磁性聚合物微球的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性聚合物微球是指通过适当的方法使聚合物与无机磁性粒子结合形成具有一定磁性及特殊结构的复合微球。从目前文献看,可分成三类:①核为无机磁性材料,壳为聚合物;②核为聚合物,壳为无机磁性材料;③内外层为聚合物,中间层为磁性材料的夹心结构。与常规微球相比,具有超顺磁性磁性聚合物微球能够在外磁场的作用下迅速从混合物中分离出来。正因为磁性聚合物的种种优点,在过去几十年中,无数科学家使用多种实验手段制备了性能和结构不同的磁性聚合物微球。迄今为止,这些结构产物制备方法一般有三种:一种是通过天然或合成高分子包裹磁性无机粒子获得磁性聚合物复合微球,它是制备磁性聚合物微球较早的一类方法;另外一种是由Ugelstad发展起来的在多孔聚合物内沉淀铁盐,经处理和再包裹—层聚合物获得磁性聚合物微球;第三种是目前用的最多的一种方法,它是在无机磁性粒子存在下进行单体聚合制备磁性聚合物微球。本文运用细乳液聚合法和无皂乳液聚合法制备了不同结构的磁性聚合物微球,然后对微球性能进行X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、热重分析(TGA)、动态激光光散射(DLS)、傅立叶红外(FTIR)和振动样品磁强计(VSM)等表征,取得的结果主要有以下方面:
     1.以FeCl_2.4H_2O和FeCl_3.6H_2O为铁源,NH_3.H_2O为碱,用化学沉淀法制备Fe_3O_4粒子。在制备过程中加入亲水性聚合物聚甲基丙烯酸和疏水性油酸改性Fe_3O_4粒子,改性Fe_3O_4粒子形状为椭圆和圆形,粒径尺寸约10纳米左右,呈超顺磁性,其水基和油基磁流体能稳定保存,具有磁流变现象。把所制备的磁流体用于油水分离和用作磁共振成像造影剂研究,获得较好的效果。
     2.把油酸改性Fe_3O_4分散于苯乙烯单体中,以十二烷基硫酸钠为乳化剂,BPO为引发剂,用超声制备稳定的O/W型细乳液,然后把上述细乳液直接加入到80℃水溶液中聚合制备Fe_3O_4/PSt复合微球。所制备的磁性聚合物微球大小在亚微米范围,粒径大小较均匀,Fe_3O_4较好的被聚苯乙烯包裹,磁响应性强。用相似方法制备了粒径为120nm左右的磁性Fe_3O_4/PSt-DVB-tBMA微球。当tBMA用量为总单体用量的10%和20%时,磁性聚合物微球水解后,微球不能稳定地分散于水,当
Magnetic polymer microsphere is a kind of hybrid microsphere with magnetic property, which is composed of polymer and inorganic magnetic particles. They can be classified into three kinds according to their structures. One is composed of polymeric core and magnetic shell; the other is composed of magnetic core and polymeric shell; the third is composed of polymeric core and shell, and the magnetic material located in the middle layer. The main advantage of magnetic polymeric microspheres over conventional polymeric microspheres is that, because of their superparamagnetic properties, they can be rapidly separated from solution under magnetic field. In the past decades, a great number of scientists have dedicated their efforts to preparation of different kinds of magnetic polymer microspheres and many strategies have been performed to producing magnetic polymer microspheres. Up to now, there are three ways to prepare magnetic polymer microspheres: (1) Encapsulation of magnetic particles with preformed natural or synthetic polymers is the simple and classical method to prepare magnetic polymer microspheres; (2) Another method is developed by Ugelstad through direct precipitation of iron salt inside the porous polystyrene particles; (3) The third method is to suspend magnetic particles in the dispersed phase and then polymerize the monomer in the presence of the magnetic particles to form magnetic polymer microspheres. In this article, miniemulsion polymerization and soap-free emulsion polymerization were adopted to prepare magnetic polymer microspheres with different structures. The magnetic polymer microspheres were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA). Some results have been obtained as follows:
    1. The Fe3O4 magnetic particles were prepared by the coprecipitation of FeCl3.6H2O and NH3.H2O. Polymethacrylic acid or oleic acid was used to modify the iron oxide nanoparticles in synthetic process. The Fe3O4 particles are somewhat irregularly shaped from oval to sphere and the particle size was around 10 nm. The Fe3O4 particles are superparamagnetic. Stable water-based and oil-based magnetic fluid can be achieved. The magnetic fluid was used in collecting leaked oil and used as contrast agent in magnetic resonance imaging.2. The magnetic polystyrene microspheres were prepared by miniemulsion