放牧胁迫下植物间的正相互作用及其与植物个体小型化和种群空间格局的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物种间相互作用的研究是生态学研究的核心。近年来,大量研究已经表明,正相互作用与负相互作用在群落中同时存在,只是在不同条件下,某一方将居主导作用。过度放牧引起的草原退化,集中体现在种群个体小型化上,而关于小型化的机理尚未有明确解释。那么,在放牧胁迫下,是否存在正相互作用与负相作用的转化?也就是说,过度放牧引起的草原退化能否纳入到正相互作用与负相互作用转化的生态学基本理论框架内?物种间的相互作用是影响种群格局特征的主要因素之一,如果在放牧胁迫下存在正相互作用与负相互作用的转化,那么,它将如何改变种群空间格局?本文以此为起点,选择典型草原带处于不同恢复演替阶段的群落,通过野外实验、统计模型等手段,探讨了在放牧胁迫下的正、负相互作用及其相互转化,分析正、负相互作用与草原退化过程中植物个体小型化的相关关系及其对种群空间格局的影响,以期以新的视角解释过度放牧引起的草原退化机理。这一研究对于认识由于过度放牧引发的草原退化具有一定的理论和现实意义。其主要研究结果如下:
     1.通过O-Ring函数计算并比较种群在不同尺度下的种群邻体密度,结果发现在不同放牧胁迫梯度下,存在正相互作用与负相互作用的转化,且这种转化主要发生在种内。在严重退化的群落中,正相互作用居主导,而在放牧胁迫较小的恢复群落中负相互作用占主导。
     2.过度放牧引起的严重退化群落,在正相互作用下,植物种群通过改变个体形态以抵御家畜的采食,改变分布状态来抵御家畜的践踏,改变形态和分布状态紧密联系在一起共筑了抵御采食和践踏的防线。进一步通过正相互作用理论解释了以往学者在试图解释小型化机理时所存在的不足,从而有力地说明了在过度放牧条件下所发生的植物个体小型化,当为在胁迫条件下种群正相作用所致,把草原退化(小型化)统一在物种间正相互作用的生态学基本理论框架内。
     3.在不同放牧胁迫梯度下,存在种内正相互作用与负相互作用的转化。通过点格局并结合完全空间随机模型、泊松聚块模型和嵌套双聚块模型,证明了在不同放牧胁迫梯度下正相互作用与负相互作用的转化引起种群空间格局发生变化。其实质是在正相互作用与负相互作用转化的过程中引发种群在局部小尺度范围内邻体密度发生变化所致。
The investigation of interactions among plants has been a focus of ecology during last decades. Many studies in last20years have demonstrated that positive interaction may act simultaneously with competitive interaction in a community, and the over effect of interactions depends on which mechanism is the most important in a given environment. The temperate steppe of China has been heavily disturbed by overgrazing, which has resulted in serious degradation and characteristic vegetation patterns. The degraded community exhibited individual plant miniaturization. Miniaturized display show the following characteristics: shortened internodes, contracted leaf blades and a shallowly distributed root system. However, the mechanism of individual plant miniaturization has not been unlocked. Thus, Can the shift from facilitation to competition occur along gradients of grazing stress? In other words, can we incorporate the mechanisms of degradation in steppe into mainstream ecological theories based on the balance of facilitation and competition? A considerable challenge in plant ecology is to understand how interactions, such as competition or facilitation, shape the spatial distribution of plants. If facilitation and competition are balanced along gradients of grazing pressure, how does the balance between facilitation and competition affect spatial patterns? Choosing different restored successional communities in typical steppe and by combining field experiments and statistical models, the dissertation explores the effects of positive interactions on individual plant miniaturization and population spatial patterns under grazing stress among plants, and attempt to unlock mechanisms of degradation or miniaturization based on the theoretical framework of the balance of facilitation and competition.
     Using test statistics based on the univariate O-ring statistic to describe local density at different scales in different restored successional communities, the results show that facilitation is the dominant interaction in a seriously degraded community, and demonstrate that the shift from facilitation to competition along gradients of grazing stress are due to intraspecific interactions.
     Facilitation is the dominant interaction in a seriously degraded community. Under facilitation the plant populations defense strong grazing pressure by changing their morphology and distribution. The positive interaction theory can detect the mechanism of individual plant miniaturization, which further illustrate individual plant miniaturization is caused by facilitation in a seriously degraded community.
