甘南亚高寒草甸金露梅氮磷化学计量特征及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态化学计量学从化学计量学的角度出发,结合生物学、化学和物理的基本理论,研究生命物质不同结构层次(分子、细胞、器官、机体、种群、群落、生态系统等)相互之间以及生态学过程中的元素之间的关系,是研究生物系统多重化学元素平衡和动态变化的科学,它将生态实体的各个层次(从基因,分子,细胞到个体,种群,生态系统以至生物圈)在元素水平统一起来,目前越来越广泛地应用于生态学各个领域的研究。化学计量内稳性是指环境或者食物中的养分组成发生变化而生物体维持相应的元素相对不变的能力,是生理和生化调节的反映。内稳态机制是生物在长期的进化过程中适应环境变化的结果,是生态化学计量学的基础理论。然而生态化学计量在不同的层次,不同领域的研究中表现为不同程度上的趋同和分异。氮(N)和磷(P)是植物的基本营养元素,也是生物系统和生物地球化学循环中的重要元素,在各级生命层次系统的结构和功能中占有重要地位,因此N、P的生态化学计量学受到生态学家们的普遍关注。有机体水平的生态化学计量学研究连接了生命系统的三个尺度:分子水平、有机体水平和大尺度的生态系统过程,因此有机体水平的N、P的生态化学计量学研究具有重要的生态学意义。环境(包括光、大气温度、土壤温度和土壤含水量等)和内部生理因素(包括生长、发育、繁殖、衰老等)共同影响N、P的化学计量的动态变化,但不同的内外因素下有机体的氮磷化学计量的动态及其理论机制的全面综合研究还鲜有报导。
     针对这一问题现状,本论文研究内容为在各种内外因素下植物有机体水平的N、P化学计量的动态及其理论机制。金露梅是甘南亚高寒草甸的优势灌木种,对生态系统的功能和稳定有重要作用。本论文选取甘南亚高寒草甸的金露梅为研究对象,从引起金露梅N、P元素变化的各种环境因素和内部因素入手,研究各种因素下金露梅N、P元素计量的动态,并且探讨其生态化学计量学机制。
     本研究包括四个实验:
     1.野外施肥实验模拟自然界不同的氮磷环境,研究施肥梯度下金露梅N、P计量的动态。
     2.除花实验研究繁殖对于金露梅N、P计量动态的影响。
     3.野外采集不同年龄的金露梅,探究随着年龄变化金露梅叶片氮磷计量的动态。
     4.研究不同坡向金露梅氮磷计量动态,探讨其与不同坡向的环境因子的关系。
     本研究主要结果和结论为:
     (1)施肥显著影响了叶片氮含量和叶片磷含量,施肥不同处理(0,40,80,120g/m2NH4H2PO4)的的叶片氮含量和磷含量依次提高;但施肥对氮磷比影响不显著(N:P比值范围[8.81,9.36],P>0.05)。植物叶片氮含量、磷含量的变异系数大于土壤氮含量、磷含量的变异系数。表明叶片氮磷比值比叶片的氮含量、磷含量具有更强的内稳性,在外部养分组成发生变化时,内稳态机制的动态平衡调节主要体现在植物的氮磷比值上,而氮含量、磷含量具有比较大的变化空间。
     (2)比较对照的繁殖金露梅植株叶片和花的N、P含量,表明了花中的磷含量显著大于叶片中的磷含量,而氮含量在花和叶片之间却没有显著差异。这是由于花比叶片需要更多的磷以合成DNA、RNA等完成繁殖过程。
     比较除花金露梅植株和对照繁殖植株的叶片N、P计量显示:繁殖显著降低了叶片的氮含量(P<0.01)和氮磷比(P<0.01),对叶片磷含量的影响不显著(P>0.05)。表明繁殖过程导致了叶片的氮的消耗和N:P的降低。其生理机制可能是由于繁殖导致的营养元素在花和叶片的重新分配。花中的磷含量大于叶片的磷含量,而叶片中的磷含量并没有显著降低,这是由于植物可以吸收足够的磷元素保证繁殖的进行。
     金露梅在内外因素的影响下分别表现了N:P比值的趋同和分异。在施肥引起的外界环境(这里是指土壤的养分组成)发生变化下,植物保持N:P比值的相对稳定性,这是内稳性机制的体现。繁殖个体花的氮磷比低于叶的氮磷比,繁殖个体叶的氮磷比低于非繁殖个体叶的氮磷比,表明了在繁殖这一植物内部重要的生活史阶段中,植物的N:P比值下降。
     相对于内稳态机制和生长速率机制(前者主要对应于外界环境的变化,后者主要对应于生长中),繁殖对植物氮磷的动态影响应该具有相对独立的机制,即繁殖降低叶片氮磷比值,繁殖对植物氮磷计量的影响不仅表现在叶片上,还表现在叶片与繁殖器官(花)的不同上。
     (3)金露梅叶片的磷含量在1-6年的不同年龄的植株中差异不显著(P>0.05),表明了磷含量在植株年生长中保持相对稳定的水平。叶片氮含量在1-6年的不同年龄的植株中变化较大。叶片氮磷比值与氮含量的动态基本一致。而每年繁殖导致的氮磷动态可以很好的解释年龄间氮磷的这种变化。相关分析显示:金露梅1-6年各年分别的年材积生长率与对应年龄的叶片氮含量、磷含量和氮磷比值均没有显著的相关性(P>0.05)。
     不同年龄的实验表明,金露梅叶片的N、P和N:P比值的在年龄间的动态更多受到繁殖的影响而非生长的影响。
     (4)不同坡向的环境因子影响金露梅的分布以及金露梅的氮磷化学计量动态。阳坡、半阴半阳坡、阴坡的土壤温度依次降低,并且差异具有显著性(P<0.05)。阴坡的土壤含水量显著大于阳坡和半阴半阳坡(P<0.05)。阳坡的光照度显著大于阴坡和半阴半阳坡(P<0.05)。阴坡的金露梅叶片的氮含量显著大于半阴半阳坡的叶片氮含量(P<0.05)。半阴半阳坡与阴坡的叶片磷含量没有显著性差异(P>0.05)。半阴半阳坡叶片的氮磷比值显著大于阴坡(P<0.05)。半阴半阳坡的金露梅叶片氮含量、磷含量和氮磷比值均比阴坡有更高的离散程度。相关分析表明了金露梅叶片氮含量与土壤温度和光照度都是显著的负相关。
