固体氧化物电极表面反应过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种高效、清洁的能源转换装置。其输出性能与材料选择、结构设计有着密切的关系。本论文针对特定的微结构和材料设计,提出定量表征固体氧化物电极的表面反应过程和协同作用的实验方法,讨论表面反应与结构力学稳定性的关系,并提出微观力学参数的测定新方法。
     提出了阴极反应的一个控制步骤,并从理论和实验上进行了验证。针对阴极的氧气还原反应主导电池极化电阻的问题,论文第二章首先探讨了阴极的表面反应。通常认为,阴极反应是由发生在电极表面的一系列的氧气还原基元步骤组成的。为了表征电解质对阴极性能的影响,本工作假定氧跨越电解质-电极界面的步骤同样作为阴极反应的一个步骤。在此基础上,通过动力学可以推导出阴极极化(Rp)与环境氧分压(pO2)和电解质电导率(σ)的关系,简单表示为:Rp∝σlPo2n。其中l和n为不同限速步骤对应的控制参数。在实验上,采用SmxCe1-xO2-δ作为电解质材料,并通过改变掺杂量(x)对电解质电导率进行调控。以La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)为阴极,采用交流阻抗法测量不同电解质对应的界面极化阻抗。通过分析阻抗谱,高频部分可以拟合成一个Warburg元件。拟合结果显示高频极化阻抗随着电解质电阻率的增大而线性增大。因此,对比理论结果可知高频极化阻抗对应氧跨越电解质-电极界面的限速步骤。
     提出用电导弛豫法(ECR)研究阳极的表面反应过程,给出了一种测试三相界面反应速率的实验方法。论文第三章探讨了在还原性气氛下氧化铈基材料的表面还原过程,并且通过表面反应常数表征氧化铈基材料的催化氧化燃料的反应能力。对于Gd0.1Ce0.9O2-δ,采用ECR的测量结果与文献中采用重量弛豫法的测量结果基本相同,说明ECR可以用作氧化铈基材料的表面反应过程的测量。当测量试样的扩散尺寸约为0.3mm时,电导弛豫过程主要由表面反应步骤决定,与体相传输步骤基本无关。对于不同元素(La, Y, Sm和Gd)及不同含量(0~30%mol)掺杂的氧化铈材料,Sm0.2Ce0.802-δ(SDC)具有最高的表面反应速率常数。因此,SDC最适合作为阳极中的电解质组分。此外,采用同样的方法研究了表面晶界密度对表面反应的影响。当温度低于700℃时,晶界的表面反应速率明显大于晶内,所以可以通过降低烧结温度提高晶界密度的方法提升SOFC性能。论文第四章采用同样的方法,探讨了在还原性气氛下金属Pt或Au表面修饰的SDC的表面电化学反应过程。当在SDC表面引入金属Pt的颗粒时,表面反应速率得到明显提高。作为对比,当在SDC表面采用同样的方法引入金属Au的颗粒时,表面反应速率未得到提高。由于Au的存在降低了SDC衬底的反应面积,弛豫平衡时间稍有增长。另外,通过定量分析金属增强的表面反应常数与表面微结构的关系,可以确定金属Pt表面修饰的SDC的表面电化学反应,主要发生在Pt-SDC的交界线处。
     提出并验证了复合材料体系的ECR方法,实现复合材料的表面反应过程的定量表征。论文第五章采用ECR方法研究双相复合材料的表面反应过程。选择不同组分配比的Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9(SFM-SDC)为研究对象。实验结果表明,SDC的加入可以明显增强SFM的表面反应动力学过程。在理论分析中,这种增强作用表示为SFM与SDC的协同反应过程。当测试氧分压在0.01到1atm之间突然增大时,氧从环境气氛进入到氧化物,表面反应为阴极的氧气还原过程。协同反应量对总反应量的贡献可高达92%。通过定量分析协同反应速率与表面微结构的关系,发现氧气在SFM-SDC复相表面的氧气还原反应,不仅仅集中在SFM-SDC的交界线处,协同反应可以向SDC表面扩展。此外,协同效应可以通过表观表面反应常数简单计算。表观表面反应常数与单相SFM的反应常数不仅表示了协同反应速率的大小,还可以反映出协同反应的贡献率。当测试气氛从湿润的H2/Ar(60:40)切换到湿润的H2或者从CO/CO2(1:1)切换到CO/CO2(2:1)时,氧从氧化物中脱出,表面反应为阳极的燃料氧化过程,表面协同贡献率可达70%。同样,SFM与SDC之间的协同反应作用可以通过对比复相材料与单相材料的弛豫曲线获得。随着SDC含量的增大,通过协同反应路径脱出氧的含量增大。通过定量分析初始协同反应速率与表面微结构的关系可以确定SFM-SDC复相表面电化学反应的限速步骤。当测试气氛从湿润的H2/Ar(60:40)切换到湿润的H2时,表面协同反应速率与SFM-SDC界线线性相关,说明H2在SFM-SDC界线处的反应为限速步骤。当测试气氛从CO/CO2(1:1)切换到CO/CO2(2:1)时,反应速率与SDC的颗粒大小相关,说明带电氧物种在SDC表面的迁移步骤为限速步骤。
     提出并验证了表面反应与结构力学稳定性的关系,并提出微观断裂力学参数的测定新方法。论文第六章讨论了表面反应与断裂力学行为的关系。在给定的试样与一定的温度条件下,结合菲克第二定律、材料的化学膨胀行为和氧传输行为,可以从理论上获得试样的表面反应对试样力学分布和变化的影响。由于较小的结构尺寸对应着较小的扩散距离,表面反应产生的最大表面应力较小,结构稳定性较高。通过表面修饰可以提高表面反应常数,但是,较大的表面反应常数对应着较大的表面应力,结构稳定性降低。综合分析,表面最大应力由力学模数(ω)的大小决定。较大的ω对应着较大的表面最大应力。实验上,运用电导率的测量反应LSCM的结构稳定性。多孔LSCM在气氛变换的过程中具有良好的稳定性。通过Ni的表面修饰,虽然LSCM的表面反应性能提高,但是结构稳定性下降。此外,为了建立电导率与微观断裂的定量关系,本章的最后提出了一种测量颗粒间的微观断裂力学参数的新方法。选择YSZ-Al2O3多孔复合材料为研究对象,通过测量YSZ-A12O3多孔复合材料在温度循环过程中的电导率变化可以从统计意义上获得YSZ颗粒间的断裂概率。结合YSZ和A1203热膨胀系数差别产生的热应力及Weibull分布或正态分布即可计算得到YSZ微观断裂力学参数。
The solid oxide fuel cell (SOFC) is an energy conversion device that can efficiently convert the chemical energy in fuels to electricity. The performance is sensitive to the materials selection and structure design. In this thesis, efforts are made on the surface reactionprocess and synergistic effect between solid oxides under the decided microstructure and materials, quantificationally. Furthermore, the relationship between surface reaction and mechanical behavior as well as the measurement of mechanical property in micro-scale are also discussed.
