基于核方法的雷达高分辨距离像目标识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分辨距离像(HRRP)是宽带雷达获取的目标各散射中心沿雷达视线方向的回波向量和,反映了目标散射点沿距离上的分布情况,是目标识别中重要的结构特征,在雷达目标识别领域一直受到广泛的关注。核方法是近十几年机器学习领域内的研究热点,对于处理非线性问题具有高效性。由于HRRP目标识别中目标之间往往表现出较为复杂的非线性关系,因此,近几年核方法被逐步应用于HRRP目标识别,表现出了强大的优势。本文针对HRRP目标识别,围绕着雷达目标识别中的两大基本问题——特征提取和分类器设计,从基于核方法的HRRP特征提取、核分类器设计以及基于核方法的HRRP在线识别三个方面展开了深入的研究。研究内容主要包括四大部分:
     1.研究了HRRP的非线性特征提取问题。首先,明确了线性判别分析(LDA)和局部均值判别分析(LMDA)本质上均属于线性特征提取算法,难以获取目标的非线性特征,不能有效地描述目标之间的非线性关系。其次,由于目标HRRP之间往往表现出较为复杂的非线性关系,LMDA在复杂HRRP目标识别中难以获得良好的效果,为此本文利用核方法在处理非线性问题方面的高效性,提出了核局部均值判别分析(KLMDA)算法。测试结果表明,该算法与传统线性、非线性特征提取方法相比,有效增强了目标之间的可分性,提高了目标识别性能。
     2.针对雷达目标识别领域目标类样本充分、非目标类样本多样化的两类分类问题展开研究,主要工作包括以下两方面。1)通过分析HRRP在支持向量数据描述(SVDD)超球空间中的分布特性,从理论上明确了若直接使用训练超球半径进行分类,SVDD将无法获得最优泛化性能;针对该问题,定义了二次训练的概念,使用接收机工作特性(ROC)曲线选择最优超球半径,提出了基于SVDD的雷达HRRP分类方法(简称常规SVDD分类方法)。2)针对常规SVDD分类方法抗噪性能差的问题,利用两类目标概率密度分布随信噪比的变化关系分析了主要原因,建立了最优超球半径与信噪比之间的自适应超球半径模型,提出了基于自适应SVDD的雷达高分辨距离像分类方法,大大提高低信噪比下的目标分类性能。
     3.对雷达高分辨距离像多目标识别的识别算法设计问题展开研究。首先,通过将SVDD超球空间划分为内空间和延拓空间,分析了内空间和延拓空间样本对目标的不同归属特性和单空间SVDD识别方法的不足。其次,为了能够充分利用延拓样本的分布信息,将先验样本分为模型训练样本和泛化样本,分别使用三种模型对延拓空间样本分布进行建模,从而描述了延拓样本与目标的隶属度关系;根据测试样本在所有目标SVDD超球空间的分布特性,将测试样本定义为松弛样本和紧缩样本,使用不同的判别方式进行识别,提出了基于双空间SVDD的雷达高分辨距离像识别方法。与以往的单空间SVDD识别方法相比,该方法只要延拓样本分布模型选择适当,能够显著提高目标的识别性能。
     4.针对雷达目标识别对在线识别的重要需求,研究了小规模训练样本条件下的HRRP在线识别问题,主要工作有三个方面。1)通过分析SVDD对增量样本的泛化性能,获得了一系列重要的结论和定理,从理论上证明了增量学习机理在SVDD上的可行性。2)针对SVDD的在线学习问题,从理论上给出了增量支持向量数据描述(ISVDD)算法样本系数变化的依据,深入分析了在线增量样本与已有样本的集合划分问题,提出一种适于在线学习的ISVDD算法。3)在雷达目标识别的工程应用中,往往存在着不完整的数据库,因此边录取、边学习、边建模成为目前雷达目标在线识别的一种主要方式。针对小规模训练样本条件下的HRRP在线识别问题,提出了基于ISVDD的HRRP在线识别方法。相比于标准SVDD在线识别方法,由于ISVDD在在线识别中的应用,该方法能够大大减少增量样本的训练时间,而且能够获得良好的识别效果。同时,它避免了对大规模HHRP训练样本集的需求。
High-resolution range profile(HRRP) is the vectorial sum of returns from thetarget’s scattering centers projected onto the radar line of sight, which represents theradial distribution of a target’s scattering centers and contains important target structuresignatures. Therefore, HRRP target recognition keeps drawing great attention from theradar target recognition community. Kernel methods, as effective approachs on dealingwith nonlinear problem, have being a hot spot of research in the machine learning fieldin the latest decade. Owing to the complicated nonlinear relationship among HRRPs ofdifferent targets, kernel methods have been successfully applied in HRRP targetrecognition in recent years, obtaining excellent performance. Therefore, from the threeaspects, i.e., kernel feature extraction, kernel classifier designing and kernel methodbased HRRP online recognition, the theory and techniques for HRRP target recognitionare deeply studied in this dissertation. The main content contains four parts:
     1. The nonlinear feature extraction of HRRP is studied. Firstly, it is clarified thatthe linear discriminant analysis(LDA) and the local mean discriminant analysis(LMDA)belong to the linear feature extraction algorithms in essence, which can’t extractnonlinear features of targets to describe the nonlinear relationship among differenttargets. Secondly, as nonlinear separability is the main relationship among HRRPs ofdifferent targets, it is difficult for LMDA to obtain excellent recognition performance inthe complicated HRRP target recognition. Accordingly, in this dissertation, consideringthe high efficiency of kernel methods in dealing with nonlinear problem, the kernellocal mean discriminant analysis(KLMDA) algorithm is proposed. The experimentalresults indicate that, compared with the classical linear and nonlinear feature extractionalgorithms, the proposed algorithm can enhance the separability of different targets andimprove the recognition performance.