polymerization. The monomer is styrene and the initiator is benzoyl peroxide. The nanosized iron oxide particles can be well encapsulated in polystyrene microspheres and they are superparamagnetic. Fe3(VPSt-DVB-tBMA microspheres were also prepared and the size of these microspheres was about 120nm. Stable water-based magnetic fluid could be achieved when Fe3(VPSt-DVB-tBMA microspheres containing 30% tBMA in monomers were hydrolyzed.3. The magnetic polyacrylamide microspheres were prepared by one-step inverse miniemulsion polymerization using Span 80 as the emulsifier and isobutyronitrile as the initiator. The magnetic polymer microspheres are spherical and their size was about 80 nm. The nanosized iron oxide particles can be well encapsulated in polyacrylamide particles and the magnetic polymer microspheres are superparamagnetic. Crosslinked magnetic polyacrylamide microspheres can been transfered to aqueous solution .4. Fe3O4/SiO2 composite particles were prepared via sol-gel process based on inverse miniemulsion. The composite particles are superparamagnetic and each composite particle contains many magnetic nanoparticles. X-ray diffraction patterns show silica shell is amorphous, and the crystallinity of the magnetic nanoparticulate core is retained after the coating's procedure. Fe3O4/SiO2 nanosized composite particles can be
引文
1. Chouly C, Pouliquen D, Lucet I, Jeune P, Pellet JJ, Development of superparamagnetic nanoparticles for MRI: effect of particles size, charge and surface nature on biodistribution[J]. J Microencapsul, 1996, 13: 245-255.
    2. Chatterjee J, Haik Y, Chen C-J. Size dependent magnetic properties of iron oxide nanoparticles[J]. J Magn Magn Mater, 2003, 257(1): 113-118
    3. Pratsinis SE, Vemury S. Particle formation in gases—a review[J], Powder Technol 1996, 88: 267.
    4. Kramer P A, Letter: Albumin microspheres as vehicles for achieving specificity in drug delivery[J]. Journal of pharmaceutical sciences[J], 1974, 63(10): 1646-1647.
    5. Morimoto Y, Sugibayashi K, Okumura M, Kato Y, Biomedical applications of magnetic fluids, ⅰ. Magnetic guidance of ferro-colloid-entrapped albumin microsphere for site specific drug delivery in vivo[J]. Journal of pharmacobio-dynamics, 1980, 3(5): 264-267.
    6. Widder K J, Morris R M, Poore G, Howard D P Jr, Senyei A E, Tumor remission in Yoshida sarcoma-bearing rts by selective targeting of magnetic albumin microspheres containing doxorubicin[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(1): 579-581.
    7. Gupta P K, Hung C T, Effect of carrier dose on the multiple tissue disposition of doxorubicin hydrochloride administered via magnetic albumin microspheres in rats. Journal of Pharmaceutical Sciences[J], 1989, 78(9): 745-748.
    8. Gallo J M, Hung C T, Gupta P K, Perrier D G, Physiological pharmacokinetic model of adriamycin delivered via magnetic albumin microspheres in the rat[J], Journal of pharmacokinetics and biopharmaceutics, 1989, 17(3): 305-326.
    9. Gupta P K, Hung C T, Rao N S, Ultrastructural disposition of adriamycin-associated magnetic albumin microspheres in rats, Journal of pharmaceutical sciences[J], 1989, 78(4): 290-294.
    10. Gallo J M, Gupta P K, Hung C T, Perrier D G, Evaluation of drug delivery following the administration of magnetic albumin microspheres containing adriamyein to the rat[J]. Journal of pharmaceutical sciences, 1989, 78(3): 190-194.