     A new elementary step for theoxygen electrochemical reduction is proposed in theory and experimentally confirmed. Oxygen electrochemical reduction at the cathode is studied owing to itsstrong contribution to the polarization losses of SOFC. In chapter two, an elementary step of oxygen vacancy transport across the electrode-electrolyte interface is proposed to demonstrate the electrolyte effect on electrode performance besides a series of elementary steps occurring on the electrode surface. According to the reaction kinetics, the electrode interfacial polarization resistance, Rp, can be theoretically related to the electrolyte conductivity, σ, with a general formula, Rp∝σ1Po2n, where pO2is the oxygen partial pressure at the cathode,l and n are the controlling parameters corresponding to various elementary steps occurred at the electrode-electrolyte interface as well as on the electrode. The oxygen vacancy transport step is experimentally confirmed by analyzing the electrochemical impedance spectra of symmetric cells of porous La0.6Sr0.4Co0.2Fe0.8O3electrodes on samaria-doped ceria electrolytes with different conductivities as a result of various dopant contents. The high frequency resistance, which can be fitted to a Warburg-type element, increases linearly with the electrolyte resistivity, clearly demonstrating that this process corresponds to the transport of oxygen vacancy at the electrode-electrolyte interface, from the electrolyte to the electrode.
     Electrical conductivity relaxation (ECR) technique is proposed to study the surface process of anode and measure the rate at three-phase boundary (TPB). In chapter three, the surface process of doped ceria reduction, i.e. the chemical surface exchange process in reduced atmospheres is studied to characterize their catalytic activity for fuel oxidation. The oxygen surface reaction coefficient of Gd0.1Ce0.902-δ is comparable to that obtained by thermogravimetric measurement, demonstrating the feasibility of ECR method. Usually, when the smallest diffusion thickness of the samples is as low as0.3mm, the ECR process is limited by the surface exchange step and almost independent on the bulk oxygen ion diffusion kinetics. Among various materials of R1.2Ce0.8O2-δ (R=Y, Gd, Sm, La) and SmxCe1-xO2-δ (x=0,0.05,0.1,0.2,0.3), Sm0.2Ce0.802-δ (SDC) exhibits the highest surface exchange coefficient, thus should be promise as the anode component. Moreover, it is found that, at temperature below700℃, surface exchange kinetics at the grain boundary is significantly faster than on the grain, suggesting additional advantage of developing SOFCs by low-temperature sintering. In chapter four, the electrochemistry performance of SDC surface-modified by the metal Pt or Au is studied using the similar method. By introducing Pt particles to the surface, the surface exchange kinetics can be remarkably improved. When Au is also deposited as a contrast, the re-equilibration time slightly increased contrast to SDC substrate caused by the decrease of exchange surface. Moreover, the increased catalytic surface exchange coefficient is linked to the surface microstructure, suggesting that the active site of metal support interaction is the Pt-SDC boundary.
     ECR techniqueis proposed to study the surface process of composites, quantificationally. In chapter five, the oxygen reaction kinetics of Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9(SFM-SDC) dual-phase composites has been investigated as a function of SDC phase volume fraction. It is shown that the surface reaction kinetics of SFM could generally be enhanced by SDC. The enhancement is theoretically analyzed to quantitatively reveal the synergic effect between SFM and SDC on surface reaction. When the oxygen partial pressure is step increased in the range from0.01to1atm, the oxygen incorporation reaction take place at the surface of composites like the oxygen electrochemical reduction in cathode. The synergic effect contributes up to92%of the total amount of oxygen that is incorporated. The synergic rate is affected by the composition as well as the surface microstructure, suggesting the synergic reaction occurs on SDC surface rather than at SFM-SDC boundaries. Moreover, the synergic contribution and rate can be easily calculated with the apparent oxygen surface reaction coefficients (ka) and oxygen surface exchange coefficient for pure SFM (k). When the atmosphere is changed from humidified H2/Ar (60:40) to pure H2, as well as from CO/CO2(1:1) to CO/CO2(2:1), oxygen release from oxide like the anode reaction, the oxygen content of released from SDC and SFM through the synergic route can be calculated from the relaxation curves. The synergic effect contributes as high as70%of the total amount of oxygen that releases form SDC. With the increase of SDC content, the release oxygen through the interaction route increases. Furthermore, the rate of extra oxygen released from the oxides is also calculated. The initial release rates of the interaction between SDC-SFM are related to the surface microstructure parameters. When the atmosphere changes from humidified H2/Ar (60:40) to pure H2, the surface synergic rate is affected by the TPB length, linearly. So, the electriferous oxygen species reacted with the fuel is the rate-limiting step. When the atmosphere is abruptly changed from CO/CO2(1:1) to CO/CO2(2:1), the rate is affected by the size of SDC. That is, the electriferous oxygen species transfer is the rate-limiting step.
     The relationship between surface reaction and mechanical behavior as well as the measurement of mechanical property in micro-scale are discussed in chapter six. A novel method is presented to detect the mechanical stresses by combining the Fick's second law, oxygen surface exchange and oxygen-ion diffusion properties. The surface tensile stress is weak for the smallstructural dimensions due to the short diffusion length. When the surface exchange kinetics is increased by means such as surface modification, the improved surface exchange rate may result in largemechanical stress and the stress loading rate, and consequently, reduce the mechanical stability. A new mechanicalmodulus (ω) is introduced to predict the stress, and larger co means higher mechanical stress. The predictionis experimentally confirmed with (La0.75Sr0.25)0.95Cr0.5Mn0.5O3-δ (LSCM) samples, where the fracture is related to its conductivity. It is found that porous LSCM has excellent stability while fractures are observed with Ni impregnated porous LSCM. Furthermore, a novel method is presented to determine the relationship between micro-fracture mechanics and conductivity, quantificationally. By the measurement of the conductivity change of YSZ-Al2O3composites in thermal cycles, the fracture between YSZ particles caused by thermal stress can be statistically "counted" using the Weibull or normal distribution. And then the parameters in fracture statistics distributions can be calculated with a statistical principle. The method offers a possible way to understand the fracture in microscale.
引文
[1]Badwal SPS, Foger K.1996. Solid oxide electrolyte fuel cell review. Ceramics International, 22:257-265.
    [2]Minh NQ.1993. Ceramic Fuel-Cells. Journal of the American Ceramic Society, 76:563-588.
    [3]Peter I. Cowin, Christophe T. G. Petit, Rong Lan, et al.2011. Recent progress in the development of anode materials for solid oxide fuel cells. Advanced Energy Materials, 1:314-332.
    [4]Sun Chunwen, Hui Rob, Roller Justin.2010. Cathode materials for solid oxide fuel cells:a review. Journal of Solid State Electrochemistry,14:1125-1144.
    [5]V.V. Kharton,F.M.B. Marques, A. Atkinson.2004. Transport properties of solid oxide electrolyte ceramics:a brief review. Solid State Ionics,174:135-149.
