantities from Lie symmetries et al. are discussed for discrete Lagrangian system, discrete Hamiltonian system, discrete non-conservative Lagrangian and Hamiltonian systems, discrete system with variable mass, discrete system with dependent variables, discrete nonholonomic systems with Chetaev also non-Chetaev type constrains, discrete system with unilateral constraints. In chapter six, we analyze several interrelated symmetries and corresponding conserved quantities. The relationships between Noether symmetry, Mei symmetry and Lie symmetry are clarified. Furthermore, the criterion equations of Noether-Lie symmetry, Lie-Mei symmetry, Noether-Mei symmetry, and the condition equations of acquiring conserved quantities from these symmetries for discrete Lagrangian system and discrete Hamiltonian system are presented. In chapter seven, we summarize the main results of our research and envision the future research directions.
引文
[1]H.Weyl,Symmetry[M].Princeton:Princeton University Press,1952
    [2]R.P.Feynman,R.B.Leighton,M.Sands,郑永令、李洪芳、潘笃武等译.费恩曼物理学讲义[M].上海:上海科学技术出版社,2005
    [3]B.И.阿诺尔德(V.I.Arnold),齐民友译,经典力学的数学方法[M].北京:高等教育出版社,2006
    [4]V.I.Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations(2th ed)[M].New York:Springer-Verlag,1987
    [5]Y.Gliklikh,数学物理中的全局分析[M].北京:清华大学出版社,2005
    [6]A.M.Bloch,Northolonomic Mechanics and Control[M].New York:Springer-Verlag,2007
    [7]J.E.Marsden and T.S.Ratiu,Introduction to Mechanics and Symmetry[M].New York:Springer-Verlag,1997
    [8]梅凤翔.非完整系统力学基础[M].北京:北京工业学院出版社,1985
    [9]梅凤翔.分析力学专题[M].北京:北京工业学院出版社,1988
    [10]梅凤翔.非完整动力学研究[M].北京:北京工业学院出版社,1987
    [11]杨来伍,梅凤翔.变质量系统力学[M].北京:北京理工大学出版社,1989
    [12]梅凤翔,刘桂林.分析力学基础[M].西安:西安交通大学出版社,1987
    [13]梅凤翔,刘端,罗勇.高等分析力学[M].北京:北京理工大学出版社,1991
    [14]R.M.Santili,Foundations of Theoretical Mechanics Ⅱ[M].New York:Springer-Verlag,1983
    [15]梅凤翔,史荣昌,张永发,吴惠彬.Birkhoff系统动力学[M].北京:北京理工大学出版社,1996
    [16]吴惠彬,张永发,梅凤翔.求解微分方程的Hojman方法[J].物理学报,2006,55:4987-4990
    [17]梅凤翔,解加芳,江铁强.求Emden-Fowler方程的分析力学方法[J].物理学报,2007,56:5041-5044
    [18]何光,梅凤翔.三质点Toda晶格微分方程的积分[J].物理学报,2008,57:18-20
    [19]Mei Fengxiang,Wu Huibin and Zhang Yongfa.Hamilton-Jacobi Method for Solving Ordinary Differential Equations[J].Chinese Physics,2006,15:1662-1664
    [20]Mei Fengxiang,Xie Jiafang and Gang Tieqiang.Analytical Mechanics Methods for Solving Whittaker Equation[J].Chinese Physics,2007,16:2845-2847
    [21]M.A.Armstrong,Group and Symmetry[M].New York:Springer-Verlag,1997
    [22]P.J.Olver,Applications of Lie Groups to Differential Equations[M].New York:Springer-Verlag,1999
    [23]G.W.Bluman and S.C.Anco,Symmetry and Integration Methods for Differential Equations[M].New York:Springer-Verlag,2004
    [24]李子平.经典与量子约束系统及其对称性质[M].北京:北京工业大学出版社,1993
    [25]李子平.约束哈密顿系统及其对称性质[M].北京:北京工业大学出版社,1999
    [26]梅凤翔.李群和李代数对约束力学系统的应用[M].北京:科学出版社,1999
    [27]赵跃宇,梅凤翔.力学系统的对称性与不变量[M].北京:科学出版社,1999
    [28]梅凤翔.约束力学系统的对称性与守恒量[M].北京:北京理工大学出版社,2004
    [29]P.A.Clarkson and F.W.Nijhoff(edited),Symmetries and Integrability of Difference Equations[M].London:Cambridge University Press,1999