    11. Gupta P K, Hung C T, Magnetically controlled targeted micro-carrier systems[J], Life sciences, 1989, 44(3): 175-186.
    12. Gupta P K, Hung C T, Targeted delivery of low dose doxorubicin hydrochloride administered via magnetic albumin microspheres in rats. [J], J. Microencapsul, 1990, 7(1): 85-94.
    13. Gupta P K, Hung C T, Comparative disposition of adriamycin delivered via magnetic albumin microspheres in presence and absence of magnetic field in rats[J], Life sciences, 1990, 46(7): 471-479
    14. Iannotti J. P, Baradet, T. C, Tobin, M, Alavi, A., Staum, M., Synthesis and characterization of magnetically responsive albumin microspheres containing cis-hydroxyproline for scar inhibition[J], Journal of Orthopaedic Research, 1991), 9(3): 432-444.
    15. Hafeli U O, Sweeney S M, Beresford B A, Sim E H, Macklis R M, Magnetically directed poly(lactic acid) 90Y-microspheres: novel agents for targeted intracavitary radiotherapy[J], Journal of biomedical materials research, 1994, 28(8): 901-918.
    16. Hafeli U O, Sweeney S M, Beresford B A, Humm J L, Macklis R M, Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results[J], Nuclear medicine and biology, 1995, 22(2): 147-155.
    17. Hafeli, U., Pauer, G., Failing, S., Tapolsky, G., Radiolabeling of magnetic particles with rhenium-188 for cancer therapy[J], Journal of Magnetism and Magnetic Materials, 2001, 225(1-2), 73-78.
    18. Devineni D, Klein-Szanto A, Gallo J M, Tissue distribution of methotrexate following administration as a solution and as a magnetic microsphere conjugate in rats bearing brain tumors[J], Journal of neuro-oncology, 1995, 24(2): 143-152.
    19. Ghassabian, Sussan, Ehtezazi, Turaj, Forutan, Seyed Mohsen, Mortazavi, Seyed Alireza., Dexamethasone-loaded magnetic albumin microspheres: preparation and in vitro release[J], International Journal of Pharmaceutics, 1996, 130(1): 49-55.
    20.王平康,王光志,马锦琦等.磁性顺铂微球的药物控释研究[J],中国药学杂志,1998,33(9):527—540.
    21.邱广亮,邱广明,石晶瑜,李咏兰.韩毅强等.磁性靶向顺铂白蛋白微球的研究[J].广州化工,2000,28(4):103—105
    22.徐慧显,李民勤,潘再群马建标,何炳林,葡聚糖磁性毫微粒固定化L—天冬酰胺酶的研究[J],生物化学杂志,1996,12(6):744—746
    23.李民勤.徐慧显.左榘.姬昂.何炳林.庞雁.黄建英.牛瑞芳,葡聚糖免疫磁性毫 微粒的制备及作为复合靶向载体研究[J],中国科学B辑,1996,26(3):193—198
    24. Josephson Lee, Silanized magnetic particles for use in separations and bioassays[P], WO 8806632, 1987-03-02
    25. Chatterjee, J, Haik, Y, Chen, C. J, Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres [J], Journal of Magnetism and Magnetic Materials (2001), 225(1-2): 21-29.
    26. Ullman Edwin F, Kurn Nurith, Ghazarossian Vartan E, Weng Litai, Particle separation and assay methods using magnetic particles[P]. EP 0230768, 1986-12-19
    27. Bjerke T; Nielsen S; Helgestad J; Nielsen B W; Schiotz P O, Purification of human blood basophils by negative selection using immunomagnetic beads[J], Journal of immunological methods, 1993, 157(1-2): 49-56.
    28. Friedl, Peter; Noble, Peter B.; Zaenker, Kurt S, T lymphocyte locomotion in a three-dimensional collagen matrix. Expression and function of cell adhesion molecules[J], Journal of Immunology, 1995, 154(10): 4973-4985.