     2. For sufficient samples of the target and multiplex samples of nontargets, theissue of classification is addressed. The main work concerns the following two aspects.1) By analyzing the distribution characteristic of HRRPs in the support vector datadescription(SVDD) hypersphere space, it is theoretically confirmed that the optimalgeneralization performance of SVDD is unachievable while directly utilizing thetraining radius of SVDD for classification. Therefore, the concept of second training isdefined and the receiver operating characteristic(ROC) curve is employed to obtain theoptimal hypersphere radius. Thereafter, a method of radar HRRP classification based onSVDD is proposed, which is referred to as classical SVDD classification method.2) It isproved that the anti-noise capability of the classical SVDD classification method isinsufficient, whose main causes are explored by analyzing the variation of probabilitydensity distribution versus SNR. Then, an adaptive model of optimal hypersphere radius versus SNR is constructed. Consequently, a method of radar HRRP classification basedon adaptive SVDD is proposed, which can greatly improve the classificationperformance under low SNR conditions.
     3. The recognition algorithm designing of mutli-targets is focused on. Firstly, bydividing the SVDD hypersphere space into the inner space and the extended space, thedifferent ascription characteristics of HRRPs in the dual spaces are analyzed, and thedeficiency of the single space SVDD recognition method is revealed. Secondly, in orderto using the sufficient prior information of extended samples, the prior samples aredivided into two parts, i.e., model training samples and generalization samples.Afterward, three models are respectively employed to describe the sample distributioncharacteristic in the extended space, which can reflect the memberships of extendedsamples to the target. In accordance with test HRRPs’ multi-space distributingcharacteristics in multi-target hypersphere spaces, they are divided into two types, i.e.,shrink sample and slack sample, which can be determined by two different discriminantrules, respectively. Ultimately, a radar HRRP recognition method based on dual spaceSVDD is proposed. Compared with the recognition method based on single spaceSVDD, as long as the extended distribution model is appropriate, the proposed methodcan improve the recognition performance evidently.
     4. Considering the important requirement of online recognition in radar targetrecognition, under the condition of small scale training samples, the HRRP onlinerecognition issue is deeply researched. The main work includes:1) By analysing thegeneralization performance of SVDD to incremental samples, a series of importantconclusions are obtained, which have verified the feasibility of incremental learning onSVDD.2) The principle of samples’ coefficient adjustment is provided, and then thedivision of the set composed of online-updating incremental sample and existed samplesis analyzed in detail. Afterward, an incremental SVDD(ISVDD) algorithm is proposedfor online learning.3) In practical application of radar target recognition, incompletedatabase always exists. Thereby data enrolling, learning and modeling interactively andconcurrently is the primary approach to achieve target recognition. For the HRRP onlinerecognition with small scale training samples, a method of HRRP online recognitionbased on ISVDD is proposed. Compared with the HRRP online recognition methodbased on SVDD, in virtue of the application of ISVDD, the proposed method not onlyreduces the training time of incremental samples but also achieves excellent recognitionperformance. Moreover, it can avoid the requirement of large scale training samples.
引文
[1]杜兰.雷达高分辨距离像目标识别方法研究[D].西安:西安电子科技大学,2007.
    [2] Nebabin V G. Methods and Techniques of Radar Recognition[R]. Boston: ArtechHouse,1997.
    [3] Lewis G N. Future Challenges to Ballistic Missile Defense[J]. IEEE Spectrum,1997,9:60-68.
    [4] Lemnios W Z, Grometestein A. Overview of the Lincoln Laboratory BallisticMissile Defense Program[J]. Lincoln Laboratory Journal,2002,13(1):9-32.
    [5] Chiang H C. Feature Based Classification with Application to Synthetic ApertureRadar[D]. The Ohio State University,1999.
    [6] Chiang H C, Randolph L. Model-Based Classification of Radar Images[J]. IEEETransactions on Information Theory,2000,46(5):1842-1854.
    [7] Vespe M, Baker C J, Griffiths H D. Automatic Target Recognition UsingMulti-Diversity Radar[J]. IET Radar Sonar Navigation,2007,1(6):470-478.
    [8] Mishra A K, Mulgrew B. Bistatic SAR ATR[J]. IET Radar Sonar Navigation,2007,1(6):459-469.
    [9] Sun Y, Liu Z, Li J. Adaptive Boosting for SAR Automatic Target Recognition[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):112-125.
    [10] Saidi M N, Daoudi K, Khenchaf A. Automatic Target Recognition of AircraftModels Based on ISAR Images[C]. IEEE Geoscience and Remote SensingSymposium,2009.
