马铃薯蛋白水解物在水包油乳状液中的抗氧化作用及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水包油(O/W)乳状液是广泛存在于食品中的两相分散体系。因油脂氧化而导致食品品质下降也是这类食品普遍存在的问题。已经有研究表明在乳状液中加入具有抗氧化活性的蛋白水解物可以抑制乳状液中油脂氧化。但是具有抗氧活性的蛋白水解物在乳状液中的分布及其对乳状液氧化稳定性影响的机理尚未得到阐明。为了更好的设计乳状液抗氧化的策略来提高产品氧化稳定性,有必要对具有抗氧活性的蛋白水解物在乳状液中的分布与油脂氧化抑制作用之间关系的机理进行研究。同时,马铃薯蛋白作为马铃薯淀粉工业的副产物,由于功能性质差而附加值较低。通过的酶解的手段改善其功能性质,将其开发成具有抗氧化活性的蛋白水解物则可以拓宽其使用范围。因此,本论文的研究对于进一步阐明具有抗氧化活性的蛋白水解物在乳状液中的抗氧化机理有着重要的学术意义。同时,对提高马铃薯蛋白的应用价值和产品附加值有一定的现实意义。
     论文首先研究了马铃薯蛋白水解物对O/W乳状液乳化稳定性及氧化稳定性的影响。采用Acalase水解马铃薯蛋白,制备得到具有抗氧化活性的马铃薯蛋白水解物,将蛋白水解物加入到Tween 20为乳化剂的大豆油O/W乳状液(油含量10%,pH7.0)中,采用烘箱氧化法(37℃),通过定期测定乳状液在氧化过程(0-14天)中过氧化值(POV)和丙二醛反应物(TBARS)的变化,考察马铃薯蛋白水解物了对乳状液氧化稳定性的影响。结果表明对于以Tween 20和马铃薯蛋白水解物混合物为乳化剂制备得到的乳状液,在37℃下贮藏7天后,和未添加马铃薯蛋白水解物的样品相比,马铃薯蛋白水解物对乳状液中POV和TBARS的抑制率最高分别可达到53.4%和70.8%(P<0.05)。马铃薯蛋白水解物不论是在乳状液均质前加入还是在乳状液均质后加入,都能起到了抑制乳状液中油脂氧化的作用,但是抑制机制不同,马铃薯蛋白水解物在均质前加入可以更好抑制过氧化物的形成,而马铃薯蛋白水解物均质后加入则可以更好抑制丙二醛类物质的形成。上述结果暗示了马铃薯蛋白水解物在乳状液中的抗氧化机制与其在乳状液的分布有关。
     接着进一步研究了马铃薯蛋白水解物的分子量和极性对于乳状液氧化稳定性的影响。通过凝胶色谱分离和硫酸铵沉淀两种方法对马铃薯蛋白水解物进行了分级,分别得到了不同分子量和不同极性的马铃薯蛋白水解物组分。通过测定ABTS+'自由基清除能力和金属离子螯合能力分析了这些组分的抗氧化性质。同时,以正己醛和TRARS为指标,采用烘箱氧化法(37℃)考察了具有不同分子量和不同极性的马铃薯蛋白水解物组分对Tween 20为乳化剂制备得到的大豆油O/W乳状液(油含量10%,pH7.0)氧化稳定性的影响。结果表明,不同性质的马铃薯蛋白水解物组分的自由基清除能力与其在乳状液中抗氧化能力有不一致性,凝胶色谱分离得到的低分子量组分Peak 3(分子量低于1043Da)和50%硫酸铵沉淀得到的组分P50表现出了相对较好的自由基清除活性和抑制油脂氧化能力。
     然后采用制备型液相色谱对Peak 3和P50进行了进一步纯化,对纯化得到的组分中ABTS+·自由基清除能力的组分采用超高液相色谱串联质谱联用技术(UPLC-MS/MS)对其中的活性多肽结构进行鉴定,并将鉴定得到的多肽与NCBI数据库中马铃薯蛋白的序列进行了相似性匹配。结果表明,从组分Peak 3中分离得到四个与马铃薯蛋白中主要蛋白Patatin序列片段相匹配的多肽,分别为Thr-Tyr, Tyr-Phe-Glu, Tyr-Ser-Thr-Ala和Asn-Tyr-Lys-Gln-Met。从组分P50鉴定得到了两个与马铃薯蛋白序列相匹配的多肽,分别为Ser-Ser-Glu-Phe-Thr-Tyr和Ile-Tyr-Leu-Gly-Gln。这两个多肽序列分别存在与马铃薯蛋白metallocarboxypeptidase inhibitor和lipoxygenase 1中。通过制备型液相色谱对从组分Peak 3中分离得到的组分P3F5进行了进一步纯化,利用UPLC-MS/MS确定了存在于Patatin中的三肽Tyr-Phe-Glu为高活性的抗氧化肽。
     同时,采用离心法分析了马铃薯蛋白水解物在乳状液中的分布,结果表明有8-15%的马铃薯蛋白水解物分布在了乳状液的界面上。随着乳状液的pH从3调到7,乳状液的ζ-电位有了明显的增加(P<0.05)。通过常规透射电镜对乳状液进行表征,结果表明乳状液中油脂氧化的抑制和分布在水相中乳状液颗粒周围的马铃薯蛋白水解物的化学作用和物理屏蔽机制有关。利用原子力显微镜的高度成像模式和相位成像模式对乳状液形貌进行的表征,结果表明加入马铃薯蛋白水解物作为辅乳化剂的乳状液中油脂可以得到更好地分散。而且,和Tween 20为单一乳化剂制备的乳状液相比,分布在脂肪球界面膜上的马铃薯蛋白水解物会改善界面的状况。通过激光共聚焦扫描显微镜和冷冻透射电镜对乳状液脂肪球界面膜进行了进一步的表征。从微观结构上直观地证明了马铃薯蛋白水解物在界面膜上的分布,在超微观结构上显示了界面膜的形态为非连续分布的棒状结构。
     最后,通过离心分离结合有机溶剂提取的方法得到了界面上的多肽。采用G15凝胶色谱对这部分多肽进行了进一步分离,按时间(2 min)收集并得到了一系列组分。通过固相萃取柱脱除组分中的Tween 20后,采用超高液相色谱与飞行时间质谱联用技术(UPLC-Q-TOF-MS)对其中部分ABTS+·自由基清除能力相对较好的组分中的多肽进行了分离鉴定。对得到的多肽的性质分析表明,得到的多肽是由2-7个氨基酸组成的短肽,分子量分布在200-800之间。亮氨酸/异亮氨酸、脯氨酸、赖氨酸和精氨酸在这些多肽中出现的概率较高。通过多肽的序列分析多肽的亲疏水性较氨基酸组成分析的方法更合理。
     以上的结果暗示马铃薯蛋白水解物在O/W乳状液中的抗氧化机制和马铃薯蛋白水解物水解物在油水界面形成的物理屏障效应有关,即分布在乳化油脂颗粒油水界面上的多肽形成的空间阻碍和静电束缚作用以及覆盖在乳化油脂颗粒周围的多肽网络结构形成的物理屏障的阻隔作用。
Oil-in-water (O/W) emulsions are common biphasic dispersions that exist in food products. Oxidation is a common problem for this type of food emulsions. To improve the oxidative stability of O/W emulsions, various antioxidants are incorporated. Recent studies have shown that many protein hydrolysates or mixed peptides can act as antioxidants to inhibit lipid oxidation in emulsion systems. However, the mechanisms by which peptides curtail lipid oxidation in emulsified foods have not been clearly elucidated. Understanding peptides'mode of action in a two-phase emulsion system would aid in the development of emulsion formulations and processing strategies to maximize food product stability and nutritive value. Potato protein, a by-product of the starch industry, has poor functional properties due to the harsh dehydration conditions employed for protein recovery. Limited hydrolysis is able to increase the solubility and related functionality of potato protein, and possibly its antioxidant potential.