    29. Briscoe D M; Henault L E; Geehan C; Alexander S I; Lichtman A H, Human endothelial cell costimulation of T cell IFN-gamma production[J], Journal of immunology (Baltimore, Md.: 1950), 1997, 159(7): 3247-3256.
    30. Poynton, Christopher H.; Reading, Christopher L., Affinity ligand coated magnetic colloids for selective cell separation[P], US 4920061, 1990-04-24
    31. Wedemeyer N; Potter T, Flow cytometry: an 'old' tool for novel applications in medical genetics[J], Clinical genetics, 2001, 60(1): 1-8.
    32. Rembaum, A.; Yen, R. C. K.; Kempner, D. H.; Ugelstad J, Cell labeling and magnetic separation by means of immunoreagents based on polyacrolein microspheres[J], Journal of Immunological Methods, 1982, 52(3): 341-351.
    33. Timko M, Koneracka M, Kopcansky P, Ramchand CN, Vekas L, Bica D, Application of magnetizable complex systems in biomedicine[J], Czechoslovak Journal of Physics, 2004, 54: 599-606
    34. Arica, M. Yakup; Yavuz, Handan; Patir, Suleyman; Denizli, Adil, Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor [J], Journal of Molecular Catalysis B: Enzymatic, 2000, 11: 127~138
    35.邱广亮,邱广明,李咏兰,格特乐.期日古楞.磁性淀粉微球固定化乙酰乳酸脱羧酶及应用[J].广州化工,2000,28(4):24-27
    36.邱广亮,李咏兰,纳米级磁性微粒的制备及固定化纤维酶的研究[J].药物生物技术,2001,8(4):197—199
    37. Akgol, Sinan; Kacar, Yasemin; Denizli, Adil; Arica, M. Y, Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres[J], Food Chemistry, 2001, 74: 281~288
    38.陈捷,薛博,白姝.新型磁性亲和载体的制备及其对溶菌酶的吸附[J].天津大学学报,2001,34(1):103-106
    39. Rittich, Bohuslav; Spanova, Alena; Ohlashermyy, Yuriy; Lenfeld, Jiri; Rudolf, Ivo; Horak, Daniel; Benes, Milan J. Characterization of deoxyribonuclease Ⅰ immobilized on magnetic hydrophilic polymer particles[J]. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 774(1): 25-31.
    40. Bilkova, Zuzana; Slovakova, Marcela; Lycka, Antonin; Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres [J]. Journal of Chromatography B, 2002, 770: 25~34
    41. Nielsen OS, Horsman M, Overgaard J. A future for hyperthermia in cancer treatment[J], Eur J Cancer, 2001, 37: 1587-1589
    42.赵振声,李晖,吴明忠等,肿瘤热疗中自动控温、恒温[J],生物化学与生物物理进展,1997,24(6):504~506
    43.崔岗,周岱,周光熊,磁感应加热法应用于兔脑组织的初步研究[J],苏州医学院学报,1997,17(3):403~405
    44. Luderer AA, Borrelli NF, Panzarino JN, Mansfield GR, Hess DM, Brown JL, Barnett EH. Glass-ceramic-mediated, magnetic-field-induced localized hyperthermia: response of a murine mammary carcinoma[J]. Radiat Res, 1983, 94: 190-198.
    45. Chan DCF, Kirpotin DB, Bunn Jr PA. Synthesis and evaluation of colloidal magnetic iron oxides for the site specific radio-frequency-induced hyperthermia of cancer[J]. J Magn Magn Mater 1993, 122: 374-378.
    46. Gordon R T; Hines J R; Gordon D, Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations[J], Medical hypotheses, 1979, 5(1): 83-102.
    47. Mitsumori M; Hiraoka M; Shibata T; Okuno Y; Nagata Y; Nishimura Y; Abe M; Hasegawa M; Nagae H; Ebisawa Y, Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors[J], Hepato-gastroenterology, 1996, 43(12): 1431-1437.
    48. Sneed PK, Stea B. In: Seegenschmiedt MH, Fessenden P, Vernon CC, editors. Thermoradiotherapy and thermochemotherapy, vol 2. Berlin: Springer; 1996.