     不同坡向的实验表明,光照度、土壤温度和土壤含水量均影响金露梅在不同坡向上的分布。土壤温度影响金露梅叶片的氮含量,趋势是温度越高金露梅叶片的氮含量越低,其生理机制低温对光合作用(即有机质的积累)的限制超过对植物吸收氮的抑制。随着光照度的增加,叶片的氮含量与氮磷比值均降低。
Ecological stoichiometry is a new tool to study ecological process from genes to the biosphere. It has been successfully applied in many ecological studies in recent years. Stoichiometric homeostasis, the degree to which an organism maintains its elements ratios despite variation in the relative availabilities of elements in its resource supplies, is a key parameter in ecological stoichiometry. However, the ecology stoichiometry dynamics showed convergence and variation in studies at different levels. Nitrogen (N) and phosphorus (P) are essential for plant growth and their cyclings and play a key role in ecosystem processes. Organism level of ecological stoichiometry can connect to the three dimensions of the living system:the molecular level, the organism level and large scale ecosystem processes. Therefore, the studies in this area are very important for ecological development. Environment (including light, temperature, soil temperature and soil water content, etc) and internal factors (including growth, reproduction, aging, etc) interact to produce the observed patterns of internal plant nutrient stoichiometry, but we do not know much about such interactions. We studied the dynamics of nutrient stoichiometry in Potentilla fruticosa L. in relation to both two environmental (fertilization, slope) and two internal factors (reproduction, age)in a field experiment.
     We studied the effect of (a) four levels fertilization, (b) with and without flower removal, (c) 6 plant ages, (d) different slopes, on the N and P stoichiometry of naturally-occurring Potentilla fruticosa L. individuals.
     The main results and conclusions:
     1, Fertilization significantly increased the leaf N and P concentration; however N:P ratio was not significant affected by fertilization(range [8.81,9.36], P>0.05). CVs of leaf N and P were bigger than that of soil N and P. The results of fertilization experiments suggested that P. fruticosa L. showed a higher degree of homeostasis in N:P than N and P, maintaining internal nutrient stoichiometry under variation in external nutrient levels.
     Flower P was significantly higher than leaf P; there was no significant difference between flower N and leaf N. Flowers need more phosphorus to synthesize DNA, RNA etc for reproduction.