     Along gradients of grazing stress the shift of intraspecific interactions from facilitation to competition. By using point pattern analysis with different null models to detect the population spatial patterns in different restored successional communities, the results show the shift from facilitation to competition determine the spatial patterns in plant populations, which is caused by variation in small local density depending on the balance between facilitation and competition. Thus the mechanisms of degradation in typical steppe are incorporated into mainstream ecological theories based on the balance of facilitation and competition.
     In all, in a seriously degraded community positive interaction is the dominant interaction, and by facilitation theory we scientifically explain the mechanisms of individual plant miniaturization. This is valuable for us to cognize the degradation and restoration on the typical steppe.
引文
Atsatt PR & O'Dowd D (1976). Plant defense guilds. Science,193,24-29.
    Barot S, Gignoux J, Menaut JC (1999). Demography of a savanna palm tree:predictions from comprehensive spatial pattern analyses. Ecology,80,1987-2005.
    Batista JLF, Maguire DA (1998). Modeling the spatial structure of topical forests. Forest Ecology and Management,110,293-314.
    Begon M, Harper JL & Townsend CR (1990). Ecology.2nd edn. Blackwell scientific publications, Oxford.
    Bertness MD (1989). Intraspecific competition and facilitation in a northern acorn barnacle population. Ecology,70,257-268.
    Bertness MD & Shumway SW (1993). Competition and facilitation in marsh plants. American Naturalist,142,718-724.
    Bertness MD & Callaway RM (1994). Positive interactions in communities. Trends in Ecology and Evolution,9,191-193.
    Bertness MD & Ewanchuk PJ (2002). Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia,132, 392-401.
    Brooker RW (2006). Plant-plant interactions and environmental change. New Phytologist,171, 271-284.
    Brooker RW & Callaghan TV (1998). The balance between positive and negative plant interactions and its relationship to environmental gradients:A model. Oikos,81,196-207.
    Brooker RW & Callaway RM (2009). Facilitation in the conceptual melting pot. Journal of Ecology,91,1117-1120.
    Bronstein JL (2009). The evolution of facilitation and mutualism. Journal of Ecology,97, 1160-1170.
    Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielborger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B & Michalet R (2008). Facilitation in plant communities:the past, the present, and the future. Journal of Ecology,96,18-34.
    Brown JH, Gillooly JF, Allen AP, Savage VM & West GB (2004). Toward a metabolic theory of ecology. Ecology,85,1771-1789.
    Bruno JF, Stachowicz JJ & Bertness MD (2003). Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution,18,119-125
    Callaway RM (1998). Are positive interactions species-specific? Oikos,82,202-207.
    Callaway RM (1991). Facilitation and interference of Quercus douglasii on understory productivity in central California. Ecology,72,1484-1499.
    Callaway RM (1995). Positive interactions among plants. Botanical Review,61,306-349.
    Callaway RM (1997). Positive interactions in plant communities and the individualistic-continuum concept. Oecologia,112,143-149.
    Callaway RM (2007). Positive interactions and interdependence in plant communities. Springer, Dordrecht, The Netherlands.
    Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D & Cook BJ (2002). Positive interactions among alpine plants increase with stress. Nature,417,844-848.
    Callaway RM & Pennings SC (2000). Facilitation may buffer competitive effects:Indirect and diffuse interactions among salt marsh plants. American Naturalist,156,416-424.
    Chase JM & Leibold MA (2003). Ecological niche:Linking classical and contemporary approaches. University of Chicago Press, Chicago, USA.
    Clements FE (1916). Plant succession:an analysis of the development of vegetation. Carnegie Institution of Washington, Washington, D.C., USA.
    Compton RH (1929). The vegetation of the Karoo. Journal of the Botanical Society of South Africa,15,13-21.
    Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000). Spatial patterns in the distribution of tropical tree species. Science,288, 1414-1418.
    Connell JH (1983). On the prevalence and relative importance of interspecific competition-evidence from field experiments. American Naturalist,122,661-696.
    Connor EF, Courtney AC, Yoder JM (2000). Individuals-area relationships:the relationship between animal population density and area. Ecology,81,734-748
    Crain CM (2008). Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context. Journal of Ecology,96,166-173.