     The aim of the present research was to unravel the molecular mechanisms by which potato peptides inhibit lipid oxidation in emulsified foods. The ultimate goal was to improve both the economical and nutritional values of potato protein.
     In Experiment 1, the efficacy of a previously developed antioxidative potato protein hydrolysate (PPH) for the stabilization of oil droplets and inhibition of lipid.oxidation in soybean O/W emulsions was investigated. Emulsions (10% lipid, pH 7.0) with PPH-coated oil droplets were found less (P< 0.05) stable than those produced with Tween 20. However, the presence of PPH, whether added before or after homogenization with Tween 20, retarded emulsion oxidation, showing reduced formation of peroxides up to 53.4% and malonaldehyde-equivalent substances (TBARS) up to 70.8% after 7-d storage at 37℃(P< 0.05), when compared with PPH-free emulsions.
     In Experiment 2, antioxidative PPH was fractionated using gel filtration and ammonium sulfate precipitation. The efficacy of different fractions for inhibiting lipid oxidation in soybean O/W emulsions and neutralizing 2,2'-azinobis (3-ethylbenzothiszoline-6-sulfonic acid) (ABTS+·) radicals was studied. Low-molecular-weight fraction Peak 3 (<1043 Da) from gel filtration and the fraction precipitated by 50% saturated ammonium sulfate exhibited the strongest antioxidant activity and radical scavenging activity.
     In Experiment 3, active peptides present in different fractions of PPH based on the ABTS+·scavenging assay were isolated and purified by preparetive HPLC, and the amino acid sequences were determined by LC-MS/MS. Of various peptides sequenced, Asn-Tyr-Lys-Gln-Met, Thr-Tyr, Tyr-Ser-Thr-Ala, and Tyr-Phe-Glu were identified to be the prominent peptides in Peak 3 of the gel filtration-separated PPH, which matched sequences in papatin, a main protien component in potato. Likewise, Ser-Ser-Glu-Phe-Thr-Tyr and Ile-Tyr-Leu-Gly-Gln were identified to be key peptides present in P50 of saturated ammonium sulfate-separated PPH; they matched with the sequences in metallocarboxy-peptidase inhibitor and lipoxygenase 1, respectively.
     In Experiment 4, the distribution of peptides in antioxidative PPH at the interface of soybean O/W emulsions was determined. In the emulsions stabilized by Tween 20 as the primary emulsifier and PPH as the secondary emulsifier,8-15% of PPH was distributed at the interface. Adjustment of the pH from 3 to 7 markedly increased (P< 0.05)ζ-potential of such emulsions. Several biophysical methods, including conventional TEM, AFM, CLSM and Cryo-TEM, were used for emulsion and emulsion droplet membrane representation. When PPH was incorporated into the emulsions as secondary emulsifier, dispersions of oil droplets in the emulsion were better than the control according to the results of AFM. Moreover, PPH distributed in the interfacial membrane improved the integiry of the interface. On the other hand, CLSM images demonstrated the existence of PPH peptides in the interfacial membrane that were directly ancherd in the microstructure of emulsions. Also, Cryo-TEM illustrated the morphology of the interfacial membrane as a non-continuous short fibril structure in the ultra-structure of emulsions.
     Finally, peptides which partitioned in the interfacial membrane were recovered by centrifugation and separated and purified using G15 gel filtration, or collected using solid phase extraction. Selected peptides were subjected to UPLC-Q-TOF-MS for sequence identification after removal of Tween 20. The peptides identified had molecular weights of 200-800 Da comprising of 2-7 amino acids. Leu (lle), Pro, Lys and Arg were most abundant amino acids in these peptides.
     The overall results demonstrate for the first time that inhibition of lipid oxidation by PPH in soybean O/W emulsions is due to both chemical and physical actions. Peptide adsorption on the surface of oil droplets and partitioning in the emulsion interface play an important role in inhibiting lipid oxidation. These steric hindrance and possibly electrostatic and shielding effects are complemented by the radical scavenging activity of peptides thereby jointly contributing to the stabilization of the soybean O/W emulsion system.
引文
1. Zwijnenberg H J, Kemperman A J B, Boerrigter M E, et al. Native protein recovery from potato fruit juice by ultrafiltration. Desalination,2002,144(1-3):331-334.
    2. Knorr D. Effect of recovery methods on yield,quility and functional properties of potato protein concentrations. J. Food Sci,1980,45(5):1183-1186.