    49. Hallier-Soulier S, Guillot E, An immunomagnetic separation polymerase chain reaction assay for rapid and ultra-sensitive detection of Cryptosporidium parvum in drinking water[J]. FEMS Microbiology Letters, 1999(2), 176: 285-289
    Rana S, White P, Bradley M, Synthesis of magnetic beads for solid phase synthesis and reaction scavenging[J], Tetrahedron Letters, 1999, 40(46): 8137-8140
    50. Tricot, Marc; Daniel, Jean Claude, Magnetic beads of vinylaromatic polymers[P]. US 4339337, 1982-07-13
    51. Sucholeiki. Bohuslav Jena Spa, Rittich, nova A. Characterization of deoxyribonuclease Ⅰ immobilized on magnetic hydrophilic polymer particles [J]. Journal of Chromatography B: 2002, (774): 25-31.
    52. Papell, Solomon S. Propellant containing magnetic particles [P]. US: 3215572, 1965-11-02
    53. Khalafalla Sanaa E and Reimers George W., Magnetic liquids [P]. US: 3843540, 1974-10-22
    54. Shouheng Sun, Hao Zeng, David B. Robinson, Simone Raoux,(?) Philip M. Rice,
    55. Shan X. Wang, and Guartxiong Li, Monodisperse MFe_2O_4 (M) Fe, Co, Mn) Nanoparticles, J. AM. CHEM. SOC. 2004, 126: 273-279
    56.郑兰香,彭国新,超细四氧化三铁微粒的制备[J],精细化工,1995(6):11—14
    57. Nakatani I, Hijikata M, Ozawa K, Iron-nitride magnetic fluids prepared by vapor-liquid reaction and their magnetic-properties[J], Journal of Magnetism and Magnetic Materials, 1993, 122 (1-3): 10-14
    58. Yamaguchi, T.; Sakita, M.; Nakamura, M.; Kobira, T, Synthesis and characteristics of Fe4N powders and thin films[J], Journal of Magnetism and Magnetic Materials, 2000, 215: 529-531
    59. Wooding, Anthony; Kilner, Melvyn; Lambrick, David B., Studies of the double surfactant layer stabilization of water-based magnetic fluids[J], Journal of Colloid and Interface Science, 1991, 144(1): 236-242.
    60. Wooding, Anthony; Kilner, Melvyn; Lambrick, David B, "Stripped" magnetic particles.Applications of the double surfactant layer principle in the preparation of water-based magnetic fluids[J], Journal of Colloid and Interface Science, 1992, 149(1): 98-104.
    61. Shen, Lifen; Laibinis, Paul E.; Hatton, T. Alan. Solution and bilayer structure of surfactant-stabilized magnetic fluids[J], Book of Abstracts, 216th ACS National Meeting, Boston, 1998, August: 23-27
    62. Shen, Lifen; Laibinis, Paul E.; Hatton, T. Alan. Bilayer Surfactant Stabilized Magnetic Fluids: Synthesis and Interactions at Interfaces[J], Langmuir, 1999, 15(2): 447-453.
    63. Shen, Lifen; Laibinis, Paul E.; Hatton, T. Alan. Aqueous magnetic fluids stabilized by surfactant bilayers[J], Journal of Magnetism and Magnetic Materials, 1999, 194(1-3): 37-44.
    64. Shen, Lifen; Stachowiak, Agnieszka; Hatton, T. Alan; Laibinis, Paul E. Polymerization of Olefin-Terminated Surfactant Bilayers on Magnetic Fluid Nanoparticles[J], Langmuir, 2000, 16(25): 9907-9911.