    Dale MRT (1999). Spatial pattern analysis in plant ecology. Cambridge University Press, Cambridge.
    Dale MRT, MacIsaac DA (1989). New methods for the analysis of spatial pattern in vegetation. Journal of Ecology,77,78-91.
    Darwin C (1859). The origin of species by means of natural selection. Murrary, London, UK.
    DeAngelis DL, Post WM & Travis CC (1986). Positive feedback in natural systems. Springer, Berlin, Germany.
    Dickie LA, Schnitzer SA, Reich PB & Hobbie SE (2005). Spatially disjunct effects of co-occurring competition and facilitation. Ecology Letters,8,1191-1200.
    Diggle PJ (1983). Statistical Analysis of Spatial Point Patterns. Academic Press, New York.
    Diggle PJ (2003). Statistical Analysis of Point Patterns. Arnold, London.
    Dixon PM (2002). Ripley's K function. Encyclopedia of Environmetrics,3,1796-1803.
    Dormann CF & Brooker RW (2002). Facilitation and competition in the high Arctic:The importance of the experimental approach. Acta Oecologica,23,297-301.
    Eskelinen A (2008). Herbivore and neighbour effects on tundra plants depend on species identity, nutrient availability and local environmental conditions. Journal of Ecology,96, 155-165.
    Freeman BE & Smith DC (1990). Variation of densitydependence with spatial scale in the leaf-mining fly Liriomyza commelinae (Diptera, Agromyzidae). Ecological Entomology, 15,265-274.
    Galiano EF (1982). Pattern detection in plant populations through the analysis of plant-to-all-plants distances. Vegetatio,49,39-43.
    Galiano EF (1983). Detection of multi-species patterns in plant populations. Vegetatio,53, 129-138.
    Galiano EF (1985). The small-scale pattern of Cyndon dactylon in Mediterranean pastures. Vegetatio,63,121-127.
    Gaston KJ & Matter SF (2002). Individuals-area relationships:comment. Ecology,83,288-293
    Gause GF (1934). The Struggle for Existence. Williams & Wilkins, Baltimore.
    Gause GF & Witt AA (1935). Behavior of mixed Populations and the Problem of natural selection. American Naturalist,69,596-609.
    Greig-Smith P (1961). Data on pattern within plant communities. I. The analysis of pattern. Journal of Ecology,49,695-702.
    Greig-Smith P (1987). Quantitative Plant Ecology. Butterworths, London.
    Grime JP (1974). Competitive exclusion in herbaceous vegetation. Nature,242,344-347.
    Grime JP (1977). Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist,111,1169-1194.
    Hardin G (1960). The competitive exclusion principle. Science,131,1292-1297.
    Harper JL (1977). Population biology of plants. Academic Press, London, UK.
    Heads PA & Lawton JH (1983). Studies on the natural enemy complex of the holly leaf-miner: the effects of scale on the detection of aggregative responses and the implications for biological control. Oikos,40,267-276.
    Hixon MA, Pacala SW & Sandin SA (2002). Population regulation:historical context and contemporary challenges of open vs. closed systems. Ecology,83,1490-1508.
    Hunter AF & Aarssen LW (1988). Plants helping plants. BioScience,38,34-40.
    Isaac NJB & Carbone C (2010). Why are metabolic scaling exponents so controversial? Quantifying variance and testing hypotheses. Ecology Letters,
    Ives AR, Kareiva P & Perry R (1993). Response of a predator to variation in prey density at 3 hierarchical scales-lady beetles feeding on aphids. Ecology,74,1929-1938.
    Jarosik VC & Lapchin L (2001). An experimental investigation of patterns of parasitism at three spatial scales in an aphid-parasitoid system (Hymenoptera:Aphidiidae). European Journal of Entomology,98,295-299.
    Kenkel NC (1988a). Pattern of self-thinning in jack pine:testing the random mortality hypothesis. Ecology,69,1017-1024.
    Kenkel NC (1988b). Spectral analysis of hummock-hollow pattern in a weakly minerotrophic mire. Vegetatio,78,45-52.
    Kershaw KA (1959a). An investigation of the structure of a grassland community. Ⅱ. The pattern of Dactylis glomerata Loliu perenne, and Trifolium repens. Journal of Ecology,47, 31-43.