    3. Wojnowska I, Poznanski S, Bednarski W. Processing of potato protein concentrates and their properties. J. Food Sci,1982,47(1):167-172.
    4.刘素稳,张泽生,杨海延等.马铃薯蛋白的营养价值评价[J].营养学报,2008,30(2):208—210.
    5.张泽生,刘素稳,郭宝芹等.马铃薯蛋白质的营养评价[J].食品科技,2007,32(11):219—221.
    6. Kapoor A, Desborough S, Li P. Potato tuber proteins and their nutritional quality. Potato Res,1975,18(3):469-478.
    7. Zhang J, Zhang H, Wang L, et al. Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and Maldi-TOF/TOF MS/MS. Food Chem,2010,119(1):226-234.
    8. Li H, Hu X, Guo P, et al. Antioxidant properties and possible mode of action of com protein peptides and zein peptides. J Food Biochem,2010,34:44-60.
    9. Kong B, Xiong Y L. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J Agric Food Chem,2006,54(16):6059-6068.
    10. Tang X, He Z, Dai Y, et al. Peptide fractionation and free radical scavenging activity of zein hydrolysate. J Agric Food Chem,2010,58(1):587-593.
    11. Diaz M, Dunn C M, McClements D J, et al. Use of caseinophosphopeptides as natural antioxidants in oil-in-water emulsions. J Agric Food Chem,2003,51(8):2365-2370.
    12. Elias R J, Bridgewater J D, Vachet R W, et al. Antioxidant mechanisms of enzymatic hydrolysates of β-lactoglobulin in food lipid dispersions.J Agric Food Chem,2006,54(25): 9565-9572.
    13. Elias R J, Kellerby S S, Decker E A. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr,2008,48(5):430-441.
    14. Frankel E N, Meyer A S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric,2000,80(13):1925-1941.
    15. Huang S W, Frankel E N, Aeschbach R, et al. Partition of selected antioxidants in corn oil-water model systems. J Agric Food Chem,1997,45(6):1991-1994.
    16. Liu X, Azam M A, Peyton K J, et al. Butylated hydroxyanisole stimulates heme oxygenase-1 gene expression and inhibits neointima formation in rat arteries. Cardiovasc. Res.,2007,74(1):169-179.
    17. Yu R, Mandlekar S, Kong A-N T. Molecular mechanisms of butylated hydroxylanisole-induced toxicity:Induction of apoptosis through direct release of cytochromec.Mol Pharmacol,
    2000,58(2):431-437
    18. Peng X, Kong B, Xia X, et al. Reducing and radical-scavenging activities of whey protein hydrolysates prepared with alcalase. Int Dairy J,2010,20(5):360-365.
    19. Dryakova A, Pihlanto A, Marnila P, et al. Antioxidant properties of whey protein hydrolysates as measured by three methods. Eur. Food Res. Technol.,2010,230(6):865-874.
    20. Turpeinen A M, Jauhiainen T, Jakala P, et al. Milk peptides and cardiovascular health-effects on blood pressure and beyond. Australian J Dairy Technol,2009,64(1):26-28.
    21. Peng X, Xiong Y L, Kong B. Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chem,2009,113(1):196-201.
    22. Hernandez-Ledesma B, Davalos A, Bartolome B, et al. Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J Agric Food Chem,.2005,53(3):588-593.
    23. Gomez-Ruiz J A, Lopez-Exposito I, Pihlanto A, et al. Antioxidant activity of ovine casein hydrolysates:Identification of active peptides by HPLC-MS/MS. Eur Food Res Technol,2008, 227(4):1061-1067.
    24. Zhuang Y, Sun L, Zhao X, et al. Antioxidant and melanogenesis-inhibitory activities of collagen peptide from jellyfish (rhopilema esculentum). J Sci Food Agric,2009,89(10): 1722-1727.
    25. Vandanjon L, Grignon M, Courois E, et al. Fractionating white fish fillet hydrolysates by ultrafiltration and nanofiltration. J. Food Eng.,2009,95(1):36-44.
    26. Theodore A E, Raghavan S, Kristinsson H G Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates. J Agric Food Chem,2008,56(16):7459-7466.
    27. Samaranayaka A G P, Li-Chan E C Y. Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from pacific hake(merluccius productus). Food Chem,2008,107(2):768-776.
    28. Jia J, Zhou Y, Lu J, et al. Enzymatic hydrolysis of alaska pollack (theragra chalcogramma) skin and antioxidant activity of the resulting hydrolysate. J Sci Food Agric,2010,90(4): 635-640.
    29. Bougatef A, Nedjar-Arroume N, Manni L, et al. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (sardine/la aurita) by-products proteins. Food Chem,2010,118(3):559-565.
    30. Je J Y, Lee K H, Lee M H, et al. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Res Int,2009,42(9):1266-1272.
    31. Je J Y, Qian Z J, Lee S H, et al. Purification and antioxidant properties of bigeye tuna (thunnus obesus) dark muscle peptide on free radical-mediated oxidative systems. J Med Food,2008,11(4):629-637.
    32. Je J Y, Park P J, Kim S K. Antioxidant activity of a peptide isolated from alaska pollack (theragra chalcogramma) frame protein hydrolysate. Food Res Int,2005,38(1):45-50.
    33. Liu Q, Kong B, Xiong Y L. et al. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem,2010, 118(2):403-410.
    34. Xu X M, Cao R Y, He L, et al. Antioxidant activity of hydrolysates derived from porcine plasma. J Sci Food Agric,2009,89(11):1897-1903.
    35. Liu Q, Kong B, Jiang L, et al. Free radical scavenging activity of porcine plasma protein hydrolysates determined by electron spin resonance spectrometer. LWT-Food Sci Technol, 2009,42(5):956-962.
    36. Li B, Chen F, Wang X, et al. Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem,2007,102(4):1135-1143.
    37. Chang C, Wu K, Chiang S. Antioxidant properties and protein compositions of porcine hemoglobin hydrolysates. Food Chem,2007,100(4):1537-1543.
    38. You S J, Udenigwe C C, Aluko R E, et al. Multifunctional peptides from egg white lysozyme. Food Res Int,2010,43(3):848-855.