    65. Guenther Dirk., Magnetic fluid and its preparation and use[P], DE: 4327826,1993-08-16
    66. Vislovich AN, Medvedev VF, Dmitrichenko AS, et al., A magnetic fluid gate as a new element in sealing technology[J], Journal of Magnetism and Magnetic Materials, 1993, 122 (1-3): 411-414
    67. Bonvouloir J, Experimental study of high speed sealing capability of single stage ferrofluidic seals[J], Journal of tribology-transactions of the ASME, 1997, 119 (3): 416-421
    68. Kim YS, Nakatsuka K, Fujita T, et al., Application of hydrophilic magnetic fluid to oil seal[J], Journal of Magnetism and Magnetic Materials, 1999, 201: 361-363
    69. Li XH, Liu Y, Zhang P, et al., Research on the iron-nitride magnetic fluid static sealing[J], Rare metal materials and engineering, 2003, 32 (2): 157-159
    70. Kim YS, Kim YH, Application of ferro-cobalt magnetic fluid for oil sealing [J], Journal of Magnetism and Magnetic Materials, 2003, 267 (1): 105-110
    71.李海英,沈驳,周丽绘,王丁林,朱传征,磁流体在外加磁场中应用于油水分离的研究[J],化学世界 1999,9:492~495
    72. Segal V, Rabinovich A, Nattrass D, et al. Experimental study of magnetic colloidal fluids behavior in power transformers[J], Journal of Magnetism and Magnetic Materials, 2000, 215: 513-515
    73. Upadhyay RV, Srinivas D, Mehta RV, Magnetic resonance in nanoscopic particles of a ferrofluid[J], Journal of Magnetism and Magnetic Materials, 2000, 214(1-2): 105-111
    74. Inatomi Y, Gao L, Honda T, et al. Freezing of supercooling water using magnetic fluid [J], JSME International Journal Series B-Fluids and Thermal Engineering, 1997, 40 (3): 454-460
    75. Danilov, V. D.; Volobuev, N. K.; Gulydina, N. V.; Orlov, D. V.; Kuznetsov, A. A.; Shibrya, G. G. Magnetic fluids as lubricants [J], Trenie i Iznos, 1994, 15(5): 849-855.
    76. Goldowsky, M., New methods for sealing, filtering and lubricating with magnetic fluids [J], IEEE Transactions on Magnetics, 1980, MAG-16(2): 382-386
    77. Odenbach, Stefan, Magnetic fluids [J], Advances in Colloid and Interface Science, 1993, 46: 263-282
    78.丁广良,胡红兵,卢广,两种新型的MRI造影剂[J],化学物理学报,2000,13(1):99-102.
    79. Vestal, Christy R.; Zhang, Z. John, Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe2O4/Polystyrene Core/Shell Nanoparticles[J]. Journal of the American Chemical Society, 2002, 124(48): 14312-14313.
    80. Wang Y., Teng X., Wang J., and Yang H., Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3 @ polystyrene core-shell nanoparticles[J], NANO LETTERS, 2003, 3 (6): 789-793
    81. Ughelstad, John; Ellingsen, Turid; Berge, Arvid; Helgee, Bertil. Magnetic polymer particles[P]. WO 8303920, US4774265, 1983-04-22
    82. Ugelstad, J.; Berge, A.; Ellingsen, T.; Schmid, R.; Nilsen, T. N.; Moerk, P. C.; Stenstad, P.; Hornes, E.; Olsvik, O. Preparation and application of new monosized polymer particles[J]. Progress in Polymer Science, 1992, 17(1): 87-161.
    83. Ugelstad, J.; Stenstad, P.; Kilaas, L.; Prestvik, W. S.; Herje, R.; Berge, A.; Homes, E. Monodisperse magnetic polymer particles. New biochemical and biomedical applications[J]. Blood Purification (1994), Volume Date 1993, 11(6): 349-369.
    84. Zhang, Jiguang; Xu, Shengqing; Kumacheva, Eugenia., Polymer Microgels: Reactors for Semiconductor, Metal, and Magnetic Nanoparticles[J], Journal of the American Chemical Society, 2004, 126(25): 7908-7914
    85. Pich, Andrij; Bhattacharya, Sanchita; Lu, Yan; Boyko, Volodymyr; Adler, Hans-Juergen P, Temperature-Sensitive Hybrid Microgels with Magnetic Properties[J]. Langmuir, 2004, 20(24): 10706-10711.