    [11]袁莉.基于高分辨距离像的雷达目标识别方法研究[D].西安:西安电子科技大学,2007.
    [12] Wong S K. High Range Resolution Profiles as Motion-Invariant Features forMoving Ground Targets Identification in SAR-Based Automatic TargetRecognition[J]. IEEE Transactions on Aerospace and Electronic Systems,2009,45(3):1017-1040.
    [13]杜兰,刘宏伟,保铮等.一种用于雷达HRRP功率谱的加权特征压缩方法[J].西安电子科技大学学报,2006,33(2):173-177.
    [14] Xing M D, Bao Z. The Properties of Range Profile of Aircraft[J]. OpticalEngineering,2002,41(2):493-504.
    [15] Wang M J, Wu Z S, Li Y L, et al. High Resolution Range Profile IdentifyingSimulation of Laser Radar Based on Pulse Beam Scattering Characteristics ofTargets[J]. Progress in Electromagnetics Research,2009,96:193-204.
    [16] Jacobs S P, Sullivan J A. Automatic Target Recognition Using Sequences of HighResolution Radar Range-Profiles[J]. IEEE Transactions on Aerospace andElectronic Systems,2000,36(2):364-382.
    [17] Eesterkamp J. A Framework for ID HRR ATR Evaluation[R]. AFRL TechnicalReport,1998.
    [18] Jacobs S P. Automatic Target Recognition Using High-Resolution Radar RangeProfiles[D]. Washington University,1999.
    [19] Du L, Liu H W, Bao Z. A Two-Distribution Compounded Statistical Model forRadar HRRP Target Recognition[J]. IEEE Transactions on Signal Processing,2006,54(6):2226-2238.
    [20] Du L, Liu H W, Bao Z. Radar HRRP Statistical Recognition Based onHypersphere Model[J]. Signal Processing,2008,88:1176-1190.
    [21] Du L, Liu H W, Bao Z. Radar HRRP Statistical Recognition Parametric Modeland Model Selection[J]. IEEE Transactions on Signal Processing,2008,56(5):1931-1944.
    [22] Shi L, Wang P H, Liu H W, et al. Radar HRRP Statistical Recognition With LocalFactor Analysis by Automatic Bayesian Ying-Yang Harmony Learning[J]. IEEETransactions on Signal Processing,2011,59(2):610-617.
    [23] Du L, Wang P, Liu H W. Bayesian Spatiotemporal Multitask Learning for RadarHRRP Target Recognition[J]. IEEE Transactions on Signal Processing,2011,59(7):3182-3196.
    [24] Li H J, Yang S H. Using Range Profiles as Feature Vectors to Identify AerospaceObjects[J]. IEEE Transactions on Antenna and Propagation,1993,41(3):261-268.
    [25] Zywechm A, Bogner R E. Radar Target Classification of Commercial Aircraft[J].IEEE Transactions on Aerospace and Electronic Systems,1996,32(2):598-606.
    [26] Zyweck A, Bogner R E. Coherent Averaging of Range Profiles[C]. IEEEInternational Radar Conference,1995.
    [27] Mitchell R A, Dewall R. Overview of High Range Resolution Radar TargetIdentification[C]. In Proceedings of Automatic Target Recognition WorkingGroup,1994.
    [28]杜兰,刘宏伟,保铮等.基于复数高分辨距离像特征提取的雷达自动目标识别[J].中国科学F辑:信息科学,2009,39(7):731-741.
    [29] Du L, Liu H W, Bao Z. Radar Automatic Target Recognition Using ComplexHigh-Resolution Range Profiles[J]. IET Radar Sonar Navigation,2007,1(1):18-26.
    [30] Pilcher C M, Khotanzad A. Maritime ATR Using Classifier Combination andHigh Resolution Range Profiles[J]. IEEE Transactions on Aerospace andElectronic Systems,2011,47(4):2558-2573.
    [31] Zhou J X, Zhao H Z, Shi Z G, et al. Analytic Performance Bounds on Estimates ofScattering Center Parameters[J]. IEEE Transactions on Aerospace and ElectronicSystems,2007,43(2):813-826.
    [32] Zhou J X, Zhao H Z, Shi Z G, et al. Extracting Global3D Scattering Center Modelof Radar Target from Multiple HRR Profiles[C]. IEEE Radar Conference,2007:811-816.
    [33]周剑雄.光学区雷达目标三维散射中心重构理论与技术[D].长沙:国防科技大学,2006.
    [34]秦敬喜,胡磊,周剑雄等.基于三维散射中心模型的一维距离像识别[J].雷达科学与技术,2009,7(1):46-51.
    [35] Jiang X D, Mandal B, Kot A. Complete Discriminant Evaluation and FeatureExtraction in Kernel Space for Face Recognition[J]. Machine Vision andApplication,2009,20:35-46.
    [36] Silva C, Ribeiro B, Dobnikar A. Distributed Text Classification with an EnsembleKernel-Based Learning Approach[J]. IEEE Transactions on Systems, Man andCybernetics,2010,40(3):287-297.
    [37] Dhanjal C, Gunn S R, Taylor J S. Efficient Sparse Kernel Feature ExtractionBased on Partial Least Squares[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,2009,31(8):1347-1352.