    39. Manso M A, Miguel M, Even J, et al. Effect of the long-term intake of an egg white hydrolysate on the oxidative status and blood lipid profile of spontaneously hypertensive rats. Food Chem,2008,109(2):361-367.
    40. Zhang J, Zhang H, Wang L, et al. Antioxidant activities of the rice endosperm protein hydrolysate:Identification of the active peptide. Eur Food Res Technol,2009,229(4):709-719.
    41. Li X, Han L, Chen L. In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal. J Sci Food Agric,2008,88(9):1660-1666.
    42. Guo H, Sun J, He H, et al. Antihepatotoxic effect of com peptides against bacillus calmette-guerin/lipopolysaccharide-induced liver injury in mice. Food Chem Toxicol,2009, 47(10):2431-2435.
    43. Zhu L, Chen J, Tang X, et al. Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. J Agric Food Chem,2008,56(8):2714-2721.
    44. Wang J, Zhao M, Zhao Q, et al. Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chem,2007,101(4):1658-1663.
    45. Kong X, Zhou H, Hua Y. Preparation and antioxidant activity of wheat gluten hydrolysates (WGHS) using ultrafiltration membranes. J Sci Food Agric,2008,88(5):920-926.
    46. Park E Y, Morimae M, Matsumura Y, et al. Antioxidant activity of some protein hydrolysates and their fractions with different isoelectric points. J Agric Food Chem,2008, 56(19):9246-9251.
    47. Kudo K, Onodera S, Takeda Y, et al. Antioxidative activities of some peptides isolated from hydrolyzed potato protein extract. J Funct Foods,2009,1(2):170-176.
    48. Pihlanto A, Akkanen S, Korhonen H J. Ace-inhibitory and antioxidant properties of potato (solanum tuberosum). Food Chem.,2008,109(1):104-112.
    49. Wang L L, Xiong Y L. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato prgtein is related to its reducing and radical scavenging ability. J Agric Food Chem, 2005,53(23):9186-9192.
    50. Zhang L, Li J, Zhou K. Chelating and radical scavenging activities of soy protein hydrolysates prepared from microbial proteases and their effect on meat lipid peroxidation. Bioresoure Technol,2010,101(7):2084-2089.
    51. Park S Y, Lee J S, Baek H H, et al. Purification and characterization of antioxident peptides from soy protein hydrolysate J Food Biochem,2010,34:120-132.
    52. Lee J S, Yoo M A, Koo S H, et al. Antioxidant and ace inhibitory activities of soybean hydrolysates:Effect of enzyme and degree of hydrolysis. Food Sci Biotechnol,2008, 17(4):873-877.
    53. Farzamirad V, Aluko R E. Angiotensin-converting enzyme inhibition and free-radical scavenging properties of cationic peptides derived from soybean protein hydrolysates. Int J Food Sci Nutr,2008,59(5):428-437.
    54. Fan J F, Saito M, Yanyan Z, et al. Gel-forming ability and radical scavenging activity of soy protein hydrolysate treated with transglutaminase. J Food Sci,2005,70(1):C87-C92.
    55. Jamdar S N, Rajalakshmi V, Pednekar M D, et al. Influence of degree of hydrolysis on functional properties, antioxidant activity and ace inhibitory activity of peanut protein hydrolysate. Food Chem,2010,121(1):178-184.
    56. Hwang J Y, Shyu Y S, Wang Y T, et al. Antioxidative properties of protein hydrolysate from defatted peanut kernels treated with esperase. LWT-Food Sci Technol,2010,43(2):285-290.
    57. Chen G, Zhao L, Zhao L, et al. In vitro study on antioxidant activities of peanut protein hydrolysate. J Sci Food Agric,2007,87(2):357-362.
    58. Ma Y, Xiong Y L, Zhai J, et al. Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein. Food Chem,2010,118(3):582-588.
    59. Tang C, Peng J, Zhen D, et al. Physicochemical and antioxidant properties of buckwheat (fagopyrum esculentum moench) protein hydrolysates. Food Chem,2009,115(2):672-678.
    60. Ma Y, Xiong Y L. Antioxidant and bile acid binding activity of buckwheat protein in vitro digests. J Agric Food. Chem,2009,57(10):4372-4380.
    61. Pownall T L, Udenigwe C C, Aluko R E. Amino acid composition and antioxidant properties of pea seed (pisum sativum l.) enzymatic protein hydrolysate fractions. J Agric Food Chem,2010,58(8):4712-4718.
    62. Humiski L M, Aluko R E. Physicochemical and bitterness properties of enzymatic pea protein hydrolysates. J Food Sci,2007,72(8):S605-S611.
    63. Decker E A, Warner K, Richards M P, et al. Measuring antioxidant effectiveness in food. J Agric Food Chem,2005,53(10):4303-4310.
    64. Alamed J, Chaiyasit W, McClements D J, et al. Relationships between free radical scavenging and antioxidant activity in foods. J Agric Food Chem,2009,57(7):2969-2976.
    65. Phanturat P, Benjakul S, Visessanguan W, et al. Use of pyloric caeca extract from bigeye snapper(priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity. LWT-Food Sci Technol,2010,43(1):86-97.
    66. Thiansilakul Y, Benjakul S, Shahidi F. Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. J Food Biochem,2007,31(2):266-287.
    67. Al-Saikhan M S, Howard L R, Miller J C. Antioxidant activity and total phenolics in different genotypes of potato (solanum tuberosum, l.). J Food Sci,1995,60(2):341-343.
    68. Tang C, Wang X, Yang X. Enzymatic hydrolysis of hemp (cannabis sativa l.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates. Food Chem,2009,114(4):1484-1490.
    69. Hogan S, Zhang L, Li J R, et al. Development of antioxidant rich peptides from milk protein by microbial proteases and analysis of their effects on lipid peroxidation in cooked beef. Food Chem,2009,117(3):438-443.
    70. Sakanaka S, Tachibana Y. Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates. Food Chem, 2006,95(2):243-249.
    71. Sakanaka S, Tachibana Y, Ishihara N, et al. Antioxidant properties of casein calcium peptides and their effects on lipid oxidation in beef homogenates. J Agric Food Chem,2005, 53(2):464-468.