    [30]G.D.Birkhoff,General Theory of Linear Difference Equations[J].Trans.Amer.Math.Soc,1911,12:243-284
    [31]G.D.Birkhoff,The Generalized Riemann Problem for Linear Differential Equations and the Allied Problems for Linear Difference and q-Difference Equations[J].Proc.Am.Acad.Arts.Sci,1913,49:521-568
    [32]J.A.Cadzow,Discrete Calculus of Variation[J].Int.J.Control,1970,11:393-407
    [33]J.D.Logan,First Integrals in the Discrete Variational Calculus[J].Aequat.Math,1973,9:210-220
    [34]J.D.Logan,Higher Dimensional Problems in the Discrete Calculus of Variation[J].Int.J.Control,1973,17:315-420
    [35]S.Maeda,On Symmetries in a Discrete Model of Mechanical Systems[J].Math.Japonica.,1978,23:231-244
    [36]S.Maeda,On Quadratic Invariants in a Discrete Model of Mechanical Systems[J].Math.Japonica.,1978,23:587-605
    [37]S.Maeda,Canonical Structure and Symmetries Discrete Systems[J].Math.Japonica.,1980,25:405-420
    [38]S.Maeda,Extension of Discrete Noether Theorem[J].Math.Japonica..1981,26:85-90
    [39]S.Maeda,Lagrangian Formulation of Discrete Systems and Concept of Difference Space[J].Math.Japonica.,1981,27:345-356
    [40]Liu Rongwan,Zhang Hongbin and Chen Liqun.Variational Principle and Dynamical Equations of Discrete Nonconservative Holonomic Systems[J].Chinese Physics,2006,15:249-252
    [41]Zhang Hongbin,Chen Liqun and Liu Rongwan.First Integrals of the Discrete Nonconservative and Nonholonomic Systems[J].Chinese Physics,2005,14:238-243
    [42]Zhang Hongbin,Chen Liqun and Liu Rongwan.Discrete Variational Principle and the First Integrals of the Conservative Holonomic Systems in Event Space[J].Chinese Physics,2005,14:888-892
    [43]Zhang Hongbin,Chen Liqun and Liu Rongwan.The Discrete Variational Principle in Hamiltonian Formalism and First Integrals[J].Chinese Physics,2005,14:1063-1068
    [44]Zhang Hongbin,Chen Liqun,Gu Shulong and Liu Chuanzhang.The Discrete Variational Principle and the First Integrals of Birkhoff Systems[J].Chinese Physics,2007,16:582-587
    [45]Fu Jingli,Dai Guidong,S.Jimenez and Tang Yifa.Discrete Variational Principle and First Integrals for Lagrange-Maxwell Mechanico-Electrical Systems[J].Chinese Physics,2007,16:570-577
    [46]施沈阳,傅景礼,陈立群.离散Lagrange系统的Lie对称性[J].物理学报,2007,56:3060-3063
    [47]J.M.Wendlandt and J.E.Marsden,Mechanical Integrators Derived from a Discrete Variational Principle[J].Physica D,1997,106:223-246
    [48]J.E.Marsden and J.M.Wendlandt,Mechanical Systems with Symmetry,Variational Principles and Integra tion Algorithms[J].Current and Future Directions in Applied Mathematics(M.Alber et al.edited),1997,219-261
    [49]J.E.Marsden,G.W.Patrick and S.Shkoller.Mulltisymplectic Geometry,Variational Integrators and Nonlin ear PDEs[J].,Comm.Math.Phys.,1998,199:351-395
    [50]J.E.Marsden,S.Pekarsky and S.Shkoller,Discrete Euler-Poincare and Lie-Poisson Equations[J].Nonlinear ity,1999,12:1647-1662
    [51]C.Kane,J.E.Marsden and M.Ortiz,Symplectic-energy-momentum Preserving Variational Integrators[J].J.Math.Phys.,1999,40:3353-3371
    [52]C.Kane,J.E.Marsden,M.Ortiz and M.West,Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems[J].Int.J.Num.Math.Eng.,2000,49:1295-1325