     2, Reproduction decreased leaf N and N:P significantly, whereas there was no significant effect on plant leaf P. It suggested that reproduction leads to lower leaf N and N:P. The physiological mechanism may be the re-allocation of N and P between flowers and leaves by caused by reproduction. Leaves to the reproductive organs of the transport of phosphorus, and phosphorus content of the flower than leaf phosphorus content. Flower P was more than leaf P which did not significantly decrease. That may be due to plants can absorb enough phosphorus to ensure the reproduction.
     N:P showed convergence and variation under internal(reproduction) and external (fertilization)factor respectively. The mechanisms may be Homeostatic mechanism and Reproduction mechanism respectively. Reproduction should have a relatively independent mechanism with the effects of nitrogen and phosphorus in plants: reproduction lead to reduce leaf N:P.
     3, Plant leaf P was generally stable through 1-6 ages. Plant leaf N appeared to fluctuate later in development when plants were reproducing. The dynamics of N:P are basically the same with leaf N, which can explained by Reproduction mechanism but can not explained by Growth rate hypothesis. The low N:P can also predict that the limited element is N not P.
     4, The research on the environmental factors from South-facing slope to North-facing slope showed that:The average value of soil temperature was that: South-facing slope>West-facing slope>North-facing slope (P<0.05); Soil water content increased from South-facing slope to North-facing slope(P<0.05); Daily light intensity decreased from South-facing slope to North-facing slope (P<0.05).
     The results of slopes experiments suggested that Daily light intensity, soil temperature and soil water content should be the key factors that affect the distribution of Potentilla fruticosa L. upward slope. Leaf N was significantly negative correlated in soil temperature. With the increase of light intensity, leaf N and N:P ratios decreased. The physiological mechanism of leaf nitrogen content decreases with soil temperature increases may be the adaptation of physiological and temperature in plant.
引文
[1]Aerts R, Chapin F.S. Ⅲ. The mineral nutrition of wild plants revisited:a reevaluation of processes and patterns. Advances in Ecological Research,2000,30,1-67.
    [2]Agren G.I. The C:N:P stoichiometry of autotrophs-theory and observations. Ecology Letters, 2004,7,185-191.
    [3]Agren G.I. Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology Evolution and Systematics,2008,39,153-170.
    [4]Allen T. and T. Hoekstra, Eds. Toward a Unified Ecology. New York, Columbia University Press.1992.
    [5]Andersen T.& Hessen D.O. Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnology and Oceanography,1991,36,807-814.
    [6]Andersen T. Pelagic Nutrient Cycles:Herbivores as Sources and Sinks. Springer-Verlag, Berlin.1997.
    [7]Anderson T.R., Boersma M.& Raubenheimer D. Stoichiometry:linking elements to biochemicals. Ecology,2004,85,1193-1202.
    [8]Belovsky G.E. Diet optimization in a generalist herbivore:the moose. Theoretical Population Biology,1978,14,105-134.
    [9]Berman-Frank I.& Dubinsky Z. Balanced growth in aquatic plants:Myth or reality? Bioscience,1999,49,29-37.
    [10]Bowman W. D., L. Bahnj, and M. Damm. Apine landscape variation in foliar nitrogen and phosphorus concentrations and the relation to soil nitrogen and phosphorus availability. Arctic, Antarctic and Alpine Research,2003,35:144-149.
    [11]Calow P. The cost of reproduction-a physiological approach. Biological Review.1979. 54:23-40.
    [12]Calow P. Homeostasis and Fitness. American Naturalist,1982,120,416-419.
    [13]Callaway R.M., Brooker R.W., Choler P., et al., Positive interactions among alpine plants increase with stress. Nature,2002,417:844-848.
    [14]Cernusak L.A., Winter K.& Turner B. L. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls. New Phytologist,2010, 185,770-779.
    [15]Chapin F.S., III, A. J. Bloom, C.B. Field, and R.H. Waring. Plant responses to multiple environmental factors. BioScience,1987,37:49-57.
    [16]Cipollini M.L., and E.W. Stiles. Costs of reproduction in Nyssa sylvatica:sexual dimorphism in reproductive frequency and nutrient flux. Oecologia.1991,86:585-593.
    [17]Clemente M., Remis M.I.& Vilardi J.C. Ribosomal DNA variation in the grasshopper, Dichroplus elongates. Genome,2002,45,1125-1133.