    [38] Chen B, Yuan L, Liu H W, et al. Kernel Subclass Discriminant Analysis[J].Neurocomputing,2007,71:455-458.
    [39] Yu X L, Wang X G, Liu B Y. A Direct Kernel Uncorrelated DiscriminantAnalysis Algorithm[J]. IEEE Signal Processing Letters,2007,14(10):742-745.
    [40] Cortes C, Vapnik V. Support-Vector Networks[J]. Machine Learning,1995,20:273-297.
    [41]张学工,译.统计学习理论的本质[M].清华大学出版社,2000.
    [42] Tax D M J, Duin R P W. Support Vector Data Description[J]. Machine Learning,2004,54:45-66.
    [43]柴晶,刘宏伟,保铮.提高雷达HRRP目标识别和拒判性能的核学习算法[J].西安电子科技大学学报,2009,36(5):793-802.
    [44]柴晶,刘宏伟,保铮.一种提高雷达HRRP识别和拒判性能的新方法[J].西安电子科技大学学报,2009,36(2):233-242.
    [45]柴晶,刘宏伟,保铮.加权KNN分类器在HRRP库外目标拒判中的应用[J].系统工程与电子技术,2010,32(4):718-724.
    [46] Hudson S, Psaltis D. Correlation Filters for Aircraft Identification from RadarRange Profiles[J]. IEEE Transactions on Aerospace and Electronic Systems,1993,29(3):741-748.
    [47]廖学军.基于高分辨距离像的雷达目标识别[D].西安:西安电子科技大学,1999.
    [48]杜兰,保铮,邢孟道.飞机目标的雷达一维距离像特性研究[J].西安电子科技大学学报,2002,28:14-19.
    [49]邢孟道.基于实测数据的雷达成像方法研究[D].西安:西安电子科技大学,2002.
    [50]杜兰,刘宏伟,保铮.利用目标方位信息改善雷达距离像识别性能[J].系统工程与电子技术,2004,26(8):1040-1044.
    [51]袁莉,刘宏伟,保铮.雷达高分辨距离像分类器的参数自适应学习算法[J].电子与信息学报,2008,30(1):198-202.
    [52] Chen B, Liu H W, Bao Z. Adaptively Segmenting Angular Sectors for RadarHRRP Automatic Target Recognition[J]. EURASIP Journal on Adavances inSignal Processing,2008:1-7.
    [53]陈凤,杜兰,保铮等.雷达高分辨距离像自动目标识别方法的改进[J].电子与信息学报,2007,29(6):1450-1454.
    [54] Li H J, Wang Y D, Wang L H. Matching Score Properties between Range Profileof High-Resolution Radar Targets[J]. IEEE Transactions on Antenna andPropagation,1996,44(4):444-452.
    [55] Kosir R, Dewall R, Mitchell R. A Multiple Measurement Approach for FeatureAlignment[C]. IEEE Nat. Aerospace and Electronics Conference,1995:94-101.
    [56] Zwart J P, Heiden R, Gelsema S. Fast Translation Invariant Classification of HRRRange Profiles in a Zero Phase Representation[C]. Inst.Electronic and EngineeringProceeding of Radar Sonar Navigation,2003.
    [57]裴炳南.高分辨雷达自动目标识别方法研究[D].西安:西安电子科技大学,2002.
    [58]陈渤,刘宏伟,保铮.基于三种不同绝对对齐方法的分类器分析[J].现代雷达,2006,28(3):58-65.
    [59] Wu X F, Wang X S, Lu H Z. Motion Feature Extraction for Stepped FrequencyRadar Based on Hough Transform[J]. IET Radar Sonar Navigation,2009,4(1):17-27.
    [60] Zhang X D, Shi Y, Bao Z. A New Feature Vector Using Selected Bispectra forSignal Classification with Application in Radar Target Recognition[J]. IEEETransactions on Signal Processing,2001,49(9):1875-1885.
    [61]袁莉,刘宏伟,保铮.基于中心矩特征的雷达HRRP自动目标识别[J].电子学报,2004,32(12):2078-2083.
    [62] Skolnik M L. Introduction to Radar Systems[M]. Second Edition. New York:McGraw,1980.
    [63]郭雷,肖怀铁,付强.基于核主分量分析和支持矢量数据描述的雷达目标模糊识别方法[J].信号处理,2009,25:63-70.
    [64] Li J, Stoica P. Efficient Mixed-Spectrum Estimation with Application to FeatureExtraction[J]. IEEE Transactions on Signal Processing,1996,42(2):281-295.
    [65]沈明华.散射中心分布特征提取与核方法分类器关键技术研究[D].长沙:国防科技大学,2007.
    [66]付耀文,贾宇平,庄钊文.基于一维散射中心匹配的雷达目标识别[J].电子学报,2006,34(3):404-409.
    [67]郭雷,肖怀铁,赵宏钟等.宽带全极化雷达目标HRRP极化特征提取与优选[J].自然科学进展,2009,19(7):784-792.
    [68]杜兰,刘宏伟,保铮等.一种利用目标雷达高分辨距离像幅度起伏特性的特征提取新方法[J].电子学报,2005,33(3):411-415.