    [53]J.Cortes and S.Martinez,Non-holonomic Integrators[J].Nonliearity,2001,14:1365-1392
    [54]M.de Leon,D.M.de Diego and A.Santamaria-Merino,Geometric Integrators and Nonholonomic Mechani cs[J].J.Math.Phys.,2004,45:1042-1064
    [55]H.Cendra,J.E.Marsden,S.Pekarsky and T.S.Ratiu,Variational Principles for Lie-Poisson and Hamilton-Poincare Equations[J].Moscow Mathematical Journal,2003,3:833-867
    [56]P.J.Channell and C.Scovel,Symplectic Integration of Hamiltonian Systems[J].Nonlinearity,1990,3:231- 259
    [57] J.Moser and A.P. Veselov, Discrete Versions of Some Classical Integrable Systems and Factorization of Matrix Polynomials[J]. Comm.Math.Phys., 1991,139: 217-243
    
    [58] J.D.Meiss, Symplectic Maps, Variational Principles,and Transport[J]. Rev. Mod.Phys., 1992,64:795-848
    [59] Guo Hanying, Li Yuqi, Wu Ke and Wang Shikun. Difference Discrete Variational Principles, Euler-Lagrange Cohomology and Symplectic, Multisymplectic Structures I: Difference Discrete Variational Principl es[.I]. Comm.Theor.Phys., 2002, 37: 1-10
    
    [60] Guo Hanying, Li Yuqi, Wu Ke and Wang Shikun. Difference Discrete Variational Principles, Euler-Lagrange Cohomology and Symplectic, Multisymplectic Structures II: Euler-Lagrange Cohomology[J].Comm. Theor. Phys.,2002,37: 129-138
    
    [61] Guo Hanying, Li Yuqi, Wu Ke and Wang Shikun. Difference Discrete Variational Principles, Euler-Lagrange Cohomology and Symplectic, Multisymplectic Structures III: Application to Symplectic and Multisy mplectic Algorithms [J]. Comm.Theor.Phys., 2002,37: 257-264
    [62] Guo Hanying, Li Yuqi and Wu Ke. Sympletic and Multisymplectic Structures and Their Discrete Versions in Lagrangian Formalism[J]. Comm.Theor.Phys.,2001,35: 703-710
    [63] Guo Hanying and Wu Ke. On Variations in Discrete Mechanics and Field Theory[J]. J.Math.Phys., 2003, 44:5978-6004
    [64] Guo Hanying, Wu Ke and Zhang Wei. Noncommutative Differential Calculus on Discrete Abelian Group and Its Applications[J]. Comm.Theor.Phys., 2000,34:245-250
    
    [65] Guo Hanying,Wu Ke,Wang Shanghu,Wang Shikun and Wei Gongmin. Noncommutative Differential Calculus Approach to Discrete Symplectic Schemes on Regular Lattice[J]. Comm.Theor.Phys.,2000,34: 307 -316
    
    [66] T.D.Lee, Can Time Be a Discrete Dynamical Variable[J]. Phys.Lett.B., 1983,122: 217-220
    [67] T.D.Lee, Difference Equations and Conservation Laws[J]. J.Statis.Phys.,1987,46: 843-860
    [68] A.P.Veselov,Integration Systems with Discrete Time and Difference Operators[J].Funct.Anal.Appl.,1988, 22:1-13
    [69] G. Jaroszkiewicz and K.Norton, Principles of Discrete Time Mechanics I: Particle Systems [J]. J.Phys.A: Math.Gen.,1997,30:3115-3144
    [70] G. Jaroszkiewicz and K.Norton, Principles of Discrete Time Mechanics II:Classical Field Theory[J]. J.Phys.A: Math.Gen., 1997,30: 3145-3163
    [71] K.Norton and G. Jaroszkiewicz, Principles of Discrete Time Mechanics III: Quantum Field Theory[J]. J.Phys.A: Math.Gen., 1998,31: 977-1000