    [18]Coleman J.S., K.D.M. McConnaughay, and F.A. Bazzaz. Elevated CO2 and plant nitrogen-use:is reduced tissue nitrogen concentration size-dependent? Oecologia,1993,93: 195-200.
    [19]Daufresne T.& Loreau M. Plant-herbivore interactions and ecological stoichiometry:when do herbivores determine plant nutrient limitation? Ecology Letters,2001,4,196-206.
    [20]DeMott W.R.& Pape B.J. Stoichiometry in an ecological context:testing for links between Daphnia P-content, growth rate and habitat preference. Oecologia,2005,142,20-27.
    [21]Dickman E.M., Newell J.M., Gonzalez M.J., Vanni M.J. Light, nutrients, and food-chain length constrain plank-tonic energy transfer efficiency across multiple trophic levels. Proceedings of the National Academy of Sciences of the United States of America,2008,105, 18408-18412.
    [22]Downing J.A.& McCauley E. The nitrogen:phosphorus ralationship in lakes. Limnology and Oceanography,1992,37,936-945.
    [23]Droop M.R.25 years of algal growth kinetics:a personal view. Botanica Marina,1983,26, 99-112.
    [24]Du GZ, Wang G. Succession and qualitative change of artificial grassland of Gan Nan Sub-Alpine Meadow. Acta Bot Sin.1995,4:306-313.
    [25]Duru M & Thelier H.L. N and P-K status of herbages:use for diagnosis of grasslands. In Diagnostic procedures for crop N management. M Duru and H L Thelier.1997,125-138. INRA Editions, Paris.
    [26]Elser J.J., Acharya K., Kyle M., et al. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters,2003a,6,936-943.
    [27]Elser J.J., Brien, Dobberfuhl, et al. The evolution of ecosystem processes:growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. Journal of Evolutionary Biology,2000a,13,845-853.
    [28]Elser J.J., Dobberfuhl D.R., MacKay N.A., et al. Organism size, life history, and N:P stoichiometry:toward a unified view of cellular and ecosystem processes. BioScience,1996, 46,674-684.
    [29]Elser J.J., Fagan W.F., Kerkhoff A.J., et al. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist,2010, 186:593-608.
    [30]Elser J.J.& Hassett T.P. A stoichiometric analysisi of the zooplankton phytoplankton interaction in marine and freshwater ecosystems. Nature,1994,370,211-213.
    [31]Elser J.J., Hayakawa H.& Urabe J. Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology,2001,82,898-903.
    [32]Elser J.J., Kyle M.M., Smith M.S., et al. Biological stoichiometry in human cancer. PLoS ONE,2007b,2, e1028.
    [33]Eckstein, R. L., and P. S. Karlsson. The effect of reproduction on nitrogen use-efficiency of three species of the carnivorous genus Pinguicula. Journal of Ecology.2001,89:798-806.
    [34]Elser J.J.& Urabe J. The stoichiometry of consumer-driven nutrient cycling:theory, observations, and consequences. Ecology,1999,80,735-751.
    [35]Elser J.J., Sterner R.W., Gorokhova E., et al. Biological stoichiometry from genes to ecosystems. Ecology Letters,2000c,3,540-550.
    [36]Falkowski P.G.. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature,1997,387,272-275.
    [37]Falkowski P.G., Barber R.T.& Smetacek V. Biogeochemical controls and feedbacks on ocean primary productivity. Science,1998,281,200-206.
    [38]Fang X, Lu L, Mason JA, Yang S. Pedogenic response to millennial summer monsoon enhancements on the Tibetan Plateau. Quaternary International.2003,106-107:79-88.
    [39]Frost P.C., Evans-White M.A., Finkel Z.V., et al. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos,2005, 109,18-28.
    [40]Greenwood D. J., Gastal F, Lemaire G, Draycott A, Millard P & Neeteson J.J. Growth rate an N% of field grown crops:theory and experiments. Annals of Botany.1991,2,181-190.
    [41]Goldman J.C., Caron D.A.& Dennett. M.R. Regulations of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnology and Oceanography, 1987,32,1239-1252.
    [42]Gorokhova E.& Kyle M. Analysis of nucleic acids in Daphnia:development of methods and ontogenetic variations in RNA-DNA content. Journal of Plankton Research,2002,24, 511-522.