    Kershaw KA (1959b). An investigation of the structure of a grassland community. Ⅲ. Discussion and conclusions. Journal of Ecology,47,44-53.
    Kershaw KA (1963). Pattern in vegetation and its causality. Ecology,44,377-388.
    Kershaw KA (1964). Quantitative and Dynamic Ecology. Edward Arnld, London
    Kershaw KA, Looney JH (1985). Quantitative and Dynamic Ecology. Edward Arnold, London.
    Kikvidze Z, Khetsuriani L, Kikodze D & Callaway RM (2001). Facilitation and interference in subalpine meadows of the central Caucasus. Journal of Vegetation Science,12,833-838.
    Kikvidze Z, Pugnaire FL, Brooker RW, Choler P, Lortie CJ, Michalet R & Callaway RM (2005). Linking patterns and processes in alpine plant communities:A global study. Ecology,86,1395-1400.
    Kingsland SE (1985). Modelling Nature. The University of Chicago Press, Chicago.
    Kolokotrones T, Savage VM, Deeds EJ & Fontana W (2010). Curvature in metabolic scaling. Nature,464,753-756.
    Krahulec F, Agnew ADQ, Agnew S, Willems JH (1990). Spatial Processes in plant Communities. Academia, Prague.
    Kunin WE (1997). Population size and density effects in pollination:pollinator foraging and plant reproductive success in experimental arrays of Brassica kaber. Journal of Ecology, 85,225-234.
    Korner C (2003). Limitation and stress-always or never? Journal of Vegetation Science,14, 141-143.
    Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009). Ecological information from spatial patterns of plants:insights from point process theory. Journal of Ecology,97,616-628.
    Legaspi BC & Legaspi JC (2005). Foraging behavior of field populations of Diadegma spp. (Hymenoptera:Ichneumonidae):testing for density-dependence at two spatial scales. Journal of Entomological Science,40,295-306.
    Le Moine JM, Chen JQ (2003). Placing our hypotheses and results in time and space. Acta Phytoecologica Sinica,27,1-10.
    Leps J (1990). Can underlying mechanisms be deduced from observed patterns? In:Krahulec F, Agnew ADQ, Agnew S, Willems JH eds. Spatial Processes in Plant Communities. SPB Academic Publishing, The Hague.1-11.
    Leslie HM (2005). Positive intraspecific effects negative effects in high-density barnacle aggregations. Ecology,86,2716-2725.
    Levin SA (1992). The problem of pattern and scale in ecology. Ecology,73,1943-1967.
    Liancourt P, Callaway RM & Michalet R (2005). Stress tolerance and competitive-response ability determine the outcome of biotic interactions. Ecology,86,1611-1618.
    Liehold AM & Gurevitch J (2002). Integrating the statistical analysis of spatial data in ecology. Ecography,25,553-557.
    Lill JT (1998). Density dependent parasitism of the hackberry nipplegall maker (Homoptera: Psyllidae):a multiscale analysis. Environmental Entomology,27,657-661.
    Li PX, Krusi BO, Li SL, Cai XH, Yu FH (2011a). Facilitation associated with three contrasting shrub species in heavily grazed pastures on the Tibetan Plateau. Community Ecology,12, 1-8.
    Li PX, Krusi BO, Li SL, Cai XH, Yu FH (2011b). Can Potentilla fruticosa Linn, shrubs facilitate the herb layer of heavily grazed pasture on the eastern Tibetan Plateau? Polish Journal of Ecology,59,129-140.
    Lonsdale WM (1990). The self-thinning rule:Dead or alive? Ecology,71,1373-1388.
    Lonsdale WM & Watkinson AR (1982). Light and self-thinning. New Phytologist,90,431-45.
    Lortie CJ, Brooker RW, Kikvidze Z & Callaway RM (2004b). The value of stress and limitation in an imperfect world:A reply to KOrner. Journal of Vegetation Science,15, 577-580
    Lortie CJ & Callaway RM (2006). Re-analysis of meta-analysis:Support for the stress-gradient hypothesis. Journal of Ecology,94,7-16.
    MacArthur RH, Wilson EO (1967). The theory of island biogeog-raphy. Princeton University Press, Princeton
    Maestre FT, Callaway RM, Valladares F & Lortie CJ (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology,97, 199-205.