    [69] Belhumeur P N, Hespanha J P, Kriengman D J. Eigenfaces vs. Fisherfaces:Recognition Using Class Specific Linear Projection[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,1997,19(7):711-720.
    [70] Diamantaras K I, Kung S Y. Principal Component Neural Networks[M]. NewYork: Wiley,1996.
    [71]柴晶.雷达高分辨距离像目标识别的拒判算法和特征提取技术研究[D].西安:西安电子科技大学,2010.
    [72] Mika S, Ratsch G, Weston J. Fisher Discriminant Analysis with Kernels[C].Madison Wisconsin: Proc IEEE Int. Workshop on Neural Networks for SignalProcessing,1999.
    [73] Shcholkopf B, Smola A, Muller K R. Nonlinear Component Analysis as a KernelEigenvalue[J]. Neural Computation,1998,10:1299-1319.
    [74]郭雷.宽带雷达目标极化特征提取与核方法识别研究[D].长沙:国防科技大学,2009.
    [75]陈凤.基于HRRP和JEM信号的雷达目标识别技术研究[D].西安:西安电子科技大学,2009.
    [76]于新.基于核方法的高分辨雷达目标识别算法研究[D].长沙:国防科技大学,2008.
    [77] Shilton A, Palaniswami M, Ralph D. Incremental Training of Support VectorMachines[J]. IEEE Transactions on Neural Networks,2005,16(1):114-131.
    [78] Agarwal S, Saradhi V V, Karnick H. Kernel-Based Online Machine Learning andSupport Vector Reduction[J]. Neurocomputing,2008,71(7):1230-1237.
    [79]陈凤,刘宏伟,保铮.雷达HRRP双门限在线统计识别方法[J].系统工程与电子技术,2009,31(8):1785-1792.
    [80]陈凤,侯庆禹,刘宏伟等.一种雷达HRRP在线自适应目标识别方法[J].自然科学进展,2009,19(12):1410-1417.
    [81]陈渤.基于核方法的雷达高分辨距离像目标识别技术研究[D].西安:西安电子科技大学,2008.
    [82] Chen B, Liu H W, Bao Z. An Efficient Kernel Optimization Method for RadarHigh-Resolution Range Profile Recognition[J]. EURASIP Journal on Advances inSignal Processing,2007:1-10.
    [83]于雪莲.基于核方法和流形学习的雷达目标距离像识别研究[D].西安:西安电子科技大学,2008.
    [84]朱孝开.基于核方法的图像目标识别技术研究[D].长沙:国防科技大学,2009.
    [85] Aronszajn N. Theory of Reproducing Kernels[J]. Transactions of the AmericanMathematical Society,1950,68(3):337-352.
    [86] Saitoh S. Theory of Reproducing Kernels and Its Applications[M]. Harlow, U.K:Longman,1988.
    [87] Zhu M L, Martinez A M. Subclass Discriminant Analysis[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence,2006,28(8):1274-1286.
    [88]王文俊,张军英.基于核的类别非局部保留投影[J].模式识别与人工智能,2009,22(5):779-784.
    [89] Huang H, Kuo B. Double Nearest Proportion Feature Extraction for HyperspectralImage Classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(11):4034-4046.
    [90] Weinberger K Q, Blitzer J, Saul L K. Distance Metric Learning for Large MarginNearest Neighbor Classification[J]. Neural Information Processing Systems,2006:1473-1480.
    [91] Domeniconi C, Gunopulos D, Peng J. Large Margin Nearest NeighborClassifiers[J]. IEEE Transactions on Neural Networks,2005,16(4):899-909.
    [92] Chen B, Liu H W, Chai J, et al. Large Margin Feature Weighting Method viaLinear Programming[J]. IEEE Transactions on Knowledge and Data Engineering,2009,21(10):1475-1488.
    [93]李青.优化核方法[D].西安:西安电子科技大学,2007.
    [94]刘笑嶂.核方法的若干关键问题研究及其在人脸图像分析中的应用[D].中山大学,2010.
    [95]张莉.支撑矢量机与核方法研究[D].西安:西安电子科技大学,2002.
    [96]周伟达.核机器学习方法研究[D].西安:西安电子科技大学,2003.
    [97] Lu J W, Plataniotis K N, Venetsanopoulos A N. Face Recognition Using KernelDirect Discriminant Analysis Algorithms[J]. IEEE Transactions on NeuralNetworks,2003,14(1):117-126.
    [98] Yang J, Frangi A F, Yang J, et al. KPCA Plus LDA: A Complete Kernel FisherDiscriminant Framework for Feature Extraction and Recognition[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2005,27(2):230-244.
    [99] Baudatg G, Anouar F. Generalized Discriminant Analysis Using a KernelApproach[J]. Neural Computation,2000,12(10):2385-2404.
    [100]金一,阮秋琦.基于核的正交局部保持投影的人脸识别[J].电子与信息学报,2009,31(2):283-288.
    [101] Jenssen R. Kernel Entropy Component Analysis[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2010,32(5):847-860.
    [102] Vapnik V N. The Nature of Statistical Learning Theory[M].2nd Edition. SpringerPress,1999.
    [103] Bishop C M. Pattern Recognition and Machine Learning[M]. Springer Press,2006.