    [6]Fergus JW.2006. Electrolytes for solid oxide fuel cells. Journal of Power Sources, 162:30-40.
    [7]Tsipis EV, Kharton W.2008. Electrode materials and reaction mechanisms in solid oxidefuel cells:a brief review. Journal of Solid State Electrochemistry,12:1039-1060.
    [8]Badwal SPS.1992. Zirconia-Based solid electrolytes-microstructure, stability and ionic-conductivity. Solid State Ionics,52:23-32.
    [9]Arachi Y, Sakai H, Yamamoto O, et al.1999. Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system. Solid State Ionics,121:133-139.
    [10]Yamamoto O, Arati Y, Takeda Y, et al.1995. Electrical-conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics,79:137-142.
    [11]Takahashi T, Iwahara H, Arao T.1975. High oxide ion conducting in sintered oxides of thesystem bismuth (Ⅲ) oxide-yttrium oxide. Journal of Applied Electrochemistry, 5:187-195.
    [12]Takahashi T, Iwahara H.1973. High oxide ion conduction in sintered oxides of the system bismuth oxide-tungsten oxide. Journal of Applied Electrochemistry,3:65-72.
    [13]Takahashi T, Esaka T, Iwahara H.1976. Electrical conduction in the sintered oxides of the bismuth oxide-barium oxide systems. Journal of Solid State Chemistry,16:317-323.
    [14]Azad AM, LaroseS, Akbar SA.1994. Bismuth oxide-based solid electrolytes for fuel cells. Journal of Materials Science,29:4135-4151.
    [15]Shuk P, Wiemhofer HD, Guth U, et al.1996. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics,89:179-196.
    [16]Ishihara T, Matsuda H, Takita Y.1994. Doped LaGaO3 Perovskite-type oxide as a new oxide ionic conductor. Journal of the American Chemical Society,116:3801-3803.
    [17]Feng M, Goodenough JB.1994. A superior oxide-ion electrolyte. European Journal of Solid State and Inorganic Chemistry,31:663-672.
    [18]Huang KQ, Tichy R, Goodenough JB.1998. Superior perovskite oxide-ion conductor; strontiumand magnesium-doped LaGaO3:Ⅲ, Performance tests of single ceramic fuel cells. Journal of the American Ceramic Society,81:2581-2585.
    [19]Yamaji K, Horita T, Ishikawa M, et al.1998. Compatibility of La0.9Sr0.1Ga0.8Mg0.2O2.85 as the electrolyte for SOFCs. Solid State Ionics,108:415-421.
    [20]Yamaji K, Horita T, Ishikawa M, et al.1999. Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere. Solid State Ionics, 121:217-224.
    [21]Yamaji K, Negishi H, Horita T, et al.2000. Vaporization process of Ga from doped LaGaO3 electrolytes in reducing atmospheres. Solid State Ionics,135:389-396.
    [22]Inaba H, Tagawa H.1996. Ceria-based solid electrolytes. Solid State Ionics,83:1-16.
    [23]Xiangfeng Guan, Heping Zhou, Yanan Wang, et al.2008. Preparation and properties of Gd3+ and Y3+ co-doped ceria-basedelectrolytes for intermediate temperature solid oxide fuel cells. Journal of Alloys and Compounds,464:310-316.
    [24]S. Omar, E.D. Wachsman, J.C. Nino.2006. A co-doping approach towards enhanced ionic conductivity in fluorite-based electrolytes. Solid State Ionics,177:3199-3203.
    [25]S. Banerjee, P.S. Devi, D. Topwal, et al.2007. Enhanced ionic conductivity in Ce0.8Sm0.2O1.9:unique effect of calcium co-doping. Advanced Functional Materials, 17:2847-2854.
    [26]David A. Andersson, Sergei I. Simak, Natalia V. Skorodumova, et al.2006. Optimization of ionic conductivity in doped ceria. PNAS,103:3518-3521.
    [27]Zha S, Xia C, Meng G.2003. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. Journal of Power Sources,115:44-48.
    [28]Hohnke DK.1981. Ionic-conduction in doped oxides with the fluorite structure. Solid State Ionics,5:531-534.
    [29]Steele BCH.2000. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 degrees C. Solid State Ionics,129:95-110.
    [30]Matsui T, Minoru I, Mineshige A, et al.2005. Electrochemical properties of ceria-basedoxides for use in intermediate-temperature SOFCs. Solid State Ionics, 176:647-654.
    [31]Adler SB.2004. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews,104:4791-4843.
    [32]T. Kenjo, H. Tanabe, Y. Hoshiba.2003. Polarization reduction by a highly resistant electrolytefilm in SOFC oxygen electrodes. Solid State Ionics,159:197-207.
    [33]Jiang SP.2008. Development of lanthanum strontium manganite perovskite cathode materialsof solid oxide fuel cells:a review. Journal of Materials Science,43:6799-6833.
    [34]Yokokawa H, Sakai N, Kawada T, et al.1992. Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials. Solid State Ionics,52:43-56.
    [35]Yokokawa H, Horita T, Sakai N, et al.1996. Thermodynamic representation of nonstoichiometric lanthanum manganite. Solid State Ionics,86-8:1161-1165.
    [36]Aruna ST, Muthuraman M, Patil KC.1997. Combustion synthesis and properties of strontiumsubstituted lanthanum manganites La1-xSrxMnO3 (0<=x<=0.3). Journal of Materials Chemistry,7:2499-2503.
    [37]Endo A, Ihara M, Komiyama H, et al.1996. Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes. Solid State Ionics,86-8:1191-1195.
    [38]Ullmann H, Trofimenko N, Tietz F, et al.2000. Correlation between thermal expansion andoxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics,138:79-90.
    [39]Tsipis EV, Kharton VV.2008. Electrode materials and reaction mechanisms in solid oxidefuel cells:a brief review. Journal of Solid State Electrochemistry,12:1039-1060.
    [40]Doshi R, Richards VL, Carter JD, et al.1999. Development of solid-oxide fuel cells that operate at 500℃. Journal of the Electrochemical Society,146:1273-1278.
    [41]Kim G, Wang S, Jacobson AJ, et al.2007. Rapid oxygen iondiffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structureand ordered A cations. Journal of Materials Chemistry,17:2500-2505.
    [42]Huang YY, Ahn K, Vohs JM, et al.2004. Characterization of Sr-doped LaCoO3-YSZ composites prepared by impregnation methods. Journal of the Electrochemical Society, 151:A1592-A1597.
    [43]Petric A, Huang P, Tietz F.2000. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxidefuel cells and gas separation membranes. Solid State Ionics,135:719-725.
    [44]Steele BCH.1996. Survey of materials selection for ceramic fuel cells:cathodes and anodes. Solid State Ionics,86-8:1223-1234.
    [45]Shao ZP, Haile SM.2004. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature,431:170-730.
    [46]Wang L, Merkle R, Maier J, et al.2009. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3-δ films. Applied Physics Letters,94:0719081-0719083.
