油浸倒立式电流互感器主绝缘电场分析与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油浸倒立式电流互感器区别于传统的正立式结构,将二次绕组与一次绕组集中置于整个产品的上部,避免了正立式电流互感器主绝缘位于产品底部易受潮的问题,减少了主绝缘因受潮而被击穿的可能性,但同时也给产品的绝缘设计和工艺制造增添了一定的难度。
     油浸式电流互感器在110kV电压等级以上通常采用电容型油纸绝缘结构,即在主绝缘中嵌入电容屏来改善电场分布。针对于倒立式的特殊结构,增加电容屏的方式一般分为两种:一种为端屏式结构,另一种则为主屏式结构。本文采用主屏式结构,以220kV油浸倒立式电流互感器为研究对象,分析了主绝缘的物理结构特点,采用数值和解析两种方法求解屏间电容,并验证了两种方法的准确性。根据倒立式电流互感器主屏式结构的特点,采用分层分段的方式建立电场分析的有限元模型,将二次侧绕组与下引线部位分开,对于二次侧绕组部位进行三维有限元分析,对于下引线部位进行二维有限元分析,并采用解析法验证了有限元计算电场的准确性。根据电场分布以及最大场强位置,分析影响绝缘性能的主要因素,提出了优化方案。
     本文采用RBF神经网络动态响应模型与遗传算法相结合的方法对主屏结构的油浸倒立式电流互感器的主绝缘结构进行优化。根据动态神经网络的思想,建立动态响应模型,使响应模型跟随最优点的位置不断更新、细化,避免了传统响应模型采样点过多的缺陷;采用幂律标定方法增强了遗传算法的选择功能。通过优化降低了最大场强,同时也使主绝缘整体的电场分布得到了改善。
Oil-immersed inverted current transformer is different from the traditional structure, its primary winding and second winding are set on the top of the current transformer. This structure can keep main insulation away from wetness. However, it also added some difficulties to the insulation design and manufacture process.
     Oil-immersed current transformer in 110 kV voltage level above usually adopts capacitance type insulation structure. Capacitance screens which embedded in main insulation are connected in series to improve the distribution of the electric field. There are two ways adding capacitance screens in main insulation, one is adding some end capacitance screens, and the other is adding some main screens. This paper adopts adding main screens in insulation of 220kV oil-immersed current transformer, and analyzes the main insulation physical structure. The numerical and analytical have been adopted to compute the capacitance between screens. The accuracy of two method have been verified each other. According to the structure of oil-immersed invert current transformer, the FEM calculation model has been constructed separately. Through 3D and 2D electric field FEM analysis, the distribution of electric field can be obtained, and the location of maximum electric field strength can be found. The results have been compared with the results calculated by analytical method, and the accuracy has been verified. Based on the electric field analysis, an optimization scheme for main insulation has been proposed in this paper.
     The RBF neural network dynamic response model combined genetic algorithm (GA) has been proposed to optimize the main insulation of oil-immersed invert current transformer with the main screen structure. The dynamic response model had been established by the dynamic neural network, and the response model has been updated and refined following the position of the optimal point constantly. It resolved the problem for traditional response model that too many sample points need mass computation. Made the power function of objective function as the fitness function to enhance the option function of GA. After optimization the maximum of the electric field has been reduced, and the electric field distribution in the main insulation has been improved.
引文
[1]陈陶.高压SF6电流互感器三维电场数值计算与优化设计:(硕士学位论文).沈阳,沈阳工业大学,2008.
    [2] LOUIS W. MARKS, PHILIP V. SHADE. Inverted Current Transformer. IEEE Transactions on Power Appareatus and Systems, 1967, 86(10): 1198~1204.
    [3] Park K Y, GUO X J, Fang M T C. Mathematical Modeling of SF6 Puffer Circuit Breakers II. Current Zero Region IEEE Transactions on Plasma Science, 1997, 25(5): 967~973.