    [72] M. De Leon and D.Martion De Diego, Variatonal Integrators and Time-dependent Lagrangian System[J]. Rep. Math. Phys.2002,49:183-192
    [73] S.Lall and M.West, Discrete Variational Hamiltonian Mechanics[J]. J.Phys.A: Math.Gen.,2006,39:5509- 5519
    [74] A.Pandolfi,C. Kane, J.E.Marsden and M.Ortiz, Time-discretized Variational Formulation of Non-smooth Frictional Contact[J]. Int. J. Num. Methods in Engineering, 2002,53:1801-1829
    [75] A. Lew, J.E.Marsden, M.Ortiz and M.West, An Overview of Variational Integrators [J]. CIMNE Barcelona, 2004,98-115
    [76] J.E. Marsden and M.West, Discrete Mechanics and Variational Integrators [J]. Acta Numerica, London: Cambridge University Press,2001, 357-514
    [77] Chen Jingbo,Guo Hanying and Wu Ke.Discrete Total Variation Calculus and Lee's Discrete Mechanics[J]. Applied Mathematics and Computation, 2006,177: 226-234
    [78] Chen Jingbo.Guo Hanying and Wu Ke.Total Variation in Hamiltonian Formalism and Symplectic-Energy Integrators [J]. J.Math.Phys., 2003,44:1688-1702
    [79] Shi Shenyang, Fu Jingli and Chen Liqun. The Lie Symmetries and Noether Conserved Quantities of Discrete Non-conservative Mechanical Systems[J].Chinese Physics B, 2008,17: (to be published)
    [80] Shi Shenyang, Fu Jingli, Huang Xiaohong, Chen Liqun and Zhang Xiaobo. The Lie Symmetries and Noe ther Conserved Quantities of Discrete Mechanical Systems With Variable Mass[J]. Chinese Physics B, 2008,17: (to be published)
    [81] Shi Shenyang and Huang Xiaohong. The Noether Symmetry and Lie Symmetry of Discrete Holonomic Systems with Dependent Coordinates[J]. Chinese Physics B, 2008,17: (to be published)
    [82] A.E.Noether,Invariante Variations Pobleme[J].Nachr.Konig.Gesell.Wissen Gottingen, Math. Phys., 1918, KI: 235-257
    
    [83] E.Candotti,C.Palmieri and B.Vitale, On the Inversion of Noether's Theorem in Classical Dynamical SystemsfJ]. Amer.J.Phys.,1972, 40: 424-429
    
    [84] E.A.Desloge and R.I.Karch, Noether's Theorem in Classical Mechanics[J]. Am.J.Phys., 1977,45: 336-339
    [85] Dj Djukic, A Contribution to the Generalized Noether's Theorem[J]. Archives of Mech., 1974, 26: 243- 248
    [86] Dj Djukic and B.D.Vujanovic, Noether's Theory in Classical Nonconservative Mechanics[J].Acta Mech., 1975,23:17-27
    [87] L.Y.Bahar and H.G. Kanty, Extension of Noether's Theorem to Constrained Nonconservative Dynamical Systems[J], Int. J. Nonlinear Mech.,1987, 22:125-138
    [88] T.M.Kalotas and B.G.Wyhourne, Dynamical Noether Symmetries[J]. J.Phys.A:Math.Gen., 1982,15:2077- 2083
    [89] B Vujanovic. Conservation Laws of Dynamical Systems by Means of the Differential Variational Princip les of Jourdain and Gauss[J].Acta Mech, 1986, 65: 63-80
    [90] C.Palmieri and B.Vitale, On the Inversion of Noether's Theorem in the Lagrangian Formalism[J]. Nuovo Cimemto A, 1970, 66: 299-309
    
    [91] J.Rosen, Noether's Theorem in Classical Field Theory[J], Ann. Phys., 1972, 69: 349-363
    [92] E.Candotti,C.Palmieri and B.Vitale,On the Inversion of Noether's Theorem in the Lagrangian Formalism II Classical Field Theory[J]. Nuovo Cimemto A, 1970, 70:233-246
    