    [47]arcovaS, Wiik K, Tolchard J, et al.2008. Structural instability ofcubic perovskite BaxSrxSr1-xCo1-yFeyO3-δ. Solid State Ionics,178:1787-1791.
    [48]Yan A, Cheng M, Dong YL, et al.2006. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3-delta based cathode IT-SOFC-Ⅰ. The effect of CO2 on the cell performance. Applied Catalysis B-Environmental,66:64-71.
    [49]Yan AY, Maragou V, Arico A, et al.2007. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3-delta basedcathode SOFC-Ⅱ. The effect of CO2 on the chemical stability. Applied CatalysisB-Environmental,76:320-327.
    [50]Zhen YD, Tok AIY, Jiang SP, et al.2007. La(Ni,Fe)O3 as a cathode material with hightolerance to chromium poisoning for solid oxide fuel cells. Journal of Power Sources, 170:61-66.
    [51]Kharton VV, Viskup AP, Kovalevsky AV, et al.2001. Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure. Solid State Ionics, 143:337-353.
    [52]Yaremchenko AA, Kharton W, Patrakeev MV, et al.2003. P-type electronicconductivity, oxygen permeability and stability of La2Ni0.9Co0.1O4+δ. Journal of MaterialsChemistry, 13:136-144.
    [53]Skinner SJ, Kilner JA.2000. Oxygen diffusion and surface exchange in La2-xSrxNiO4+delta· Solid State Ionics,135:709-712.
    [54]Tarancon A, Pena-Martinez J, Marrero-Lopez D, et al.2008. Stability, chemical compatibility and electrochemical performance of GdBaCo2O5+x layered perovskite as a cathode for intermediate temperature solid oxide fuel cells. Solid State Ionics, 179:2372-2378.
    [55]Kim JH, Manthiram A.2008. LnBaCoO5+δ oxides as cathodes for intermediate-temperaturesolid oxide fuel cells. Journal of the Electrochemical Society, 155.B385-B390.
    [56]Kim JH, Prado F, Manthiram A.2008. Characterization of GdBa1-xSrxCo2O5+delta (0<=x <=1.0) double perovskites as cathodes for solid oxide fuel cells. Journal of the Electrochemical Society,155:B1023-B1028.
    [57]Jiang SP, Chan SH.2004. A review of anode materials development in solid oxide fuel cells. Journal of Materials Science,39:4405-4439.
    [58]A. Bieberle, L. P. Meier, L. J. Gauckler.2000. The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes. Journal of the Electrochemical Society, 148:A646-A656.
    [59]Dong Ding, Wei Zhu, Jianfeng Gao, et al.2008. High performance electrolyte-coated anodes for low-temperature solid oxide fuel cells:Model and Experiments. Journal of Power Sources,179:177-185.
    [60]Mogens Mogensen, Nigel M. Sammes, Geoff A. Tompsett.2000. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics,129:63-94.
    [61]William C. Chueh, Yong Hao, WooChul Jung, et al.2011. High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. Nature materials, 3184:1-7.
    [62]William C. Chueh, Wei Lai, Sossina M. Haile.2008. Electrochemical behavior of ceria with selected metal electrodes, Solid State Ionics,179:1036-1041.
    [63]Steven McIntosh, John M. Vohs, Raymond J. Gorte.2002. An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes. Electrochimica Acta, 47:3815-3821.
    [64]C. Lu, W. L. Worrell, J. M. Vohs, et al.2003. A comparison of Cu-ceria-SDC and Au-ceria-SDC composites for SOFC anodes. Journal of the Electrochemical Society, 150:A1357-A1359.
    [65]Steven McIntosh, Hongpeng He, Shung-Ik Lee, et al.2004. An examination of carbon aceous deposits in direct-utilization SOFC anodes. Journal of the Electrochemical Society, 151:A604-A608.
    [66]D Sarantaridis, A. Atkinson.2007. Redox cycling of Ni-based solid oxide fuel cell anodes: a review. Fuel Cells,7:246-258.
    [67]Y. Matsuzaki, I.Yasuda.2000. The poisoning effect of sulfur-containing impurity gas on a SOFC anode:Part Ⅰ. Dependence on temperature, time and impurity concentration. Solid State Ionics,132:261-269.
    [68]B. C. H.Steele, I.Kelly, H. Middleton, et al.1988. Oxidation of methane in solid-state electrochemical reactors. Solid State Ionics,28-30:1547-1552.
    [69]Tsipis EV, Kharton VV.2008. Electrode materials and reaction mechanisms in solid oxide fuel cells:a brief review. Journal of Solid State Electrochemistry,12:1367-1391.
    [70]Sfeir J, Buffat PA, Mockli P, et al.2001. Lanthanum chromite based catalysts for oxidation ofmethane directly on SOFC anodes. Journal of Catalysis,202:229-244.
    [71]Tao SW, Irvine JTS.2003. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials,2:320-323.
    [72]Hui SQ, Petric A.2002. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. Journal of the European Ceramic Society,22:1673-1681.
    [73]Peng C, Luo JL, Sanger AR, et al.2010. Sulfur-tolerant anode catalyst for solid oxide fuel cells operating on H2S-containing syngas. Chemistry of Materials,22:1032-1037.
    [74]Ge XM, Chan SH.2009. Lanthanum strontium vanadate as potential anodes for solid oxide fuel cells. Journal of the Electrochemical Society,156:B386-B391.
    [75]Huang YH, Dass RI, Xing ZL, et al.2006. Double perovskites as anode materials forsolid-oxide fuel cells. Science,312:254-257.
    [76]Q. Liu, X. H. Dong, G.L. Xiao, et al.2010. A novel electrode material for symmetrical SOFCs. Advanced Materials,22:5478-5482.
    [77]He B, Zhao L, Song S, et al.2012. Sr2Fe1.5Mo0.5O6-delta-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 159:B619-B626.
    [78]Steven McIntosh, John M. Vohs, Raymond J. Gorte.2003. Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons. Electrochemical and Solid-State Letters,6:A240-A243.
    [79]Kongfa Chen, Na Ai, San Ping Jiang.2012. Enhanced electrochemical performance and stability of (La,Sr)MnO3-(Gd,Ce)O2 oxygen electrodes of solid oxide electrolysiscells by palladium infiltration. International Journal of Hydrogen Energy,37:1301-1310.
    [80]He BB, Ding D, Xia CR.2010. Ni-LnOx (Ln=La, Ce, Pr, Nd, Sm, Eu, and Gd) cermetanodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources,195:1359-1364.
    [81]Lei Yang, Yongman Choi, Wentao Qin, et al.2011. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nature Communications,2:1-9.
    [82]Yanxiang Zhang, Changrong Xia.2010. A particle-layer model for solid oxide fuel cell cathodes with different structures. Journal of power sources,195:4206-4212.
    [83]Jae-Dong Kim, Goo-Dae Kim, Ji-Woong Moon, et al.2000. The effect of percolation on electrochemical performance. Solid State Ionics,133:67-77.