    [43]Gusewell S.& Bollens U. Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic and Applied Ecology,2003,4,453-466.
    [44]Gusewell S. N:P ratios in terrestrial plants:variation and functional significance. New Phytologist,2004,164,243-266.
    [40]Gusewell S. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Functional Ecology,2005,19,344-354
    [46]Han W, Fang JY, Guo D & Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist,2005,168,377-385.
    [47]Heerwaarden L M V, Toet S & Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology.2003,91,1060-1070.
    [48]Hessen D.O.& Lyche, A. Inter-and intraspecific variations in zooplankton element composition. Archiv fur Hydrobiologie,1991,121,355-363.
    [49]Hessen D.O. Too much energy? Ecology,2004,85,1177-1178.
    [50]Hessen D.O.& Agren G.I., Anderson T.R. et al. Carbon sequestration in ecosystems:the role of stoichiometry. Ecology,2004,85,1179-1192.
    [51]He J.S., Fang J., Wang Z., et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia,2006a,149,115.
    [52]He J.S., Wang L., Flynn D.F.B., et al. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia,2008,155,301-310.
    [53]He J.S., Wang Z.H., Wang X.P., et al. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist,2006b,170,835-848.
    [54]Jackson R.B., Mooney H.A.& Schulze E.D. A global budget for fine root biomass surface area, and nutrient contents. Proceedings of the National. Academy of Sciences of the United States of America,1997,94,7362-7366.
    [55]Jeyasingh P.D., Weider L.J.& Sterner R.W. Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore. Ecology Letters,2009,12,1229-1237.
    [56]Karl D.M., Bjorkman K.M., Dore J.E., et al. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2001,48, 1529.
    [57]Karimi R.& Folt C.L. Beyond macronutrients:element variability and multielement stoichiometry in freshwater invertebrates. Ecology letters,2006,9,1273-83.
    [58]Kooijman S.A.L.M. The stoichiometry of animal energetics. Journal of Theoretical Biology, 1995,177,139-149.
    [59]Kooijman S.A.L.M., Andersen T.& Kool B.W. Dynamic energy budget representations of stoichiometric constraints on population dynamics. Ecology,2004,85,1230-1243.
    [60]Kyle M., Watts T., Schade J., et al. A microfluorometric method for quantifying RNA and DNA interrestial insects. Journal of Insect Science,2003,3,1-7.
    [61]Lechowicz MJ & Shaver GR. A multivariate approach to the analysis of factorial fertilization experiments in Alaskan arctic tundra. Ecology,1982,63:1029-1038.
    [62]Levi M.P.& Cowling E.B. Role of nitrogen in wood deterioration. Ⅶ. Physiological adaptation of wood-destroying and other fungi to substrates deficient in nitrogen. Phytopathology,1969,59,460-468.
    [63]Limpens J.& Berendse F. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition:the role of amino acid nitrogen concentration. Oecologia,2003,135, 339-345.
    [64]Lotka A.J. Elements of Physical Biology. Williams and Wilkins, Baltimore.1925.
    [65]Lutze, J. L., and R. M. Gifford. Acquisition and allocation of carbon and nitrogen by Danthonia richardsonii in response to restricted nitrogen supply and CO2 enrichment. Plant, Cell and Environment,1998,21:1133-1141.
    [66]Main T., Dobberfuhl D.R.& Elser J.J. N:P stoichio-metry and ontogeny in crustacean zooplankton:a test of the growth rate hypothesis. Limnology and Oceanography,1997,42, 1474-1478.
    [67]Makino W., Cotner J.B., Sterner R.W., et al. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 2003,17,121-130.
    [68]Markow T.A., Raphael B., Dobberfuhl D.R., et al. Elaemental stoichiometry of Drosophila and their hosts. Functional Ecology,1999,13,78-84.
    [69]Mattson W.J.& Scriber J.N. Nutritional ecology of insect folivores of woody plant:Nitrogen, water, fiber, and mineral considerations. Wiley Press, New York.1987.
    [70]Matzek, V.& Vitousek, P. M. N:P stoichiometry and protein:RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecology Letters,2009,12,765-771.
    [71]McJannet, C. L., P. A. Keddy, and F. R. Pick. Nitrogen and phosphorus tissue concentrations in 41 wetland plants:a comparison across habitats and functional groups. Functional Ecology, 1995,9:231-238.