    [93] M.Lutzky, Noether's Theorem and the Time-dependent Hamonic Oscillator[J]. Phys.Lett.A., 1978,68: 3
    [94] W.Sarlet and F.Cantrijn, Generalizations of Noether's Theorem in Classical Mechanics[J], SIAM Rev. 1981,23:467-494
    [95] W.Sarlet and F.Cantrijn, Higher-order Noether Symmetries and Constants of the Motion[J]. J.Phys.A: Math. Gen. 1981,14:479-492
    [96] W.Sarlet and F.Cantrijn, A Characterization of Higher-order Noether Symmetries[J]. J.Phys.A:Math.Gen., 1985,18:L563-L565
    
    [97] J.Carinena, C.Lopez and E.Martinez, Sections Along a Map Applied to Higher-order Lagrangian Mechan Ics, Noether's Theorem[J]. Acta.Appl.Math., 1991,25:127-151
    [98]V.Rosenhous,Infinite Symmetries and Conservation Laws[J].J.Math.Phys.,2002,43:6129-6150
    [99]J.Sniatychi.Nonholonomic Noether Theorem and Reduction of Symmetries[J],Reports on Math,Phys.,1998,42:5-23
    [100]M.Crasmareanu.A Noether Symmetries for Spinning Particle[J].J.Nonlinear Mechanics,2000,35:947-951
    [101]Mei Fengxiang.Noether Theory of the Birkhoffian Systems[J],Chin.Sci.series A,1993,36:1456-1467
    [102]葛伟宽.Chaplygin系统的Noether对称性与形式不变性[J].物理学报,2002,51:939-942
    [103]葛伟宽.Poincare-Chetaev方程的Noether对称性[J].物理学报,2002,51:1156-1158
    [104]方建会,闫向宏,陈培胜.相对论力学系统的形式不变性与Noether对称性[J].物理学报,2003,52:1561-1564
    [105]Fang Jianhui and Zhao Songqing.Noether's Theorem of a Rotational Relativistic Variable Mass System [J].Chinese Physics,2002,11:445-449
    [106]罗绍凯.奇异系统Hamilton正则方程的Mei对称性、Noether对称性和Lie对称性[J].物理学报,2004.53:5-10
    [107]罗绍凯.Hamilton系统的Mei对称性、Noether对称性和Lie对称性[J].物理学报,2003,52:2941-2944
    [108]罗绍凯,郭永新,梅凤翔.非完整系统的Noether对称性与Hojman守恒量[J].物理学报,2004,53:1270-1275
    [109]顾书龙,张宏彬.Vacco动力学方程的Mei对称性、Lie对称性和Noether对称性[J].物理学报,2005,54:3983-3986
    [110]张毅,梅凤翔.非保守力与非完整约束对Lagrange系统Noether对称性的影响[J].物理学报,2004,53:661-668
    [111]张毅,梅凤翔.约束对Birkhoff系统Noether对称性和守恒量的影响[J].物理学报,2004,53:2419-2423
    [112]Zhang Yi and Mei Fengxiang,Noether Theory of Mechanical Systems with Unilateral Constraints[J].Appl Math.Mech.,1999,18:59-67
    [113]Shang Mei and Chen Xiangwei.Noether's Theorem and One-step Corrections Method for Holonomic System[J].Chinese Physics,2006,15:2788-2791
    [114]V.Dorodnitsyn,Noether-type theorems for difference equations[J].Applied Numerical Mathematics,2001,39:307-321
    [115]Mei Fengxiang.Form Invariance of Appell Equations[J].Chinese Physics,2001,10:177-180
    [116]Wang Shuyong and Mei Fengxiang.On the Form Invariance of Nielsen Equations[J].Chinese Physics,2001,10:373-375
    [117]方建会,薛庆忠,赵嵩卿.非保守力学系统Nielsen方程的形式不变性[J].物理学报,2002,51:2183-2185
    [118]许学军,梅凤翔,秦茂昌.非保守Nielsen方程的形式不变性导致的非Noether守恒量[J].物理学报,2004,53:4021-4025
    [119]罗绍凯.转动相对论系统的Appell方程及其形式不变性[J].物理学报,2002,51:712-717
    [120]方建会,陈培胜,张军,李红.相对论力学系统的形式不变性与Lie对称性[J].物理学报,2003,52:2945-2948
    [121]Wang Shuyong and Mei Fengxiang.Form Invariance and Lie Symmetry of Equations of Non-holonomic Systems[J].Chinese Physics,2002,11:5-8
    [122]罗绍凯,郭永新,梅凤翔.非完整系统的形式不变性与Hojman守恒量[J].物理学报,2004,53:2413-2418
    [123]陈培胜,方建会.相空间中非完整非保守系统的形式不变性[J].物理学报,2003,52:1044-1047
    [124]张毅.单面完整约束力学系统的形式不变性[J].物理学报,2004,53:331-336