    [84]Jungdeok Park, Jing Zou, Jongshik Chung.2010. Synthesis and evaluation of nano-size lanthanum strontiummanganite-yttria-stablized zirconia composite powders as cathodes for solid oxide fuel cells. Journal of Power Sources,195:4593-4599
    [85]San Ping Jiang.2006. A review of wet impregnation—an alternative method for the fabrication of high performance and nano-structuredelectrodes of solid oxide fuel cells. Materials Science and Engineering A,418:199-210.
    [86]James R. Wilson, Worawarit Kobsiriphat, Roberto Mendoza, et al.2006. Three dimensional reconstruction of a solid oxide fuel cell anode. Nature Materials,5:541-544.
    [87]P.R. Shearing, J.Golbert, R.J.Chater, et al.2009.3D reconstruction of SOFC anodes using a focused ion beam lift-out technique. Chemical Engineering Science,64:3928-3933.
    [88]P.R. Shearing, Q. Cai, J.I. Golbert, et al.2010. Microstructural analysis of a solid oxide fuel cell anode using focused ion beam techniques coupled with electrochemical simulation. Journal of Power Sources,195:4804-4810.
    [89]George J. Nelson, William M. Harris, Jeffrey J. Lombardo, et al.2011. Comparison of SOFC cathode microstructure quantified using X-ray nanotomography and focused ion beam-scanning electron microscopy. Electrochemistry Communications,13:586-589.
    [90]Adler S, Lane J, Steele B.1996. Electrode kinetics of porous mixed-conducting oxygen electrodes. Journal of the Electrochemical Society,143:3554-3564.
    [91]Moon D J, Ryu JW.2003. Electrocatalytic reforming of carbon dioxide by methane in SOFC system.CatalysisToday,87:255-264.
    [92]Takeguchi T, Kani Y.2002. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets. Journal of PowerSources,112:588-595.
    [93]Clotilde S. Cucinotta, Marco Bernasconi, Michele Parrinello.2011. Hydrogen oxidation reaction at the Ni-YSZ anode of solid oxide fuel cells from first principles. Physical Review Letters,107:2061031-4.
    [94]HuangQA, Hui R, Wang BW,2007. A review of AC impedance modeling and validation in SOFC diagnosis. Electrochimica Acta,52:8144-8164.
    [95]JOrgensen M J, Primdahl S, Mogensen M.1999. Characterisation of composite SOFC cathodes using electrochemical impedance spectroscopy. Electrochimica Acta, 44:4195-4201.
    [96]Kim J D, Kim G D, Moon J W, et al.2001. Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy. Solid State Ionics,143:379-389.
    [97]Chater RJ, Carter S, Kilner JA, et al.1992. Development of a novel SIMS technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity. Solid State Ionics,53-56:859-867.
    [98]Kamiya M, Shimada E, Ikuma Y, et al.2000. Intrinsic and extrinsic oxygendiffusion and surface exchange reaction in cerium oxide. Journal of the Electrochemical Society, 147:1222-1227.
    [99]Masatoshi Katsuki, Shaorong Wang, Kenji Yasumoto, et al.2002. The oxygen transport in Gd-doped ceria. Solid State Ionics,154-155:589-595.
    [100]H. J. M. Bouwmeester, M. W. Den Otter, B. A. Boukamp.2004. Oxygen transport in La0.6Sr0.4Co1-yFeyO3-δ. Journal of Solid State Electrochemistry,8:599-605.
    [101]I. Yasuda, M. Hishinuma,1996. Electrical Conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. Journal of Solid State Electrochemistry,123:382-390.
    [102]Lane JA, Kilner JA,2000. Measuring oxygen diffusion and oxygen surface exchange byconductivity relaxation. Solid State Ionics,136-137:997-1001.
    [1]J. Deseure, Y. Bultel, L. Dessemond, et al.2005. Modelling of dc and ac responses of a planar mixed conducting oxygen electrode. Solid State Ionics,176:235-244.
    [2]J. Jamnik, J. Maier.2001. Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Physical Chemistry Chemical Physics, 3:1668-1678.
    [3]S. B. Adler, J. A. Lane, B. C. H. Steele.1996. Electrode kinetics of porous mixed-conducting oxygen electrodes. Journal of the Electrochemical Society,143:3554-3564.
    [4]F.S. Baumann, J. Maier, J. Fleig,2008. The polarization resistance of mixed conducting SOFC cathodes:A comparative study using thin film model electrodes. Solid State Ionics, 179:1198-1204.
    [5]F.S. Baumann, J. Fleig, H.-U. Habermeier, J. Maier.2006. Bao.5Sr0.5Co0.8Fe0.2O3-δ thin film microelectrodes investigated by impedance spectroscopy. Solid State Ionics,177:3187-3191.
    [6]Ekaterina V. Tsipis, Vladislav V. Kharton.2008. Electrode materials and reaction mechanisms in solid oxidefuel cells:a brief review I. Performance-determining factors. Journal of Solid State Electrochemistry,12:1039-1060.
    [7]Sung Pil Yoon, Suk Woo Nam, Seung-Goo Kim, et al.2003. Characteristics of cathodic polarization at Pt/YSZ interfacewithout the effect of electrode microstructure. Journal of Power Sources,115:27-34.
    [8]Jae-Dong Kim, Goo-Dae Kim, Ji-Woong Moon, et al.2001. Characterization of LSM-YSZ composite electrode by acimpedance spectroscopy. Solid State Ionics,143:379-389.
    [9]N. Grunbaum, L. Dessemond, J. Fouletier, et al.2006. Electrode reaction of Sr1-xLaxCo0.8Fe0.2O3-δ with x=0.1 and 0.6 on Ce0.9Gd0.1O1.95 at 600≤T≤800℃. Solid State Ionics,177:907-913.
    [10]Meilin Liu, Zhonglin Wu.1998. Significance of interfaces in solid-state cells with porous electrodes of mixed ionic-electronic conductors. Solid State Ionics,107:105-110.
    [11]Hiroyuki Uchida, Manabu Yoshida, Masahiro Watanabe.1999. Effect of ionic conductivity of zirconia electrolytes on the polarization behavior of various cathodes in solid oxide fuel cells. Journal of the Electrochemical Society,146:1-7.
    [12]Hibino T, Hashimoto A, Inoue T, et al.2000. A low operating temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science,288:2031-2033.
    [13]T. Kenjo, Y. Kanehira.2002. Influence of the local variation of the polarizationresistance on SOFC cathodes. Solid State Ionics,148:1-14.
    [14]Escudero MJ, Aguadero A, AlonsoJA, et al.2007. A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. Journal of Electroanalytical Chemistry,611:107-116.
    [15]Chen XJ, Khor KA, Chan SH.2003. Identification of O2 reduction processes at yttria stabilizedzirconia|doped lanthanum manganite interface. Journal of Power Sources, 123:17-25.