    72. Wang L L, Xiong Y L. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. J Agric Food Chem, 2005,53(23):9186-9192.
    73. Diaz M, Decker E A. Antioxidant mechanisms of caseinophosphopeptides and casein hydrolysates and their application in ground beef. J Agric Food Chem,2004,52(26):8208-8213.
    74. Nieto G, Castillo M, Xiong Y L, et al. Antioxidant and emulsifying properties of alcalase-hydrolyzed potato proteins in meat emulsions with different fat concentrations. Meat Scie,2009,83(1):24-30.
    75.石丽梅,唐学燕,何志勇等.玉米抗氧化肽对于中式香肠的氧化稳定性的影响[J].食品科技,2008,33(10):135—139.
    76.冯颖.马铃薯资源的开发利用[J].粮油加工与食品机械,2001,1(4):11—12.
    77.吴文标.马铃薯浓缩蛋白制品的功能性质评价[J].中国马铃薯,2000,14(2):76—78.
    78.朴金苗,都凤华,齐斌.马铃薯分离蛋白的溶解性和乳化性研究[J].食品科学,2009,30(17):91—94.
    79.朴金苗,都凤华,齐斌.马铃薯分离蛋白凝胶的制备及其性质研究[J].食品科学,2009,30(22):108—111.
    80.吕建国,安兴才.膜技术回收马铃薯淀粉废水中蛋白质的中试研究[J].中国食物与营养,2008,(4):37—-40.
    81.赵晶,王雪飞,白扬.酶法水解马铃薯蛋白技术的研究[J].食品科技,2008,33(8):48—50.
    82.赵晶,陈玲玲.利用马铃薯蛋白的酶水解物制备肉味香精的研究[J].中国调味品,2008,(9):77—79,83.
    83.张泽生,郭宝芹,刘素稳.不同酶水解马铃薯蛋白的分析、评价[J].食品研究与开发,2009,30(1):112—114.
    84. Pots A M, Gruppen H, Rob van Diepenbeek, et al. The effect of storage of whole potatoes of three cultivars on the patatin and protease inhibitor content; a study using capillary electrophoresis and Maldi-TOF mass spectrometry. J Sci Food Agric,1999,79(12):1557-1564.
    85. Liu Y, Han C, Lee M, et al. Patatin, the tuber storage protein of potato (Solanumtuberosum L.),exhibits antioxidant activity in vitro. J Agric Food Chem,2003,51(15):4389-4393.
    86. Kudoh K, Matsumoto M, Onodera S, et al. Antioxidative activity and protective effect against ethanol-induced gastric mucosal damage of a potato protein hydrolysate. J Nutr Sci Vitaminol,2003,49(6):451-455.
    87. Liyanage R, Han K H, Watanabe S, et al.Potato and soy peptide diets modulate lipid metabolism in rats. Biosci Biotechnol Biochem,2008,72(4):943-950.
    88. Liyanage R., Han K-H, Shimada K-I, et al. Potato and soy peptides alter caecal fermentation and reduce serum non-HDL cholesterol in rats fed cholesterol. Eur J Lipid Sci Technol,2009,111(9):884-892.
    89. Liyanage R, Minamino S, Nakamura Y, et al. Preparation method modulates hypocholesterolaemic responses of potato peptides. J Funct Foods,2010,2(2):118-125.
    90. Kamnerdpetch C, Weiss M, Kasper C, et al. An improvement of potato pulp protein hydrolyzation process by the combination of protease enzyme systems. Enzyme Microb Technol,2007,40(4):508-514.
    91. Seo W H, Lee H G, Baek H H. Evaluation of bitterness in enzymatic hydrolysates of soy protein isolate by taste dilution analysis. J. Food Sci.,2008,73(1):S41-S46.
    92. McClements D J, Decker E A. Lipid oxidation in oil-in-water emulsions:Impact of molecular environment on chemical reactions in heterogeneous food systems. J. Food Sci., 2000,65(8):1270-1282.
    93. Gorelik S, Lapidot T, Shaham I, et al. Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fluid inhibited by dietary polyphenols:Health implications. J Agric Food Chem,2005,53(9):3397-3402.
    94. Chen H-M, Muramoto K, Yamauchi F, et al. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J Agric Food Chem,1996,44(9):2619-2623.
    95. Ghosh A, Ali M A, Dias G J. Effect of cross-linking on microstructure and physical performance of casein protein. Biomacromolecules,2009,10(7):1681-1688.
    96. Joseph P, Suman S P, Mancini R A, et al. Mass spectrometric evidence for aldehyde adduction in carboxymyoglobin. Meat Sci,2009,83(3):339-344.
    97. Nielsen H K, Finot P A, Hurrell R F. Reactions of proteins with oxidizing lipids. Br J Nutr, 1985,53(01):75-86.
    98. Addis P B. Occurrence of lipid oxidation products in foods. Food Chem Toxicol,1986, 24(10-11):1021-1030.
    99. Kubow S. Routes of formation and toxic consequences of lipid oxidation products in foods. Free Radical Biol Med,1992,12(1):63-81.
    100. Labrador V, Fernandez Freire P, Perez Martin J, et al. Cytotoxicity of butylated hydroxyanisole in vero cells. Cell Biol Toxicol,2007,23(3):189-199.
    101. Kanner J. Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol Nutr Food Res,2007,51(9):1094-1101.
    102. Burg A, Silberstein T, Yardeni G, et al. Role of radicals in the lipid peroxidation products of commercial infant milk formula. J Agric Food Chem,2010,58(4):2347-2350.
    103. Mancuso J R, McClements D J, Decker E A. The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions. J Agric Food Chem,1999, 47(10):112-4116.
    104. Mancuso J R, McClements D J, Decker E A. Iron-accelerated cumene hydroperoxide decomposition in hexadecane and trilaurin emulsions. J Agric Food Chem,2000,48(2):213-219.
    105. Mei L, Decker E A, McClements D J. Evidence of iron association with emulsion droplets and its impact on lipid oxidation. J Agric Food Chem,1998,46(12):5072-5077.