    [125]Zhang Yi and Mei Fengxiang.Form Invariance for Systems of Generalized Classical Mechanics[J].Chinese Physics,2003.12:1058-1061
    [126]Qiao Yongfen,Li Renjie and Ma Yongsheng.Form Invariance of Raitzin's Canonical Equations of a Nonholonomic Mechanical System[J].Chinese Physics,2005,14:12-16
    [127]乔永芬,张耀良,韩广才.非完整系统Hamilton正则方程的形式不变性[J].物理学报,2003,52:1051-1056
    [128]葛伟宽,张毅.二阶可降阶微分约束系统的形式不变性[J].物理学报,2003,52:2105-2108
    [129]葛伟宽.质量变化对力学系统形式不变性和守恒量的影响[J].物理学报,2005,54:2478-2481
    [130]楼智美.哈密顿Ermakov系统的形式不变性[J].物理学报,2005,54:1969-1971
    [131]Lou Zhimei.The Parametric Orbits and the Form Invariance of Three-body in One-dimension[J].Chinese Physics,2005,14:660-662
    [132]Mei Fengxiang and Xu Xuejun.Form Invariances and Lutzky Conserved Quantities for Lagrange Systems[J].Chinese Physics,2005,14:449-451
    [133]Xu Xuejun,Mei Fengxiang and Qin Maochang.Non-Noether Conserved Quantity Constructed by Using form invariance for Birkhoffian system[J].Chinese Physics,2004,13:1999-2002
    [134]张毅,葛伟宽.相对论性力学系统的Mei对称性导致的新守恒律[J].物理学报,2005,54:1464-1467
    [135]Wang Peng,Fang Jianhui and Ding Ning.Two Types of New Conserved Quantities and Mei Symmetry of Mechanical Systems in Phase Space[J].Commu.Theor.Phys.,2007,48:993-995
    [136]葛伟宽.一类动力学方程的Mei对称性[J].物理学报,2007,56:1-4
    [137]郑世旺,贾利群.非完整系统Tzenoff方程的Mei对称性和守恒量[J].物理学报,2007,56:661-665
    [138]楼智美.二维运动电荷的Mei对称性[J].物理学报,2005,54:1015-1017
    [139]方建会,丁宁,王鹏.Hamilton系统Mei对称性的一种新守恒量[J].物理学报,2007,56:3039-3042
    [140]Fang Jianhui,Ding Ning and Wang Peng.A New Type of Conserved Quantity of Mei Symmetry for Lagrange System[J].Chinese Physics,2007,16:887-890
    [141]S Lie.Die Diffeentialinvarianten,its ein Korollar der theorie der differentialinvarianten[J],Leipz Berichte,1897,49:342-257
    [142]梅凤翔.包含伺服约束的非完整系统的Lie对称性与守恒量[J].物理学报,2000,49:1207-1210
    [143]梅凤翔,尚玫.一阶Lagrange系统的Lie对称性与守恒量[J].物理学报,2000,49:1901-1903
    [144]梅凤翔.广义Hamilton系统的Lie对称性与守恒量[J].物理学报,2003,52:1048-1050
    [145]张毅,薛纭.仅含第二类约束的约束Hamilton系统的Lie对称性[J].物理学报,2001,50:816-819
    [146]张毅.Birkhoff系统的一类Lie对称性守恒量[J].物理学报,2002,51:461-464
    [147]张毅.非保守力和非完整约束对Hamilton系统Lie对称性的影响[J].物理学报,2003,52:1326-1331
    [148]张毅.事件空间中完整系统的Lie对称性与绝热不变量[J].物理学报,2007,56:3054-3059
    [149]Fu Jingli,Chen Liqun and Xie Fengping.Lie Symmetries and Non-Noether Conserved Quantities for Hamiltonian Canonical Equations[J].Chinese Physics,2004,13:1611-1614
    [150]Fu Jingli,Chen Liqun and Bai Jinghua.Localized Lie Symmetries and Conserved Quantities for the Finite-degree-of-freedom Systems[J].Chinese Physics,2005,14:6-11
    [151]Fu Jingli,Chen Liqun,Bai Jinghua and Yang Xiaodong.Lie Symmetries and Conserved Quantities of Controllable Nonholonomic Dynamical Systems[J].Chinese Physics,2003,12:695-699
    [152]Luo Shaokai,Huang Feijiang and Lu Yibing.A New Type of Lie Symmetrical Non-Noether Conserved Quantity for Nonholonomic Systems[J].Chinese Physics,2004,13:2182-2186
    [153]Luo Shaokai and Cai Jianle.A Set of the Lie Symmetrical Conservation Laws for the Rotational Relativistic Birkhoffian System[J].Chinese Physics,2003,12:357-360