    [16]Ding D, Liu BB, Zhu ZN, et al.2008. High reactive Ce0.8Sm0.2O19 powders via a carbonate co-precipitationmethod as electrolytes for low-temperature solid oxide fuel cells. Solid State Ionics,179:896-899.
    [17]Zhu GY, Fang XH, Xia CR, et al.2005. Preparation and electrical properties of La0.4Sr0.6Ni0.2Fe0.8O3 using a glycine nitrate process. Ceramics International,31:115-119.
    [18]Xia CR, Chen FL, Liu ML.2001. Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochemical and Solid-State Letters,4:A52-A54.
    [19]Kosinski MR, Baker RT.2011. Preparation and property-performance relationships in samarium-doped ceriananopowders for solid oxide fuel cell electrolytes. Journal of Power Sources,196:2498-2512.
    [20]Mogensen M, Sammes NM, Tompsett GA.2000. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics,129:63-94.
    [21]Abrantes JCC, Perez-Coll D, Nunez P, et al.2003. Electronic transport in Ce0.8Sm0.2O1.9-δ ceramics under reducing conditions. Electrochimica Acta,48:2761-2766.
    [22]Zhan ZL, Wen TL, Tu HY, et al.2001. AC impedance investigation of samarium-doped ceria. Journal of the Electrochemical Society,148:A427-A432.
    [23]Green RD, Liu CC, Adler SB.2008. Carbon dioxide reduction on gadolinia-doped ceria cathodes. Solid State Ionics,179:647-660.
    [24]Fonseca FC, Uhlenbruck S, Nedelec R, et al.2010. Properties of bias-assisted sputtered gadolinia-doped ceria interlayers for solidoxide fuel cells. Journal of Power Sources, 195:1599-1604.
    [25]Uhlenbruck S, Jordan N, Sebold D, et al.2007. Thin film coating technologies of (Ce,Gd)O2-δ interlayers for applicationin ceramic high-temperature fuel cells. Thin Solid Films, 515:4053-4060.
    [26]Grunbaum N, Dessemond L, Fouletier J, et al.2009. Rate limiting steps of the porous electrode material. Solid State Ionics,180:1448-1452.
    [I]Hideaki Inaba, Hiroaki Tagawa.1996. Ceria-based solid electrolytes. Solid State Ionics, 83:1-16
    [2]Jenshi B. Wang, Jiun-Ching Jang, Ta-Jen Huang.2003. Study of Ni-samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells. Journal of Power Sources, 122:122-131.
    [3]Mogens Mogensen, Nigel M. Sammes, Geoff A. Tompsett.2000. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics,129:63-94.
    [4]Steele BCH.2000. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500℃. Solid State Ionics,129:95-110.
    [5]M. Watanabe, H. Uchida, M. Yoshida.1997. Effect of ionic conductivity of zirconia electrolytes on the polarization behavior of ceria-based anodes in solid oxide fuel cells. Journal of the Electrochemical Society,144:1739-1743.
    [6]A. Trovarelli, M. Boaro, E. Rocchini, et al.2001. Some recent developments in the characterization of ceria-based catalysts. Journal of Alloys and Compounds,323-324:584-591
    [7]Raymond J. Gorte.2010. Ceria in catalysis:from automotive applications to the water-gas shift reaction. AIChE Journal,56:1126-1135.
    [8]A. Trovarelli.1996. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews:Science and Engineering,38:439-520.
    [9]James Wright, Anil V. Virkar.2011. Conductivity of porous Sm2O3-doped CeO2 as a function of temperature and oxygen partial pressure. Journal of Power Sources,196:6118-6124.
    [10]Wojciech Zajac, Janina Molenda.2011. Properties of doped ceria solid electrolytes in reducing atmospheres. Solid State Ionics,192:163-167.
    [11]K. Yashiro, S. Onuma, A. Kaimai, et al.2002. Mass transport properties of Ce0.9Gd0.1O2-δ at the surface and in the bulk. Solid State Ionics,152-153:469-476.
    [12]William C. Chueh, Yong Hao, WooChul Jung, et al.2011. High electrochemical activity of the oxide phase inmodel ceria-Pt and ceria-Ni composite anodes, Nature materials,3184:1-7.
    [13]Teruhisa Horita, Katsuhiko Yamaji, Natsuko Sakai, et al.1998. Oxygen surface exchange of Y0.2Ce0.8O2-x under reducing atmosphere. Electrochemical and Solid-State Letters,1:4-6.
    [14]Masatoshi Katsuki, Shaorong Wang, Kenji Yasumoto, et al.2002. The oxygen transport in Gd-doped ceria. Solid State Ionics,154-155:589-595.
    [15]J.A. Lane, J.A. Kilner,2000. Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation. Solid State Ionics,136-137:997-1001.
    [16]J. E. ten Elshof, M. H. R. Lankhorst, H. J. M. Bouwmeester.1997. Oxygen exchange and diffusion coefficients of strontium-doped lanthanum ferrites by electrical conductivily relaxation. Journal of the Electrochemical Society,144:1060-1067.
    [17]H. J. M. Bouwmeester, M. W. Den Otter, B. A. Boukamp,2004. Oxygen transport in La0.6Sr0.4Co1-y Fey O3-δ. Journal of Solid State Electrochemistry,8:599-605.
    [18]I. Yasuda, M. Hishinuma.1996. Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. Journal of Solid State Electrochemistry, 123:382-390.
    [19]Yao Wang, Lei Zhang, Changrong Xia.2012. Enhancing oxygen surface exchange coefficientsof strontium-doped lanthanum manganates with electrolytes. International Journal of Hydrogen Energy,37:2182-2186.
    [20]Dong Ding, Beibei Liu, Zina Zhu, et al.2008. High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells. Solid State Ionics,179:896-899.
    [21]Lei Zhang, Fanglin Chen, Changrong Xia.2010. Spin-coating derived solid oxide fuel cells operated at temperatures of 500 ℃ and below. International Journal of Hydrogen Energy, 35:13262-13270.
    [22]I.-W. Chen, X.-H. Wang.2000. Sintering dense nanocrystalline ceramics without final-stagegrain growth. Nature,404:168-171.
    [23]Rosemary A. Cox-Galhotra, Steven McIntosh.2010. Unreliability of simultaneously determining Kchem and Dchem via conductivityrelaxation for surface-modified La0.6Sr0.4Co0.2Fe0.8O3-δ. Solid State Ionics,181:1429-1436.
    [24]G. Kim, S. Wang, A J. Jacobson, C.L. Chen.2006. Measurement of oxygen transport kinetics in epitaxial La2NiO4+δ thin filmsby electrical conductivity relaxation. Solid State Ionics, 177:1461-1467.
    [25]Hengdong Cui, Annamalai Karthikeyan, Srikanth Gopalan, et al.2005. Gd0.2Ce0.8O1.9-δ-Y0.08Sr0.88Ti0.95Al0.05O3+δ composite mixed conductors for hydrogen separation, Journal of the Electrochemical Society,152:A1726-A1732.