    [104] Lee K Y, Kim D W, Lee D. Density-Induced Support Vector Data Description[J].IEEE Transactions on Neural Networks,2007,18(1):284-289.
    [105] Zhang Y, Chi Z X, Li K Q. Fuzzy Multi-Class Classifier Based on Support VectorData Description and Improved PCM[J]. Expert Systems with Applications,2009,36:8714-8718.
    [106] Zhang Y, Liu X D, Xie F D. Fault Classifier of Rotating Machinery Based onWeighed Support Vector Data Description[J]. Expert Systems with Applications,2009,36:7928-7932.
    [107] Mu T T, Nandi A K. Multiclass Classification Based on Extended Support VectorData Description[J]. IEEE Transactions on Systems, Man, and Cybernetics,2009,39(5):1206-1216.
    [108] Ghasemigol M, Sabzekar M, Monsefi R. A New Support Vector Data Descriptionwith Fuzzy Constraints[C]. International Conference on Intelligent Systems,Modelling and Simulation,2010.
    [109] Wang Z, Gao D Q, Pan Z S. An Effective Support Vector Data Description withRelevant Metric Learning[J]. ISNN,2010,6064:42-51.
    [110] Liu Y H, Liu Y C. Reducing the Run-Time Complexity of Support Vector DataDescriptions[C]. Georgia: Proceedings of International Joint Conference onNeural Networks,2009.
    [111] Liu Y H, Liu Y C, Chen Y J. Fast Support Vector Data Descriptions for NoveltyDetection[J]. IEEE Transactions on Neural Networks,2010,21(8):1296-1313.
    [112] Chu C S, Tsang I W, Kwok J T. Scaling up Support Vector Data Description byUsing Core-Sets[J]. International Joint Conference on Neural Networks,2004:425-430.
    [113] Luo J, Li B, Wu C Q, et al. A Fast SVDD Algorithm Based on Decomposition andCombination for Fault Detection[C]. Xiamen, China: The8th IEEE InternationalConference on Control and Automation,2010.
    [114] Chen C J, Zhan Y Z, Wen C J. Hierarchical Face Recognition Based on SVDDand SVM[C].2009International Conference on Environmental Science andInformation Application Technology,2009.
    [115] Liu D, Ge Y J, Zhang X Y. On-line Signature Verification Based on TemplateMatching Approach and Support Vector Data Description[C].2010InternationalConference on Computer Application and System Modeling,2010.
    [116] Zhou Y H, Gong Y, Wang J M, et al. Speaker Verification Based on SVDD[C].20103rd International Congress on Image and Signal Processing,2010.
    [117]朱帮助,林健.基于支持向量数据描述的无标签数据多类分类[J].智能系统学报,2009,4(2):131-137.
    [118] Banerjee A, Burlina P, Diehl C. A Support Vector Method for Anomaly Detectionin Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Sensing,2006,44(8):2282-2291.
    [119] Tao X M, Liu F R, Zhou T X. A Novel Approach to Intrusion Detection Based onSupport Vector Data Description[C]. Busan, Korea: The30th Annual Conferenceof the IEEE Industrial Electronics Society,2004.
    [120] Carolina S H, Boyd D S, Foody G M. One-Class Classification for Mapping aSpecific Land-Cover: SVDD Classification of Fenland[J]. IEEE Transactions onGeoscience and Remote Sensing,2007,45(4):1061-1073.
    [121]谌德荣,宫久路,何光林等.高光谱图像全局异常检测RFS-SVDD算法[J].宇航学报,2010,31(1):228-233.
    [122] Kang W S, Im K H, Choi J Y. SVDD-Based Method for Fast Training ofMulti-Class Support Vector Classifier[J]. Lecture Notes in Computer Science,2006,3971:991-996.
    [123] Kang W S, Jin Y C. SVDD-Based Method for Face Recognition System[C].Tokyo, Janpa: SCIS&ISIS,2006.
    [124] Liu Y H, Lin S H, Hsueh Y L, et al. Automatic Target Defect Identification forTFT-LCD Array Process Inspection Using Kernel FCM-based Fuzzy SVDDEnsemble[J]. Expert Systems with Applications,2009,36:1978-1998.
    [125] Park J Y, Kang D S, Kim J, et al. SVDD-Based Pattern Denoising[J]. NeuralComputation,2007,19:1919-1938.
    [126]陆从德,张太镒,胡金燕.基于乘性规则的支持向量域分类器[J].计算机学报,2004,27(5):690-694.
    [127]陆从德,张太镒,胡金燕.基于支持向量域描述的学习分类器[J].微电子学与计算机,2005,22(11):75-81.
    [128] Huang G X, Chen H F, Zhou Z L, et al. Two-Class Support Vector DataDescription[J]. Pattern Recognition,2011(44):320-329.
    [129] Huang X T, Zhang S J. Semi-Supervised Support Vector Data DescriptionMulti-Classification Learning Algorithm[C].2011International Conference onInternet Computing and Information Services,2011.
    [130] Cauwenberghs G, Poggio T. Incremental and Decremental Support VectorMachine Learning[J]. In Adv. Neural Information Processing Systems,2000,13:409-415.