    [72]Mendez, M. and P. S. Karlsson. Nutrient stoichiometry in Pinguicula vulgaris:nutrient availability, plant size, and reproductive status. Ecology 2005,86,982-991.
    [73]Michaels, A. The ratios of life. Science,2003,300,906-907.
    [74]Moen R.A., Pastor J.& Cohen Y. Antler growth and extinction of Irish Elk. Evolutionary Ecology Research,1999,1,235-249.
    [75]Mooney, H. A., and N. R. Chiariello. The study of plant function—the plant as a balanced system. Perspectives on plant population ecology. Sinauer Associates, Sunderland, Massachusetts, USA.1984.305-323 in R. Dirzo and J. Sarukha'n, editors.
    [76]Nielsen S.L., Enriquez S., Duarte C.M., et al. Scaling maximum growth rates across photosynthetic organisms. Functional Ecology,1996a,10,167-175.
    [77]Olsen S R, Cole C V, Watanabe F S & Dean L A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Gov. Printing Office, Washington D.C.1954,1-19.
    [78]Ohlson, M. Reproductive differentiation in a Saxifraga hirculus population along an environmental gradient on a central Swedish mire. Holarctic Ecology,1986,9:205-213.
    [79]Ohnmeiss, T. E., and I. T. Baldwin. The allometry of nitrogen allocation to growth and an inducible defense under nitrogen-limited growth. Ecology,1994,75:995-1002.
    [80]Onoda, Hikosaka & Hirose. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology,2004,18,419-425.
    [81]Orgeas, J., J.-M. Ourcival, and G. Bonin. Seasonal and spatial patterns of foliar nutrients in cork oak (Quercus suber L.) growing on siliceous soils in Provence (France). Plant Ecology, 2002,164:201-211.
    [82]Pakonen, T., K. Lainen, P. Havas, and E. Saari. Effects of berry production and deblossoming on growth, carbohydrates and nitrogen compounds in Vaccinium myrtillus in north Finland. Acta Botanica Fennica.1988,136:37-42.
    [83]Qiang Yu,Xingguo Han, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters,2010,13:1390-1399
    [84]Raubenheimer D.& Simpson S J. Organismal stoichiometry:Quantifying non-independence among food components. Ecology,2004,85,1203-1216.
    [85]Ratnam J, Sankaran M, Hanan N P, Grant R C & Zambatis N Nutrient resorption patterns of plant functional groups in a tropical savanna:variation and functional significance. Oecologia,2008,157,141-151.
    [86]Redfield AC. The biological control of chemical factors in the environment.1958.
    [87]Reich P.B.& Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004,101,11001-11006.
    [88]Reiners W.A. Complementary models for ecosyetems. American Naturalist,1986,127, 59-73.
    [89]Renyi Zhang, Xin Gou, Yan Bai, Jun Zhao, Lingyun Chen, Xiaoyu Song, Gang Wang. Biomass fraction of graminoids and forbs in N-limited alpine grassland:N:P stoichiometry. Polish Journal of Ecology,2011,59(1):153-162.
    [90]Rhee G.Y. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnology and Oceanography,1978,23,10-25.
    [91]Ryser P.& Lambers H. Root and leaf attributes accounting for the performance of fast-and slow-growing grasses at different nutrient supply. Plant Soil,1995,170,251-265.
    [92]Sakamoto M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv fur Hydrobiologie,1966,61,1-28.
    [93]Shaver GR, Lechowicz MJ. A multivariate approach to plant mineral nutrition:dose-response relationships and nutrient dominance in factorial experiments. Canadian Journal of Botany,1985,63:2138-2143.
    [94]Shaver GR.& Melillo J.M. Nutrient Budgets of Marsh Plants:Efficiency Concepts and Relation to Availability. Ecology,1984,65,1491-1510.
    [95]Shuxia Zheng & Zhouping Shangguan. Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China. Trees,2007,21:357-370.
    [96]Schimel DS. All life is chemical. BioScience,2003,53,521-524.
    [97]Smith V.H. Implications of resource-ratio theory for microbial ecology. Advances in Microbial Ecology,1993,13,1-37.
    [98]Sterner R. W. The ratio of nitrogen to phosphorus resupplied by herbivores:zooplankton and the algal competitive arena. American Naturalist,1990,136,209-229.