    [26]Annamalai Karthikeyan, Shriram Ramanathan.2008. Oxygen surface exchange studies in thin film Gd-doped ceria. Applied Physics Letters,92:243109 1-3.
    [27]J. E. ten Elshof, M. H. R. Lankhorst, H. J. M.Bouwmeester.1997. Oxygen exchange and diffusion coefficients of strontium-doped lanthanum ferrites by electrical conductivily relaxation, Journal of the Electrochemical Society,144:1060-1067.
    [28]J.A. Lane, S.J. Benson, D. Waller, et al.1999. Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ. Solid State Ionics,121:201-208.
    [29]R. A. De Souza.2006. A universal empirical expression for the isotope surface exchangecoefficients (k*) of acceptor-doped perovskite and fluorite oxides. Physical Chemistry Chemical Physics,8:890-897.
    [30]Shobit Omar, Eric D. Wachsman, Juan C. Nino.2008. Higher conductivity Sm3+ and Nd3+ co-dopedceria-based electrolyte materials. Solid State Ionics,178:1890-1897.
    [31]K. Park, H.K. Hwang.2011. Electrical conductivity of Ce0.8Gd0.2-xDyxO2-δ (0≤x≤0.2) co-doped with Gd3+ and Dy3+ for intermediate-temperature solid oxide fuel cells. Journal of Power Sources,196:4996-4999.
    [32]J. W. Yun, S. P. Yoon, S. Park, et al.2011. Analysis of the regenerative H2S poisoning mechanism in Ce0.8Sm0.2O2-coated Ni/YSZ anodes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy,36:787-796.
    [33]Dong Ding, Beibei Liu, Mingyang Gong, et al.2010. Electrical properties of samaria-doped ceria electrolytesfrom highly active powders. Electrochimica Acta,55:4529-4535.
    [34]Toshio Suzuki,Zahir Hasan, Yoshihiro Funahashi, et al.2009. Impact of anode microstructure on solid oxide fuel cells. Science,325:852-855.
    [1]A. Atkinson, S. Barnett,R. J. Gorte, et al.2004. Advanced anodes for high-temperature fuel cells. Nature Materials,3:17-27.
    [2]A. Bieberle, L. P. Meier, L. J. Gauckler.2000. The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes. Journal of the Electrochemical Society, 148:A646-A656.
    [3]Mogens Mogensen, Nigel M. Sammes, Geoff A. Tompsett.2000. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics,129:63-94.
    [4]William C. Chueh, Yong Hao, WooChul Jung, et al.2011. High electrochemical activity of the oxide phase inmodel ceria-Pt and ceria-Ni composite anodes. Nature materials,3184:1-7.
    [5]William C. Chueh, Wei Lai, Sossina M. Haile.2008. Electrochemical behavior of ceria with selected metal electrodes. Solid State Ionics,179:1036-1041.
    [6]Steven Mclntosh, John M. Vohs, Raymond J. Gorte.2002. An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes. Electrochimica Acta,47:3815-3821.
    [7]C. Lu, W. L. Worrell, J. M. Vohs, et al.2003. A comparison of Cu-Ceria-SDC and Au-Ceria-SDC composites for SOFC anodes. Journal of the Electrochemical Society, 150:A1357-A1359.
    [8]Steven McIntosh, Hongpeng He, Shung-Ik Lee, et al.2004. An examination of carbonaceous deposits in direct-utilization SOFC anodes. Journal of the Electrochemical Society, 151:A604-A608.
    [9]Steven McIntosh, John M. Vohs, Raymond J. Gorte.2003. Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons. Electrochemical and Solid-State Letters, 6:A240-A243.
    [10]Dong Ding, Wei Zhu, Jianfeng Gao, Changrong Xia.2008. High performance electrolyte-coated anodes for low-temperaturesolid oxide fuel cells:Model and Experiments. Journal of Power Sources,179:177-185.
    [11]L. M. van der Haar, M. W. den Otter, M. Morskate, et al.2002. Chemical diffusion and oxygen surface transfer of La1-xSrxCoO3-δ studied with electrical conductivity relaxation. Journal of the Electrochemical Society,149:J41-J46.
    [12]Dong Ding, Beibei Liu, Zina Zhu, et al.2008. High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells. Solid State Ionics,179:896-899.
    [13]J. Wright, A. V. Virkar.2011. Conductivity of porous Sm2O3-doped CeO2 as a function of temperature and oxygen partial pressure. Journal of Power Sources,196:6118-6124.
    [14]Y. L. Wang, Y. Wang, C.R. Xia.2012. Surface process of doped ceria reduction by electrical conductivity relaxation. Journal of the Electrochemical Society,159:F570-F576.
    [15]J.A. Lane, J.A. Kilner.2000. Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation. Solid State Ionics,136-137:997-1001.
    [1]I. Riess, M. Godickemeier, L.J. Gauckler.1996. Characterization of solid oxide fuel cells based on solid electrolytes or mixed ionic electronic conductors. Solid State Ionics, 90:91-104.
    [2]J.J. Sprague, O. Porat, H.L. Tuller.1996. Mixed conducting gas sensors:atmosphere dependent electrode impedance. Sensors and Actuators B:Chemical,35:348-352.
    [3]J. W. Stevenson, T.R Armstrong, R. D. Carneim, et al.1996. Electrochemical properties of mixed conducting perovskites La1-xMxCo1-yFeyO3-δ (M=Sr, Ba, Ca). Journal of the Electrochemical Society,143:2722-2729.
    [4]C. R. Xia, W. Rauch, F. L. Chen, et al.2002. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics,149:11-19.
    [5]Z. P. Shao, S. M. Haile.2004. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature,431:170-173.
    [6]T. H. Lee, Y. M. L. Yang, A. J. Jacobson.2000. Electrical conductivity and oxygen permeation of Ag/BaBi8O13 composites. Solid State Ionics,134:331-339.
    [7]C. S. Chen, B. A. Boukamp, H. J. M. Bouwmeester, et al.1995. Microstructural development, electrical properties and oxygen permeation of zirconia-palladium composites. Solid State Ionics,76:23-28.
    [8]V. V. Kharton, A. V. Kovalevsky, A. P. Viskup, et al.2003. Oxygen transport in Ceo.8Gd0.2O2-δ-based composite membranes. Solid State Ionics,160:247-258.
    [9]J. X. Yi, Y. B. Zuo, W. Liu, et al.2006. Oxygen permeation through a Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ dual-phase composite membrane. Journal of Membrane Science,280:849-855.
    [10]Y. Ji, J. A. Kilner, M. F. Carolan.2005. Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnO3±δ (LSM) composites. Solid State Ionics, 176:937-943.
    [11]M. Katsuki, S.R. Wang, K. Yasumoto, et al.2002. The oxygen transport in Gd-doped ceria. Solid State Ionics,154-155:589-595.
    [12]J. A. Lane, J. A. Kilner.2000. Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation. Solid State Ionics,136-137:997-1001.