    [131] Laskov P, Gehl C, Kruger S, et al. Incremental Support Vector Learning: Analysis,Implementation and Applications[J]. Journal of Machine Learning Research,2006,7:1909-1936.
    [132] Sato M A, Oba S. Incremental Sparse Kernel Machine[J]. Lecture Notes inComputer Science,2002,2415:700-706.
    [133] Tax D M J, Laskov P. Online SVM Learning: From Classification to DataDescription and Back[C]. IEEE13th Workshop on Neural Networks for SignalProcessing,2003:499-508.
    [134]李自国.基于支持向量数据描述的故障诊断方法研究[D].郑州:郑州大学,2007.
    [135] Chai J, Liu H W, Bao Z. Generalized Re-Weighting Local Sampling MeanDiscriminant Analysis[J]. Pattern Recognition,2010,43:3422-3432.
    [136]牟少敏.核方法的研究及其应用[D].北京:北京交通大学,2008.
    [137] Pekalska E, Haasdonk B. Kernel Discriminant Analysis for Positive Definite andIndefinite Kernels[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2009,31(6):1017-1031.
    [138] Sun B, Li J, Wu D D, et al. Kernel Discriminant Learning for OrdinalRegression[J]. IEEE Transactions on Knowledge and Data Engineering,2010,22(6):906-910.
    [139] Akira T, Hideyuki I, Masaaki M. Kernel-Induced Sampling Theorem[J]. IEEETransactions on Signal Processing,2010,58(7):3569-3577.
    [140]蔡哲元,余建国,李先鹏等.基于核空间距离测度的特征选择[J].模式识别与人工智能,2010,23(2):235-241.
    [141] Subrahmanya N, Shin Y C. Sparse Multiple Kernel Learning for SignalProcessing Applications[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2010,32(5):788-798.
    [142] Odiowei P E P, Cao Y. Nonlinear Dynamic Process Monitoring Using CanonicalVariate Analysis and Kernel Density Estimations[J]. IEEE Transactions onIndustrial Informatics,2010,6(1):36-45.
    [143] Chen L, Chen P C, Lu M Z. A Multiple-Kernel Fuzzy C-Means Algorithm forImage Segmentation[J]. IEEE Transactions on Systems, Man, and Cybernetics,2011,23(6):1-12.
    [144] Aizerman M, Braverman E, Rozonoer L. Theoretical Foundation of the PotentialFunction Method in Pattern Recognition Learning[J]. Automation and RemoteControl,1964,25:821-837.
    [145] Mercer J. Functions of Positive and Negative Type and Their Connection with theTheory of Integral Equations[J]. Philos. Trans. Roy. Soc,1909, A209:415-446.
    [146] Ramm A G. On the Theory of Reproducing Kernel Hilbert Spaces[J]. Journal ofInverse and Ill-Posed Problems,1998,6(5):515-520.
    [147] Paige C C, Saunders M A. Towards a Generalized Singular ValueDecomposition[J]. SIAM J. Numer. Anal,1981,18:398-405.
    [148] Chen B, Liu H W, Bao Z. A Kernel Optimization Method Based on the LocalizedKernel Fisher Criterion[J]. Pattern Recognition,2008,41:1098-1109.
    [149] Zhang L, Zhou W D, Jiao L C. Hidden Space Support Vector Machines[J]. IEEETransactions on Neural Networks,2004,15(6):1424-1434.
    [150] Yang C, Wang L W, Feng J F. On Feature Extraction via Kernels[J]. IEEETransactions on Systems, Man, and Cybernetics,2008,38(2):553-557.
    [151] Blake C L, Merz C J. UCI Repository of Learning Database[DB/CD]. Available athttp://www.ics.uci.edu/~mlearn/MLRepository.html,2008.
    [152] Cawley G C. Leave-One-Out Cross-Validation Based Model Selection Criteria forWeighted LS-SVMs[C]. Vancouver, BC, Canada:2006International JointConference on Neural Networks,2006.
    [153] Xiong H, Swamy M N S, Ahmad M O. Optimizing the Kernel in the EmpiricalFeature Space[J]. IEEE Transactions on Neural Networks,2005,16(2):460-474.
    [154] Du L, Liu H W, Bao Z. Radar HRRP Target Recognition Based on Higher OrderSpectra[J]. IEEE Transactions on Signal Processing,2005,53(7):2359-2368.
    [155] Zheng W M, Zhao L, Zou C R. Foley-Sammon Optimal Discriminant VectorsUsing Kernel Approach[J]. IEEE Transactions on Neural Networks,2005,16(1):171-180.
    [156] Huang R, Liu Q S, Lu H Q. Solving the Small Sample Size Problem of LDA[C].Proc.16th Int Pattern Recognition,2002.
    [157]边肇祺,张学工.模式识别[M].第二版.北京:清华大学出版社,1999.
    [158] Ratsch G. Benchmarks Data Sets. http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.
    [159] Lee S W, Park J, Lee S W. Low Resolution Face Recognition Based on SupportVector Data Description[J]. Pattern Recognition,2006,39:1809-1812.
    [160]孙长亮,何峻,肖怀铁.基于ROC曲线的目标识别性能评估方法[J].雷达科学与技术,2007,5(1):17-21.