    86. Yanase N, Noguchi H, Asakura H, et al. Preparationg of Magnetic Latex-Particles by emulsion Polymerization of Styrene in the Presence of a Ferrofluid[J], Journal of Applied Polymer Science, 1993, 50 (5): 765-776
    87. Xie G., Zhang Q., Luo Z., Wu M., and Li T., Preparation and characterization of monodisperse magnetic poly(styrene butyl acrylate methacrylic acid) microspheres in the presence of a polar solvent[J], Journal of Applied Polymer Science, 2003, 87 (11): 1733-1738
    88. Ramirez, Liliana P.; Landfester, Katharina, Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes[J], Macromolecular Chemistry and Physics, 2003, 204(1): 22-31.
    89. Liu XQ, Guan YP, Ma ZY, Liu HZ, Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization[J], Langmuir, 2004, 20 (23): 10278-10282
    90. Xie G, Zhang HP, Zhang QY, Li TH, Preparation of magnetic composite microspheres by miniemulsion polymerization and their characterization[J], ACTA POLYMERICA SINICA, 2003 (5): 626-630
    91. Wormuth Klaus, Superparamagnetic Latex via Inverse Emulsion Polymerization[J], Journal of Colloid and Interface Science, 2001, 241 (2): 366-377.
    92. Hoar, T. P.; Schulman, J. H., Transparent water-in-oil dispersions: the oleopathic hydro-micelle[J], Nature, 1943, 152: 102-103.
    93. Dresco, Pierre A.; Zaitsev, Vladimir S.; Gambino, Richard J.; Chu, Benjamin, Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles[J], Langmuir, 1999, 15(6): 1945-1951.
    94. Yang, Xiaotun; Xu, Lingge; Ng, Siu Choon; Hardy, Chan Sze On., Magnetic and electrical properties of polypyrrole-coated-Fe2O3 nanocomposite particles[J], Nanotechnology 2003, 14(6): 624-629.
    95. Deng Y, Wang L, Yang W, et al., Preparation of magnetic polymeric particles via inverse microemulsion polymerization process[J], Journal of Magnetism and Magnetic Materials, 2003, 257(1): 69-78
    96.李孝红,孙宗华,磁性高分子微球的合成研究——带醛基磁性高分子微球的合成及表征[J],离子交换与吸附,1996,12(6):486-492
    97.李孝红,丁小斌,孙宗华,含羟基磁性高分子微球的合成及表征[J],功能高分子学报,1995,8(1):73-78
    98.丁小斌,孙宗华,万国祥,热敏性高分子包裹的磁性微球的合成[J],高分子学报,1998,(5):628-631
    99.丁小斌,孙宗华,万国祥,热敏性高分子包裹的磁性微球的性质及表征[J],高分子学报,1999,(6):674-679
    100.邱广明,高晓松,杨春雁,孙宗华等,Fe_3O_4/P(St-AA)核—壳复合微球的制备和表征[J],应用化学,1996,13(1):6-9
    101.邱广明,微米级Fe_3O_4/P(St-Ac)磁性微球的合成[J],应用化学,1999,16(6):46-49
    102.邱广亮,张艳茹,磁性载体用于酶固定化方面的研究[J],内蒙古师范大学学报,1998,27(2):129-133
    103. Horak D, Semenyuk N, Lednicky F, Effect of the reaction parameters on the particle size in the dispersion polymerization of 2-hydroxyethyl and glycidyl methacrylate in the presence of a ferrofluid[J], Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41 (12): 1848-1863
    104. Horak D, Benedyk N, Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically stabilized ferrofluids[J], Journal of Polymer Science: Part A: Polymer Chemistry, 2004, 42 (22): 5827-5837
    105. Denkbas, Emir Baki; Kilicay, Ebru; Birlikseven, Cengiz; Ozturk, Eylem. Magnetic chitosan microspheres: Preparation and characterization[J]. Reactive & Functional Polymers, 2002, 50(3): 225-232.
    106. Rembaum, A.; Dreyer, W. J., Immunomicrospheres: reagents for cell labeling and separation, Science, 1980, 208(4442): 364-368
    107.王胜林,朱以华,吴秋芳等,微悬浮聚合法合成聚苯乙烯磁性微球[J],华东理工大学学报,2001,27(4):364-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700