    106. Mei L, McClements D J, Wu J, et al. Iron-catalyzed lipid oxidation in emulsion as affected by surfactant, pH and Nacl. Food Chem.,1998,61(3):307-312.
    107. Nuchi C D, McClements D J, Decker E A. Impact of tween 20 hydroperoxides and iron on the oxidation of methyl linoleate and salmon oil dispersions. J Agric Food Chem,2001, 49(10):4912-4916.
    108. Coupland J N, McClements D J. Lipid oxidation in food emulsions. Trends Food Sci Technol,1996,7(3):83-91.
    109. Kellerby S S, McClements D J, Decker E A. Role of proteins in oil-in-water emulsions on the stability of lipid hydroperoxides. J Agric Food Chem,2006,54(20):7879-7884.
    110. Hu M, McClements D J, Decker E A. Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in-water emulsions. J Agric Food Chem,2003,51(5):1435-1439.
    111. Hu M, McClements D J, Decker E A. Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate. J Agric Food Chem,2003, 51(6):1696-1700.
    112. Donnelly J L, Decker E A, McClements D J. Iron-catalyzed oxidation of menhaden oil as affected by emulsifiers. J Food Sci,1998,63(6):997-1000.
    113. Dalgleish D G, Srinivasan M, Singh H. Surface properties of oil-in-water emulsion droplets containing casein and tween 60. J Agric Food Chem,1995,43(9):2351-2355.
    114. Silvestre M P, Chaiyasit W, Brannan R G, et al. Ability of surfactant headgroup size to alter lipid and antioxidant oxidation in oil-in-water emulsions. J Agric Food Chem,2000, 48(6):2057-2061.
    115. Guzey D, McClements D J. Fomation, stability and properties of multilayer emulsions for application in the food industry. Adv Colloid Interface Sci,2006,128-130:227-248.
    116. Shaw L A, McClements D J, Decker E A. Spray-dried multilayered emulsions as a delivery method for omega-3 fatty acids into food systems. J Agric Food Chem,2007,55(8): 3112-3119.
    117. Klinkesom U, Sophanodora P, Chinachoti P, et al.Stability of spray-dried tuna oil emulsions encapsulated with two-layered interfacial membranes. J Agric Food Chem,2005, 53(21):8365-8371.
    118. Klinkesorn U, Sophanodora P, Chinachoti P, et al. Increasing the oxidative stability of liquid and dried tuna oil-in-water emulsions with electrostatic layer-by-layer deposition technology. J Agric Food Chem,2005,53(11):4561-4566.
    119. Katsuda M S, McClements D J, Miglioranza L H, et al. Physical and oxidative stability of fish oil-in-water emulsions stabilized with p-lactoglobulin and pectin. Formation, stability and properties of multilayer emulsions for application in the food industry.2008,56(14):5926-5931.
    120. Hou Z, Gao Y, Yuan F, et al. Investigation into the physicochemical stability and rheological properties of β-carotene emulsion stabilized by soybean soluble polysaccharides and chitosan. J Agric Food Chem,2010,58(15):8604-8611.
    121. Ye A, Singh H. Formation of multilayers at the interface of oil-in-water emulsion via interactions between lactoferrin and β-lactoglobulin. Food Biophysics,2007,2(4):125-132.
    122. Heins A, Sokolowski T, Stockmann H, et al. Investigating the location of propyl gallate at surfaces and its chemical microenvironment by 1H NMR. Lipids,2007,42(6):561-572.
    123. Stockmann H, Schwarz K, Huynh-Ba T. The influence of various emulsifiers on the partitioning and antioxidant activity of hydroxybenzoic acids and their derivatives in oil-in-water emulsions. J Am Oil Chem Soc,2000,77(5):535-542.
    124. Huang S W, Hopia A, Schwarz K, et al. Antioxidant activity of a-tocopherol and trolox in different lipid substrates:Bulk oils vs oil-in-water emulsions. J Agric Food Chem,1996, 44(2):444-452.
    125. Huang S W, Frankel E N, Schwarz K, et al. Antioxidant activity of camosic acid and methyl carnosate in bulk oils and oil-in-water emulsions. J Agric Food Chem,1996,44(10): 2951-2956.
    126. Porter W. Paradoxical behavior of antioxidants in food and biological systems. Toxicol. Ind. Health,1993,9 (1-2):93-122.
    127. Hopia A I, Huang S W, Schwarz K, et al. Effect of different lipid systems on antioxidant activity of rosemary constituents carnosol and carnosic acid with and without a-tocopherol. J Agric Food Chem,1996,44(8):2030-2036.
    128. Frankel E N, Huang S W, Aeschbach R, et al. Antioxidant activity of a rosemary extract and its constituents, camosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. J Agric Food Chem,1996,44(1):131-135.
    129. Frankel E N, Huang S W, Kanner J, et al. Interfacial phenomena in the evaluation of antioxidants:Bulk oils vs emulsions. J Agric Food Chem,1994,42(5):1054-1059.
    1. Wang L L, Xiong Y L. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. J Agric Food Chem, 2005,53(23):9186-9192.
    2. Nieto G, Castillo M, Xiong Y L, et al. Antioxidant and emulsifying properties of alcalase-hydrolyzed potato proteins in meat emulsions with different fat concentrations. Meat Sci,2009,83(1):24-30.
    3. Elias R J, Bridgewater J D, Vachet R W, et al. Antioxidant mechanisms of enzymatic hydrolysates of β-lactoglobulin in food lipid dispersions. J Agric Food Chem,2006,54(25): 9565-9572.
    4. Diaz M, Decker E A. Antioxidant mechanisms of caseinophosphopeptides and casein hydrolysates and their application in ground beef. J Agric Food Chem,2004,52(26):8208-8213.
    5. Ramirez-Suarez J C, Xiong Y L. Rheological properties of mixed muscle/nonmuscle protein emulsions treated with transglutaminase at two ionic strengths. Int J Food Sci Tech, 2003,38(7):777-785.
    6. AOCS. Peroxide value acetic acid-chloroform method. In Official methods and recommended practices of AOCS,5th ed.; American Oil Chemists'Society:Champaign, IL, 1999,8-53..