    Maestre FT & Cortina J (2004). Do positive interactions increase with abiotic stress? A test from a semi-arid steppe. Proceedings of the Royal Society of London-Biological Sciences, 271, S331-5333.
    Maestre FT, Valladares F & Reynolds JF (2005). Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. Journal of Ecology,93,748-757.
    Maestre FT, Valladares F & Reynolds JF (2006). The stress-gradient hypothesis does not fit all relationships between plant-plant interactions and abiotic stress:Further insights from arid environments. Journal of Ecology,94,17-22.
    Mayor S & Schaefer J (2005). The many faces of population density. Oecologia,145,275-280.
    May R & MeLean A (2007). Theoretical ecology:Principles and applications. Oxford University Press, Oxford, UK.
    McIntire EJB & Fajardo A (2009). Beyond description:the active and effective way to infer processes from spatial patterns. Ecology,90,45-56.
    Pakeman RJ, Pugnaire FL, Michalet R, Lortie CJ, Schiffers K, Maestre FT & Travis JMJ (2009). Is the cask of facilitation ready for bottling? A symposium on the connectivity and future directions of positive plant interactions. Biology Letters,5,577-579.
    Perry GLW, Miller BP, Enright NJ (2006). A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecology,187,59-82.
    Phillips FJ (1909). A study of pinyon pine. Botanical Gazette,48,216-223.
    Pielou EC (1968). An Introduction to Mathematical Ecology. Wiley, New York.
    Plotkin JB, Chave J & Ashton PS (2002). Cluster analysis of spatial patterns in Malaysian tree species. American Naturalist,160,629-644.
    Ray C & Hastings A (1996). Density dependence:are we searching at the wrong spatial scale? Journal of Animal Ecology,65,556-566.
    Richard MG & William EK (2007). Density effects at multiple scales in an experimental plant population Journal of Ecology,2007,95,435-445
    Ripley BD (1977). Modelling spatial pattern. Journal of the Royal Statistical Society, Series B, 39,17-212.
    Ripley BD (1981). Spatial Statistics. Wiley, New York.
    Schoener TW (1983). Field experiments on interspecific competition. American Naturalist, 122,240-285.
    Shinozaki K & Kira T (1956). Intraspecific competition among higher plants. Ⅶ. Logistic theory of the C-D effect. Journal of the Institute of Polytechnics, Osaka City University, Series D,7,35-72.
    Stephen FM (2000). The importance of the relationship between population density and habitat area. Oikos,89,613-619.
    Stoll P & Prati D (2001). Intraspecific aggregation alters competitive interactions in experimental plant communities. Ecology,82,319-327.
    Stoyan D & Stoyan H (1996). Estimating pair correlation functions of planar cluster processes. Biometrical Journal,38,259-271.
    Stoyan D & Stoyan H (1994). Fractals, random shapes and point fields. Methods of geometrical statistics. John Wiley & Sons, New York.
    Tilman D (1994). Competition and biodiversity in spatially structured habitats, Ecology,75, 2-16
    Tilman D (1982). Resource competition and community structure. Prineeton University Press, Princeton, New Jersry, USA.
    Tilman D & Kareiva P (1997). Spatial ecology:the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton.
    Tuda M (2007). Understanding mechanism of spatial ecological phenomena:a preface to the special feature on "Spatial statistics". Ecological Research,22,183-184.
    Turkington R & Harper JL (1979). The growth, distribution and neighbour relationships of Trifolium repens:a permanent pasture. I. Ordination, pattern and contact. Journal of Ecology,67,201-218.
    Vellend M (2008). Effects of diversity on diversity:consequences of competition and facilitation. Oikos,117,1075-1085.
    Ver Hoef JM, Cressie NAC, Glenn-Lewin DC (1993). Spatial models for spatial statistics: some unification. Journal of Vegetation Science,4,441-452.
    Wang G,Yuan JL, Wang XZ, Xiao S & Huang WB (2004). Competitive regulation of Plant allometry and a generalized model for the self-thinning process. Bulletin of Mathematical Biology,66,1875-1855.
    Wang XG, Wiegand T, Hao ZQ, Li BH, Ye J, Lin F (2010). Species associations in an old-growth temperate forest in north-eastern China. Journal of Ecology,98,674-686.
    Watson DM, Roshier DA, Wiegand T (2007). Spatial ecology of a parasitic shrub:pattern and predictions. Austral Ecology,32,359-369.