    [99]Sterner R.W., Elser J.J.& Hessen D.O. Stoichiometric relationships among producers, consumers, and nutrient cycling in pelagic ecosystems. Biogeochemistry,1992,17,49-67.
    [100]Sterner RW, Elser JJ. Ecological Stoichiometry:the Biology of Elements From Molecules to Biosphere. Princeton University Press, Princeton.2002.
    [101]Sterner R.W.& Schulz, K.L. Zooplankton nutrition:recent progress and reality check. Aquatic Ecology,1998,33,1-19.
    [102]Sterner R.W.& Hessen D.O. Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology, Evolution, and Systematics,1994,25,1-29.
    [103]Striebel M, Sporl G, Stibor H. Light-induced changes of plankton growth and stoichiometry: experiments with natural phytoplankton communities. Limnology and Oceanography,2008, 53,513-522.
    [104]Sundareshwar P.V., Morris J.T., Koepfler E.K., et al. Phosphorus limitation of coastal ecosystem processes. Science,2003,299,563-565.
    [105]Thoren L.M., P.S. Karlsson, and J. Tuomi. Somatic cost of reproduction in three carnivorous Pinguicula species. Oikos,1996,76:427-434.
    [106]Tilman D. Resource Competition and Community Structure. Princeton University Press, Princeton.1982.
    [107]Tomassen H.B.M., Somolders A.J.P., Limpens J. et al. Expansion of invasive species on ombrotrophic bogs:desiccation or high N deposition? Journal of Applied Ecoloy,2004, 41,139-150.
    [108]Urabe J.& Watanabe Y. Implications of sestonic elemental ratio in zooplankton ecology: reply to the comment by Brett. Limnology and Oceanography,1993,38,1337-1340.
    [109]Urabe J., Nakanishi M.& Kawabata K. Contribution of metazoan plankton to the cycling of N and P in Lake Biwa. Limnology and Oceanography,1995,40,232-241.
    [110]Vanni MJ, Flecker AS, Hood JM, Headworth JL. Stoichiometry of nutrient recycling by vertebrates in a tropical stream:linking biodiversity and ecosystem function. Ecology Letters,5,2002,285-293.
    [111]Vrede T., Persson J.& Aronsen G.. The influence of food quality (P:C ratio) on RNA:DNA ratio and somatic growth rate of Daphnia. Limnology and Oceanography,2002,47, 487-494.
    [112]Vrede T., Dobberfuhl D.R., Kooijman S.A.L.M., et al. Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology,2004, 85,1217-1229.
    [113]Vitousek PM. Nutrient Cycling and Limitation:Hawai'i as a Model System. Princeton University Press, Princeton.2004.
    [114]Walker T.W.& Adams A.F.R. Studies on soil organic matter,1. Influence of phosphorus content of parent materials on accumulation of carbon, nitrogen, sulfur and organic phosphorus in grassland soils. Soil Science,1958,85,307-318.
    [115]Walker T.W.& Adams A.F.R. Studies on soil organic matter,2. Influence of increased leaching at various stages of weathering on levels of carbon, nitrogen, sulfur and organic and total phosphorus. Soil Science,1959,87,1-10.
    [116]Wassen MJ, Olde Venterink HGM, de Swart EOAM. Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. Journal of Vegetation Science,1995,6,5-16.
    [117]Weider L.J., Glenn K.L., Kyle M., et al. Associations among ribosomal (r) DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus Daphnia. Limnology and Oceanography,2004,49,1417-1423.
    [118]Westheimer F.H. Why nature chose phosphates. Science, (1987) 235,173-179
    [119]Williams R.J.P.& Silva J.J.R.F.d. The Natural Selection of the Chemical Elements:The Environment and Life's Chemistry. Clarendon. Oxford.1996.
    [120]White T.C.R. The Inadequate Environment:Nitrogen and the Abundance of Animals. Springer-Verlag, New York.1993.
    [121]Wyka, T., and C. Galen. Current and future costs of reproduction in Oxytropis sericea, a perennial plant from the Colorado Rocky Mountains, U.S.A. Arctic, Antarctic, and Alpine Research,2000,32:438-448.
    [122]Yu Q., Elser J.J., He N.P., Wu H.H., Chen Q.S., Zhang G.M. and Han X.G. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia,2011, in press.
    [123]Zhang L.X., Bai Y.F.& Han X.G. Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica,2003,45,1009-1018.
    [124]Zhang L.X., Bai Y.F.& Han X.G. Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica,2004,46,259-270.