    7. Mei L, McClements D J, Wu J, et al. Iron-catalyzed lipid oxidation in emulsion as affected by surfactant, pH and NaCl. Food Chem,1998,61(3):307-312.
    8. Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the folin phenol reagent. J Biol Chem,1951,193(1):265-275.
    9. Huang S W, Frankel E N, Aeschbach R, et al. Partition of selected antioxidants in corn oil-water model systems. J Agric Food Chem,1997,45(6):1991-1994.
    10. L?kra S, Helland M H, Claussen I C, et al. Chemical characterization and functional properties of a potato protein concentrate prepared by large-scale expanded bed adsorption chromatography. LWT-Food Sci Technol,2008,41(6):1089-1099.
    11. Ralet M-C, Gueguen J. Fractionation of potato proteins:Solubility, thermal coagulation and emulsifying properties. LWT-Food Sci Technol,2000,33(5):380-387.
    12. Holm F, Eriksen S. Emulsifying properties of undenatured potato protein concentrate. Int J Food Sci Tech,1980,15(1):71-83.
    13. vanKoningsveld G A, Walstra P, Voragen A G J, et al. Effects of protein composition and enzymatic activity on formation and properties of potato protein stabilized emulsions. J Agric Food Chem,2006,54(17):6419-6427.
    14. Diaz M, Dunn C M, McClements D J, et al. Use of caseinophosphopeptides as natural antioxidants in oil-in-water emulsions. J Agric Food Chem,2003,51(8):2365-2370.
    15. Richards M P, Chaiyasit W, McClements D J, et al. Ability of surfactant micelles to alter the partitioning of phenolic antioxidants in oil-in-water emulsions. J Agric Food Chem,2002, 50(5):1254-1259.
    16. Kerstens S, Murray B S, Dickinson E. Microstructure of β-lactoglobulin-stabilized emulsions containing non-ionic surfactant and excess free protein:Influence of heating. J.Colloid Interface Sci,2006,296(1):332-341.
    17. Donnelly J L, Decker E A, McClements D J. Iron-catalyzed oxidation of menhaden oil as affected by emulsifiers. J Food Sci,1998,63(6):997-1000.
    18. Girardet J M, Humbert G, Creusot N, et al. Dilational rheology of mixed β-casein/tween 20 and β-casein (fl 14-169)/tween 20 films at oil-water interface. J Colloid Interface Sci,2001, 243(2):515-522.
    19. Elias R J, Kellerby S S, Decker E A. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr,2008,48(5):430-441.
    20. Frankel E N, Meyer A S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric,2000,80(13):1925-1941.
    1. Tang X, He Z, Dai Y, et al. Peptide fractionation and free radical scavenging activity of zein hydrolysate. J Agric Food Chem,2009,58(1):587-593;
    2. Peng X, Xiong Y L, Kong B. Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chem,2009,113(1):196-201;
    3. Ma Y, Xiong Y L, Zhai J, et al. Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein. Food Chem,2010,118(3):582-588;
    4. Klompong V, Benjakul S, Yachai M, et al. Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (selaroides leptolepis). J Food Sci, 2009,74(2):C 126-C133;
    5. Jung W K, Qian Z J, Lee S H, et al. Free radical scavenging activity of a novel antioxidative peptide isolated from in vitro gastrointestinal digests of mytilus coruscus. J Med Food,2007,10(1):197-202;
    6. Theodore A E, Raghavan S, Kristinsson H G.Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates. J Agric Food Chem,2008, 56(16):7459-7466;
    7. Dong S, Zeng M, Wang D, et al. Antioxidant and biochemical properties of protein hydrolysates prepared from silver carp (hypophthalmichthys molitrix). Food Chem,2008, 107(4):1485-1493;
    8. Diaz, M, Decker, E A. Antioxidant mechanisms of caseinophosphopeptides and casein hydrolysates and their application in ground beef. J Agric Food Chem,2004,52(26):8208-8213.
    9. Mendis E, Rajapakse N, Byun H-G, et al. Investigation of jumbo squid (dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci,2005,77(17):2166-2178;
    10. Penta-Ramos E A, Youling L. Xiong, Arteaga G E. Fractionation and characterisation for antioxidant activity of hydrolysed whey protein. J Sci Food Agric,2004,84(14):1908- 1918;
    11. Panyam D, Kilara A. Emulsifying peptides from the tryptic hydrolysis of casein. J. Food Sci,2004,69(3):FCT154-FCT163;
    12. Mei L, McClements D J, Wu J, et al. Iron-catalyzed lipid oxidation in emulsion as affected by surfactant, pH and NaCl. Food Chem,1998,61(3):307-312;
    13. Wang L L, Xiong Y L. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. J Agric Food Chem, 2005,53(23):9186-9192;
    14. Decker E A, Warner K, Richards M P, et al. Measuring antioxidant effectiveness in food.J Agric Food Chem,2005,53(10):4303-4310;
    15. Shahidi F, Wanasundara U N, Methods for measuring oxidative rancidity in fats and oils. In Food lipids:Chemistry, nutrition, and biotechnology, Casimir C A; Min D B, Eds. CRC: Boca Raton, Fla 2008.396;
    16. Joseph P, Suman S P, Mancini R A, et al. Mass spectrometric evidence for aldehyde adduction in carboxymyoglobin. Meat Sci,2009,83(3):339-344;
    17. Ghosh A, Ali M A, Dias G J. Effect of cross-linking on microstructure and physical performance of casein protein. Biomacromolecules,2009,10(7):1681-1688;
    18. Burcham P C, Kuhan Y T. Introduction of carbonyl groups into proteins by the lipid peroxidation product, malondialdehyde. Biochem Biophys Res Commun,1996,220(3):996-1001;
    19. Nielsen H K, Finot P A, Hurrell R F. Reactions of proteins with oxidizing lipids. Br J Nutri,1985,53(01):75-86;
    20. Pignoli G, Bou R, Rodriguez-Estrada M T, et al. Suitability of saturated aldehydes as lipid oxidation markers in washed turkey meat. Meat Sci,2009,83(3):412-416;
    21.何晓群主编.多元统计分析[M].第二版.北京:人民大学出版社,2008.152—174。
    1. Wang L L, Xiong Y L. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. J Agric Food Chem, 2005,53(23):9186-9192.
    2. Nieto G, Castillo M, Xiong Y L, et al. Antioxidant and emulsifying properties of alcalase-hydrolyzed potato proteins in meat emulsions with different fat concentrations. Meat Sci, 2009,83(1):24-30;
    3.何美玉.现代有机与生物质谱[M].北京大学出版:北京,2002.163—174.