    [154]Luo Shaokai,Jia Liqun and Cai Jianle.A Set of Lie Symmetrical Non-Noether Conserved Quantity for the Relativistic Hamiltonian Systems[J].Chinese Physics,2003,12:841-845
    [155]Zhang Hongbin.Lie Symmetries and Conserved Quantifies of Non-holonomic Mechanical Systems with Unilateral Vacco Constraints[J].Chinese Physics,2002,11:1-4
    [156]Zhang Hongbin and Gu Shulong.Lie Symmetries and Conserved Quantities of Birkhoff Systems with Unilateral Constraints[J].Chinese Physics,2002,11:765-770
    [157]乔永芬,赵淑红.准坐标下广义力学系统的Lie对称定理及其逆定理[J].物理学报,2001,50:1-7
    [158]李元成,张毅,梁景辉.一类非完整奇异系统的Lie对称性与守恒量[J].物理学报,2002,51:2186-2190
    [159]张鹏玉,方建会.变质量Birkhoff系统的Lie对称性和非Noether守恒量[J].物理学报,2006,55:3813-3816
    [160]荆宏星,李元成,夏丽莉.变质量单面完整约束系统Lie对称性的摄动与广义Hojman型绝热不变量[J].物理学报,2007,56:3043-3049
    [161]Xu Xuejun,Mei Fengxiang and Zhang Yongfa.Lie Symmetry and Conserved Quantity of a System of First-order Differential Equations[J].Chinese Physics,2006,15:19-21
    [162]Chen Xiangwei,Liu Cuimei and Li Yanmin.Lie Symmetries,Perturbation to Symmetries and Adiabatic Invariants of Poincare Equations[J].Chinese Physics,2006,15:470-474
    [163]Lou Zhimei.The Lagrangian and the Lie Symmetries of Charged Particle Motion in Homogeneous Electromagnetic Field[J].Chinese Physics,2006,15:891-894
    [164]D.Levi and P.Winternitz.Symmetries and Conditional Symmetries of Differential Difference Equations [J].J.Math.Phys.,1993,41:3713-3730
    [165]R.Floreanini and L.Vinet,Lie Symmetries of Finite-difference Equations[J].J.Math.Phys.,1995,36:7024-7042
    [166]D.Levi and P.Winternitz.Symmetries of Discrete Dynamical Systems[J].J.Math.Phys.,1996,37:5551-5576
    [167]D.Levi and R.Yamilov.Conditions for the Existence of Higher Symmetries of Evolutionary Equations on the Lattice[J].J.Math.Phys.,1997,38:6648-6674
    [168]D.Levi,L.Vinet,and P.Winternitz.Lie Group Formalism for Difference Equations[J].J.Phys.A:Math.Gen.,1997,30:633-649
    [169]D.Levi and M.A.Rodriguez,Lie Symmetries for Integrable Evolution Equations on the Lattice.J.Phys.A:Math.Gen.,1999,32:8303-8316
    [170]D.Gomez-Ullate,S.Lafortune and P.Winternitz.Symmetries of Discrete Dynamical Systems Involving Two Species[J].J.Math.Phys.,1999,41:2782-2804
    [171]R.H.Heredero,D.Levi,P.Winternitz.Symmetries of the Discrete Burgers Equation[J].J.Phys.A:Math. Gen.,1999,32:2685-2695
    [172]D.Levi,S.Tremblay and P.Winternitz.Lie Point Symmetries of Difference Equations and Lattices[J].J.Phys.A:Math.Gen.,2000,33:8507-8523
    [173]V.Dorodnitsyn,R.Kozlov and P.Winternitz.Lie Group Classification of Second-order Ordinary Difference Equations[J].J.Math.Phys.,2000,41:480-504
    [174]D.Levi,S.Tremblay and P.Winternitz.Lie Symmetries of Multidimensional Difference Equations[J].J.Phys.A:Math.Gen.,2001.34:9507-9524[175]
    [175]D.Levi and M.A.Rodriguez,Lie Discrete Symmetries of Lattice Equations[J].J.Phys.A:Math.Gen.,2004,37:1711-1725
    [176]方建会,丁宁,王鹏.非完整力学系统的Noether-Lie对称性[J].物理学报,2006,55:3817-3820
    [177]方建会,王鹏,丁宁.相空间中力学系统的Lie-Mei对称性[J].物理学报,2006,55:3821-3824
    [178]Wu Huibin.Lie-form Invariance of the Lagrange System[J].Chinese Physics,2005,14:452-454