    [125]白琰.高寒草甸植物群落α多样性和β多样性形成的机制:是生态位还是中性理论?In理论生态[博士学位论文].兰州,兰州大学,2009.
    [126]贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论.植物生态学报,2010,34(1):2-6.
    [127]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量.生态学报,1996,16(5):497-508.
    [128]裴世芳,傅华,陈亚明,et al..放牧和围封下霸王灌丛对土壤肥力的影响.中国沙漠,2004,24(6):763-767.
    [129]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力.第1版.北京:科学出版社,1999.
    [130]勾昕.高寒草甸植物群落演替过程物种多样性和化学计量学动态分析.[博士学位论文].兰州,兰州大学,2009.
    [131]郭永台.用胸径计算树木材积生长率的研究.林业资源管理.1991,(3)36-39.
    [132]刘长秀,灌丛对川西北高寒沙地土壤资源的影响.绵阳师范学院学报,2009,28(8):89-92.
    [133]刘兴诏,周国逸,张德强等.南亚热带森林不同演替阶段植物与土壤中N、P的化学 计量特征.植物生态学报,2010,34,64-71.
    [134]聂莹莹,李新娥,王刚.阳坡-阴坡生境梯度上植物群落α多样性与β多样性的变化模式以及与环境因子的的关系.2010,46(3):1-7.
    [135]任书杰,于贵瑞,陶波等.中国东部南北654种植物叶片氮和磷的化学计量学特征研究.环境科学,2007,28,2665-2667.
    [136]苏梅,齐威,阳敏,杜国祯.青藏高原东部大通翠雀花的花特征和繁殖分配的海拔差异.兰州大学学报:自然科学版,2009,45(2):61-65.
    [137]苏永中,赵哈林,张铜会.几种灌木、半灌木对沙地土壤肥力影响机制的研究.应用生态学报,2002,13(7):802-806.
    [138]王长庭,青藏高原高寒草甸植物群落物种组成和生物量沿环境梯度的变化.中国科学C辑:生命科学,2007,37,585-592.
    [139]王启基,周兴民,张堰青等.青藏高原金露梅灌丛的结构特征及其生物量.西北植物晚报,1991,11(4):333-340.
    [140]吴统贵,吴明,刘丽,萧江华.杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化.植物生态学报,2010,34,23-28.
    [141]吴统贵,陈步峰,肖以华,潘勇军,陈勇,萧江华.珠江三角洲3种典型森林类型乔木叶片生态化学计量学.植物生态学报,2010,34(1):58-63.
    [142]徐冰,程雨曦,甘慧洁等.内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联.植物生态学报,2010,34,29-38.
    [143]徐谨,种间正相互作用机理及其对物种特性差异响应的模拟与实验研究.[硕士学位论文]兰州,兰州大学,2009.
    [144]杨阔,黄建辉,董丹,马文红,贺金生.青藏高原草地植物群落冠层叶片氮磷化学计量学分析;植物生态学报.2010,34(1):17-22.
    [145]银晓瑞,梁存柱,王立新等.内蒙古典型草原不同恢复演替阶段植物养分化学计量学.植物生态学报,2010,34,39-47.
    [146]庾强.内蒙古草原植物化学计量生态学研究[博士学位论文],北京,中国科学院植物研究所,2009.
    [147]中国草地资源数据,中华人民共和国农业部畜牧兽医司.中国农业科技出版社.北京,1994,68-72.
    [148]中国植被,中国植被编辑委员会.北京:北京科学出版社.1980,430-451.
    [149]赵传燕,南忠仁,程国栋,邹松兵,张永忠.统计降尺度对西北地区未来气候变化预估.兰州大学学报:自然科学版,2008,44(5):12-18.
    [150]赵君,张仁懿,李新娥,陈凌云,王刚.甘南亚高寒草甸金露梅叶片氮磷化学计量学动态研究.兰州大学学报:自然科学版,2010,47(2).
    [151]曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索.植物生态学报,2005,29,1007-1019.
    [152]周华坤,周立,赵新全,沈振西,李英年,周兴民,严作良,刘伟.金露梅灌丛地下生物量形成规律的研究.草业学报,2006,6,59-65.
    [153]周鹏,耿燕,马文红等.温带草地主要优势植物不同器官间功能性状的关联.植物生态学报,2010,34,7-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700