    [161]陈志杰,冯德军,王雪松.基于ROC曲线的弹道目标识别评估及优化[J].系统仿真学报,2007,19(17):4028-4033.
    [162]万柏坤,薛召军,李佳等.应用ROC曲线优选模式分类算法[J].自然科学进展,2006,16(11):1511-1516.
    [163]张晓龙,江川,骆名剑. ROC分析技术在机器学习中的应用[J].计算机工程与应用,2007,43(4):243-248.
    [164] Bradley A P. The Use of the Area under the ROC Curve in the Evaluation ofMachine Learning Algorithms[J]. Pattern Recognition,1997,30(7):1145-1159.
    [165] Hanley J A, Mcneil B J. The Meaning and Use of the Area under a ReceiverOperating Characteristic(ROC) Curve[J]. Radiology,1982,143(1):29-36.
    [166] Alsing S G. The Evaluation of Computing Classification[D]. US: Air ForceInstitute of Technology,2002.
    [167]孙长亮.基于ROC曲线的ATR算法性能评估方法研究[D].长沙:国防科技大学,2006.
    [168]孙即祥.现代模式识别[M].第二版.北京:高等教育出版社,2007.
    [169]陈远征.末制导雷达扩展目标检测方法研究[D].长沙:国防科技大学,2009.
    [170] Pietraski P J, Zojceski Z. Fast Centroid Estimation Algorithm for High-RateDetectors Based on a Two-Point Gaussian Fit[J]. IEEE Transactions on NuclearScience,2000,47(4):1510-1515.
    [171]白丹萍. SNR估计方法研究[D].成都:电子科技大学,2008.
    [172]李宏,王国玉,杨英科.雷达信噪比的测量与计算[J].电子对抗技术,2002,17(2):35-39.
    [173]张启亮,孙青,翁明善.线性调频脉冲压缩雷达信噪比实时估计算法[J].火力与指挥控制,2011,36(6):109-111.
    [174] Li D Y, Han J W, Shi X M. Knowledge Representation and Discovery Based onLinguistic Atoms[J]. Knowledge-Based Systems,1998,10:421-440.
    [175] Shi L J, Wen Y X, Xie X G. Classifier Based on Cloud Model and ItsApplication[C]. Wuhan, China: IEEE2009International Conference onComputational Intelligence and Software Engineering,2009.
    [176] Cui Y Y, Zeng Z Y, Liu L. An Object Detection Algorithm Based on the CloudModel[C]. IEEE2009International Joint Conference on Computational SciencesOptimization,2009.
    [177]谢磊.基于云模型的遥感图像边缘检测[D].重庆:重庆邮电大学,2007.
    [178]王兆红,肖孟强,李燕.类正态分布数据云模型的预测算法[J].计算机应用与软件,2009,26(9):78-81.
    [179] Sullivan J A, Devore M D, Kediav V. SAR ATR Performance Using aConditionally Gaussian Model[J]. IEEE Transactions on Aerospace and ElectronicSystems,2001,37(1):91-107.
    [180] Webb A R. Gamma Mixture Models for Target Recognition[J]. PatternRecognition,2000,33:2045-2054.
    [181] Beaven S G, Stein D. Comparison of Gaussian Mixture and Linear MixtureModels for Classification of Hyperspectral Data[C]. IEEE Geoscience and RemoteSensing Symposium,2000.
    [182] Duda R O, Hart P E, Stork D G. Pattern Recognition[M]. Second Edition.McGraw-Hill,2001.
    [183]周伟达,张莉,焦李成.支撑矢量机推广能力分析[J].电子学报,2001,29(5):1-7.
    [184] Diehl C P, Cauwenberghs G. SVM Incremental Learning, Adaptation andOptimization[C]. In Proceedings of the International Joint Conference on NeuralNetworks,2003,4:2685-2690.
    [185] Honorius G, Razvan A. Implemetation Issues of an Incremental and DecrementalSVM[J]. Lecture Notes in Computer Science,2008,5163:325-335.
    [186] Lehel C, Opper M. Sparse Online Gaussian Processes[J]. Neural Computation,2002,14(3):641-669.
    [187] Copsey L, Webb A R. Bayesian Gamma Mixture Model Approach to RadarTarget Recognition[J]. IEEE Transactions on A.E.S,2003,39(4):1201-1217.
    [188] Miller M I, Grenander U, OSullivan J A. Automatic Target RecognitionOrganized via Jump-Diffusion Algorithms[J]. IEEE Transactions on Antenna andPropagation,1997,6(1):157-173.
    [189]郭尊华,谢维信,黄敬雄.雷达目标联合跟踪与识别技术研究[J].信号处理,2007,23(4A):510-514.
    [190]刘先康,高梅国,傅雄军.空间目标姿态角估计与RCS反射图生成[J].航天电子对抗,2007,23(1):16-18.
    [191] Yeh C, Xu J, Peng Y. Rotational Motion Estimation for ISAR via Triangle PoseDifference on Two Range-Doppler Images[J]. IET Radar Sonar Navigation,2010,4(4):528-536.
    [192] John Shawe-Taylor N C. Kernel Methods for Pattern Analysis[M]. CambridgeUniversity Press,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700