    [13]L. Zhang, Y. Q Liu, Y. X Zhang, et al.2011. Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles. Electrochemistry Communications,13:711-713.
    [14]Y. Wang, L. Zhang, C. R. Xia.2012. Enhancing oxygen surface exchange coefficients of strontium-doped lanthanum manganates with electrolytes. International Journal of Hydrogen Energy,37:2182-2186.
    [15]T. Hong, L. Zhang, F. L. Chen, et al.2012. Oxygen surface exchange properties of Lao.6Sro.4Co0.8Fe0.2O3-δ coated with SmxCe1-xO2-δ. Journal of Power Sources,218:254-260.
    [16]Q. Liu, C. H. Yang, X. H. Dong, et al.2010. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells. International Journal of Hydrogen Energy,35:10039-10044.
    [17]Q. Liu, X. H. Dong, G.L. Xiao, et al.2010. A novel electrode material for symmetrical SOFCs. Advanced Materials,22:5478-5482.
    [18]I. Yasuda, T. Hikita,1994. Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation. Journal of the Electrochemical Society,141:1268-1273.
    [19]I. Yasuda, M. Hishinuma.1996. Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. Journal of Solid State Electrochemistry, 123:382-390.
    [20]B.B. He, L. Zhao, S.X. Song, et al.2012. Sr2Fe1.5Mo0.5O6-δs-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 159:B619-B626.
    [21]M. Mogensen, N. M. Sammes, G. A. Tompsett.2000. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics,129:63-94.
    [22]P. S. Manning, J. D. Sirman, J. A. Kilner.1997. Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure. Solid State Ionics,93:125-132.
    [23]R. A. De Souza.2006. A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. Physical Chemistry Chemical Physics,8:890-897.
    [24]D. Ding, B. B. Liu, Z. N. Zhu, et al.2008. High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells. Solid State Ionics,179:896-899.
    [25]P. Costamagna, P. Costaand, V. Antonucci.1988. Micro-modelling of solid oxide fuel cell electrodes. Electrochimca Acta,43:375-394.
    [26]J. Wright, A. V. Virkar,2011. Conductivity of porous Sm2O3-doped CeO2 as a function of temperature and oxygen partial pressure. Journal of Power Sources,196:6118-6124.
    [27]K. Yashiro, S. Onuma, A. Kaimai, et al.2002. Mass transport properties of Ce0.9Gd0.1O2-δ at the surface and in the bulk. Solid State Ionics,152-153:469-476.
    [1]D. Sarantaridis, A. Atkinson.2007. Redox cycling of Ni-based solid oxide fuel cell anodes:a review. Fuel Cells,7:246-258.
    [2]D. M. Bastidas, S. W. Tao, J. T. S. Irvine.2006. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. Journal of Materials Chemistry, 16:1603-1605.
    [3]J. C. Ruiz-Morales, J. Canales-Vazquez, J. Pena-Martinez, et al.2006. On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-δ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochimca Acta,52:278-284.
    [4]J. Canales-Vazquez, J. C. Ruiz-Morales, D. Marrero-Lopez, et al.2007. Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs). Journal of Power Sources,171:552-557.
    [5]Q. Liu, X. H. Dong, G.L. Xiao, et al.2010. A novel electrode material for symmetrical SOFCs. Advanced Materials,22:5478-5482.
    [6]Q. X. Fu, F. Tietz.2008. Ceramic-based anode materials for improved redox cycling of solid oxide fuel cells. Fuel Cells,8:283-293.
    [7]T.R. Armstrong, J.W. Stevenson, L.R. Pederson, et al.1996. Dimensional instability of doped lanthanum chromite. Journal of the Electrochemical Society,143:2919-2925.
    [8]F. Boroomand, E. Wessel, H. Bausinger, et al.2000. Correlation between defect chemistry and expansion during reduction of doped LaCrO3 interconnects for SOFCs. Solid State Ionics, 129:251-258.
    [9]V.V. Kharton, E.V. Tsipis, I.P. Marozau, et al.2007. Mixed conductivity and electrochemical behavior of (Lao.75Sr0.25)0.95Cr0.5Mn0.5O3-δ. Solid State Ionics,178:101-113.
    [10]P. V. Hendriksen, P. H. Larsen, M. Mogensen, et al.2000. Prospects and problems of dense oxygen permeable membranes. Catalysis Today,56:283-295.
    [11]J. R. Frade.2013. Solid Oxide Fuels Cells:Facts and Figures,5:109-110.
    [12]Guoliang Xiao, Fanglin Chen.2011. Ni modified ceramic anodes for direct-methane solid oxide fuel cells. Electrochemistry Communications,13:57-59.
    [13]T. Hirano, K. Niihara.1996. Thermal.shock resistance of SiN/SiC nanocomposites fabricated from amorphous Si-C-N precursor powders. Materials Letters,26:285-289.
    [14]W. D. Kingery.1955. Factors affecting thermal stress resistance of ceramic materials. Journal of the American Ceramic Society,38:3-15.
    [15]Y. Wang, L. Zhang, C. R. Xia.2012. Enhancing oxygen surface exchange coefficients of strontium-doped lanthanum manganates with electrolytes. International Journal of Hydrogen Energy,37:2182-2186.
    [16]Daifen Chen, Zijing Lin, Huayang Zhu, et al.2009. Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes. Journal of Power Sources, 191:240-52.
    [17]Paola Costamagna, Paolo Costaand, Vincenzo Antonucci.1988. Micro-modelling of solid oxide fuel cell electrodes. Electrochimca Acta,43:375-94.
    [18]Jay Sanyal, Graham M. Goldin, Huayang Zhu, et al.2010. A Particle-based model for predicting the effective conductivities of composite electrodes. Journal of Power Sources, 195:6671-6679.
    [19]Cheng-Hua Kuo, Prabhat K. Gupta.1995. Rigidity and conductivity percolation thresholds in Particulate Composites. Acta Metallurgica et Materialia,43:397-403.
    [20]C. S. Montross, H. Yokokawa, M. Dokiya.2002. Thermal stresses in planar solid oxide fuel cells due to thermal expansion diverences. British Ceramic Transactions,101:85-93.
    [21]Yanxiang Zhang, Changrong Xia.2010. A durability model for solid oxide fuel cell electrodes in thermal cycle processes. Journal of Power Sources,195:6611-6618.
    [22]A. Atkinson, B. Sun.2007. Residual stress and thermal cycling of planar solid oxide fuel cells. Materials Science and Technology,23:1135-1143.
    [23]A. Atkinson, A. Selcuk.2000. Mechanical behaviour of ceramic oxygen ion-conducting membranes. Solid State Ionics,134:59-66.
    [24]A. De S. Jayatilaka, K. Trustrum.1977. Statistical approach to brittle fracture. Journal of Materials Chemistry,12:1426-1430.
    [25]Chunsheng Lu, Robert Danzer, Franz Dieter Fischer.2002. Fracture statistics of brittle materials:Weibull or normal distribution. Physical Review E,65:0671021-0671024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700