    Watt AS (1947). Pattern and process in the plant community. Journal of Ecology,35,1-22.
    Weiner J & Freckleton RP (2010). Constant final yield. Annual Review of Ecology, Evolution and Systematics,41,173-192.
    Weiner J & Thomas SC (1986). Size variability and competition in Plant monocultures. Oikos, 47,211-222.
    Weller DE (1987). A reevaluation of the -3/2 Power rule of Plant self-thinning. Ecological Monographs,57,23-43.
    West GB & Brown JH (2004). Life's universal scaling laws. Physics Today,57,36-43.
    Westoby M (1984). The self-thinning rule. Advances in Ecological Research,14,167-225.
    White CR, Cassey R & Blackburn TM (2007a). Allometric exponents do not support a universal metabolic allometry. Ecology,88,315-323.
    White EP, Ernest SKM, Kerkhoff AJ & Enquist BJ (2007b). Relationships between body size and abundance in ecology. Trends in Ecology and Evolution,22,323-330.
    White J (1981). The allometric interpretation of the self-thinning rules. Journal of theoretical Bioloy,89,475-500.
    Wiegand T, Gunatilleke S, Gunatilleke N (2007a). Species associations in a heterogeneous Sri Lankan Dipterocarp forest. The American Naturalist,170,77-95.
    Wiegand T, Kissling WD, Cipriotti PA & Aguiar MR (2006). Extending point pattern analysis to objects of finite size and irregular shape. Journal of Ecology,94,825-837.
    Wiegand T, Gunatilleke S, Gunatilleke N, Okuda T (2007b). Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology,88,3088-3102.
    Wiegand, T, Huth, A. & Martinez, I. (2009) Recruitment in tropical tree species:revealing complex spatial patterns. American Naturalist,174, E106-E140.
    Wiegand T, Jeltsch F, Hanski I, Grimm V (2003). Using pattern-oriented modeling for revealing hidden information:a key for reconciling ecological theory and application. Oikos,100,209-222.
    Wiegand T, & Moloney KA (2004). Ring, circles, and null-models for point pattern analysis in ecology. Oikos,104,209-229.
    Yoda K, Kira T, Ogawa H & Hozumi K (1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions. (Intraspecific competition among higher plants. X1.) Journal of Biology, Osaka City University,14,107-129.
    Yu FH, Li PX, Li SL, He WM (2010). Kobresia tibetica tussocks facilitate plant species inside them and increase diversity and reproduction. Basic and Applied Ecology,11,743-751.
    Zeide B (1987). Analysis of the 3/2 Power law of self-thinning. Forest Science,33,517-537.
    储诚进(2010).植物间正相互作用对种群动态与群落结构的影响研究,兰州大学博士论文.
    方精云(1995).一种描述植物种群自然稀疏过程的经验模型.林业科学,31,247-253.
    中国科学院内蒙古宁夏综合考察队(1985).内蒙古植被,科学出版社,北京.
    王刚(1993).关于植物自疏过程的一般模型.兰州大学学报(自然科学版),29,215-218.
    王刚,张大勇(1996).生物老争理论.陕西科学技术出版社,西安.
    王孟本,毋月莲(2004).英汉生态学词典.科学出版社,北京.
    王鑫厅,梁存柱,王炜(2013).尺度与密度:测定不同尺度下的种群密度.植物生态学报,37,104-110.
    王鑫厅,王炜,刘佳慧,梁存柱,张韬(2006).植物种群空间分布格局测定的新方法:摄影定位法.植物生态学报,30,571-575.
    王炜,刘钟龄,郝敦元,梁存柱(1996a).内蒙古草原退化群落恢复演替的研究.I.退化草原的基本特征与恢复演替动力.植物生态学报,20,449-459.
    王炜,刘钟龄,郝敦元,梁存柱(1996b).内蒙古草原退化群落恢复演替的研究.II.恢复演替时间进程的分析.植物生态学报,20,460-471.
    王炜,梁存柱,刘钟龄,郝敦元(2000).草原群落退化与恢复演替中的植物个体行为分析.植物生态学报,24,268-274.
    杨持(2008).生态学第二版.高等教育出版社,北京.
    张金屯(1998).植物种群空间分布的点格局分析.植物生态学报,22,344-349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700