    4. Kitts D D, Weiler K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des,2003,9(16):1309-1323.
    5. Tang X, He Z, Dai Y, et al. Peptide fractionation and free radical scavenging activity of zein hydrolysate. J Agric Food Chem,2009,58(1):587-593.
    6. Liu Q, Kong B, Xiong Y L, et al. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem,2010, 118(2):403-410.
    7. Stadtman E R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem,1993,62(1):797-821.
    8. Elias R J, Bridgewater J D, Vachet R W, et al. Antioxidant mechanisms of enzymatic hydrolysates of β-lactoglobulin in food lipid dispersions. J Agric Food Chem,2006, 54(25):9565-9572.
    9. Stadtman E R, Levine R L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids,2003,25(3):207-218.
    10. Malencik D A, Anderson S R. Dityrosine as a product of oxidative stress and fluorescent probe. Amino Acids,2003,25(3):233-247.
    11. Hernandez-Ledesma B, Davalos A, Bartolome B, et al. Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J Agric Food Chem,2005,53(3):588-593.
    12. Byun H-G, Lee J K, Park H G, et al. Antioxidant peptides isolated from the marine rotifer, brachionus rotundiformis. Process Biochem,2009,44(8):842-846.
    13. Park P-J, Jung W-K, Nam K-S, et al. Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk. J Am Oil Chem Soc,2001, 78(6):651-656.
    14. Pihlanto A. Antioxidative peptides derived from milk proteins. Int Dairy J,2006,16(11): 1306-1314.
    15. Park E Y, Morimae M, Matsumura Y, et al. Antioxidant activity of some protein hydrolysates and their fractions with different isoelectric points. J Agric Food Chem,2008, 56(19):9246-9251.
    16. Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J Agric Food Chem,2003,51(12):3661-3667.
    17. Gul?in I. Comparison of in vitro antioxidant and antiradical activities or 1-tyrosine and 1-dopa. Amino Acids,2007,32(3):431-438.
    18. Kudo K, Onodera S, Takeda Y, et al. Antioxidative activities of some peptides isolated from hydrolyzed potato protein extract. J Funct Foods,2009,1(2):170-176.
    19. Chen H-M, Muramoto K, Yamauchi F, et al. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem,1998,46(1):49-53.
    20.杨梵原,钱小红,盛龙生.生物质谱技术与方法[M].科学出版社:北京,2003.102—160
    1. Nuchi C D, Hernandez P, McClements D J, et al. Ability of lipid hydroperoxides to partition into surfactant micelles and alter lipid oxidation rates in emulsions. J Agric Food Chem,2002,50(19):5445-5449.
    2. Elias R J, Kellerby S S, Decker E A. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutri,2008,48(5):430-441.
    3. McClements D J, Decker E A. Lipid oxidation in oil-in-water emulsions:Impact of molecular environment on chemical reactions in heterogeneous food systems. J Food Sci, 2000,65(8):1270-1282.
    4. Klinkesorn U, Sophanodora P, Chinachoti P, et al. Stability of spray-dried tuna oil emulsions encapsulated with two-layered interfacial membranes. J Agric Food Chem,2005, 53(21):8365-8371.
    5. Klinkesorn U, Sophanodora P, Chinachoti P, et al. Increasing the oxidative stability of liquid and dried tuna oil-in-water emulsions with electrostatic layer-by-layer deposition technology. J Agric Food Chem,2005,53(11):4561-4566.
    6. Ogawa S, Decker E A, McClements D J. Influence of environmental conditions on the stability of oil in water emulsions containing droplets stabilized by lecithin-chitosan membranes. J Agric Food Chem,2003,51(18):5522-5527.
    7. Dufour E, Dalgalarrondo M, Adam L. Conformation of β-lactoglobulin at an oil/water interface as determined from proteolysis and spectroscopic methods. J Colloid Interface Sci, 1998,207(2):264-272.
    8. Johnson D J, Miles N J, Hilal N. Quantification of particle-bubble interactions using atomic force microscopy:A review. Adv Colloid Interface Sci,2006,127(2):67-81.
    9. Yang H, Wang Y, Lai S, et al. Application of atomic force microscopy as a nanotechnology tool in food science. J Food Sci,2007,72(4):R65-R75.
    10. Girardet J M, Humbert G, Creusot N, et al. Dilational rheology of mixed β-casein/tween 20 and β-casein (f114-169)/tween 20 films at oil-water interface. J Colloid Interface Sci,2001, 243(2):515-522.
    11.朱传凤,往琛,扫描探针显微术应用进展[M].化学工业出版社:北京,2007.1-9.
    12. Kerstens S, Murray B S, Dickinson E. Microstructure of β-lactoglobulin-stabilized emulsions containing non-ionic surfactant and excess free protein:Influence of heating. J Colloid Interface Sci,2006,296(1):332-341.
    13. Gallier S, Gragson D, Jimnez-FIores R, et al. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. J Agric Food Chem,2010, 58(7):4250-4257.
    14. Sharma R, Singh H, Tayler M W. Composition and structure of fat globule surface layers in recombined milk. J Food Sci,1996,61(1):28-32.
    15. Zhang Z, Goff H D. On fat destabilization and composition of the air interface in ice cream containing saturated and unsaturated monoglyceride. Int Dairy J,2005,15(5):495-500.
    16. Zhang Z, Goff H D. Protein distribution at air interfaces in dairy foams and ice cream as affected by casein dissociation and emulsifiers. Int Dairy J,2004,14(7):647-657.
    17. Cho Y J, McClements D J, Decker E A. Ability of surfactant micelles to alter the physical location and reactivity of iron in oil-in-water emulsion, J Agric Food Chem,2002, 50(20):5704-5710.
    18. Kitts D D, Weiler K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Design,2003,9(16):1309-1323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700