    [179]Xia Lili,Wang Jing,Hou Qibao and Li Yuancheng.Lie-form Invariance of Nonholonomic Mechanical Systems[J].Chinese Physics,2006,15:467-469
    [180]许学军,梅凤翔.准坐标下一般完整系统的统一对称性[J].物理学报,2005,54:5521-5524
    [181]丁宁,方建会,张鹏玉,王鹏.Poincare-Chetaev方程的统一对称性[J].物理学报,2006,55:6197-6202
    [182]Xu Xuejun,Qin Maochang and Mei Fengxiang.Unified Symmetry of Holonomic Mechanical Systems [J].Chinese Physics,2005,14:1287-1289
    [183]Wang Peng,Fang Jianhui,Ding Ning and Zhang Pengyu.A Unified Symmetry of Nonholonomic Mechanical Systems in Phase Space[J].Chinese Physics,2006,15:1403-1406
    [184]Xia Lili,Li Yuancheng,Hou Qibao and Wang Jing.Unified Symmetry of Nonholonomic Mechanical Systems with Variable Mass[J].Chinese Physics,2006,15:903-906
    [185]Li Yuancheng,Jing Hongxing,Xia Lili,Wang Jing and Hou Qibao.Unified Symmetry of Vacco Dynamical Systems[J].Chinese Physics,2007,16:2154-2158
    [186]M.Lutzky,Origin of Non-Noether Invariants[J].Phys.Letts.A.,1979,75:8-10
    [187]M.Lutzky,Non-invariance Symmetries and Constants of the Motion[J].Phys.Letts.A.,1979,72:86-88
    [188]M.Lutzky,New Classes of Conserved Quantities Associated with Non-Noether Symmetries[J].J.Phys.A:Math.Gen.,1982,15:L87-91
    [189]J.F.Carinena and L.A.Ibort,Non-Noether Constants of Motion[J].J.Phys.A:Math.Gen.,1983,16:1-7
    [190]M.Crampin,A Note on Non-Noether Constants of Motion[J].Phys.Letts.A.,1983,95:209-212
    [191]M.Lutzky,Conserved Quantities and Velocity-dependent Symmetries in Lagrangian Dynamics[J].In.J Non-Linear Mechanics,1996,33:393-396
    [192]S.A.Hojman,A New Conservation Law Constructed without Using either Lagrangians or Hamiltonians [J].J.Phys.A:Math.Gen.,1992,25:L291-295
    [193]Yan Xianghong and Fang Jianhui.New Non-Noether Conserved Quantities of Mechanical System in Phase Space[J].Chinese Physics,2006,15:2197-2201
    [194]Fu Jingli,Chen Liqun and Chen Xiangwei.Momentum-dependent Symmetries and Non-Noether Conserved Quantities for Nonholonomic Nonconservative Hamilton Canonical Systems[J].Chinese Physics,2006,15:8-12
    [195]Zheng Shiwang,Tang Yifa and Fu Jingli.Non-Noether Symmetries and Lutzky Conservative Quantities of Nonholonomic Nonconservative Dynamical Systems[J].Chinese Physics,2006,15:243-248
    [196]O.G.Rasin and P.E.Hydon,Conservation Laws for Integrable Difference Equations[J].J.Phys.A:Math.Theor.,2007,40:12763-12773
    [197]O.G.Rasin and P.E.Hydon,Conservation Laws for NQC-type Difference Equations[J].J.Phys.A:Math.Gen.,2006,39:14055-14066.
    [198]O.G.Rasin and P.E.Hydon,Conservation Laws of Discrete KdV Equation[J].SIGMA,2005,1(026):1-6
    [199]P.E.Hydon,Multisymplectic Conservation Laws for Differential and Differential-difference Equations [J].Proc.Roy.Soc.Lond.A.,2005,461:1627-1637
    [200]P.E.Hydon,Conservation Laws of Partial Difference Equations with Two Independent Variables[J].J.Phys.A:Math.Gen.,2001,34:10347-10355
    [201]P.E.Hydon,Symmetries and First Integrals of Ordinary Difference Equations[J].Proc.Roy.Soc.Lond.A,2000,456:2835-2855

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700