    [4]中国机械工业年鉴编辑委员会,中国电力工业协会主编.2005中国电器行业工业年鉴,2005,11:l~4.
    [5]路燕.未来20年动力设备制造业的发展战略.发电设备,2006,2:77~80.
    [6]中国电器工业协会行业发展部.电力装备制造业的机遇与未来.电器工业,2005,1:5~18.
    [7]龚大德.高压厂用备用电源是否需要装设快切装置的分析.电力勘测设计,2006,6:35~39.
    [8]李建基.国际大电网会议与高压开关设备技术.上海电器技术,2001:10~11.
    [9]薛晨,黎灿兵,曹一家,等.智能电网中的电网友好技术概述及展望.电力系统自动化,2011,35(15):102~107.
    [10]江哲生.我国电力发展的未来.发电设备,2006,1:1~5.
    [11]李一辉.电流互感器局部放电故障分析.新疆电力技术,2007,93:14~16.
    [12]刘在勤,肖耀荣.40年来我国互感器技术的发展.变压器,2004,41(3):42~44.
    [13]王均梅,吴春风,王晓琪.我国电力互感器的发展概况及应用现状.电力设备,2007,8(1):5~10.
    [14]王世阁.倒置式电流互感器运行状况分析及提高安全运行性能的建议.变压器,2009,4(9):64~68.
    [15]邹彬,郭森,袁聪波,等.一起220kV油浸倒立式电流互感器故障原因分析.变压器,2010,47(2):69~72.
    [16] Niemeyer Legal. The mechanism of leader breakdown in electronegative gases. IEEE Transom EI, 1989, 24: 309~324.
    [17] Divinized M, Tumms L R, Richter Betel. Multiples lightning currents and metal oxide arresters. IEEE Trans PD, 1997, 12(3): 11~68.
    [18]王仲奕,马志瀛,顾沈卉,等.550kV SF6绝缘电流互感器的电场分析.华北电力大学学报,2005,32:71~74.
    [19]罗青林,刘玉凤,等.330kVSF6电流互感器电场计算及绝缘结构分析.变压器,2001,38(4):16~19.
    [20]杨茜,郭天兴,刘海,等.110kV电流互感器电场分析与绝缘结构改进.电力电容器与无功补偿,2010,31(1):31~34.
    [21]尚耀辉,等.绝缘油纸电流互感器的绝缘设计.电力电容器与无功补偿,2009,30(3):25~27.
    [22]钱伟长.变分法及有限元.北京:科技出版社,1980.
    [23]周克定.工程电磁场数值计算的理论方法及应用.北京:高等教育出版社,1994.
    [24]王勖成,邵敏.有限单元法基本原理与数值方法.北京:清华大学出版社,1998.
    [25] T Nakata, N Takahashi, K Fujiwara, et al. Comparison of different finite elements for 3D eddy current analysis. IEEE Trans. on Magnetics, 1990, 26(2): 434~437.
    [26] T Nakata, N Takahashi, K Fujiwara, et al. Comparison of various method of analysis and finite elements in 3-dmegnetic field analysis. IEEE Trans. on Magnetics, 1991, 27(5): 4073~4076.
    [27] P R Kotiuga. Essential arithmetic for evaluation three dimensional vector finite element interpolation schemes. IEEE Trans. on Magnetics, 1994, 30(5): 3552~3555.
    [28]倪光正.工程电磁场原理.北京:高等教育出版社,2002.
    [29] H. Singer, H. Steinbigler. A Charge Simulation Method for the Calculation of High Voltage Fields, IEEE Tran. on PAS. 1974, 93: 1660~1667.
    [30] Tadasu Takuma, Tadashi Kawamoto. Recent Development in Electric Field Calculation, IEEE Trans. on Mag, 1999, 33(2): 1155~1160.
    [31] Yializis, A. et al. An Optimized Charge Simulation Method for the Calculation of High Voltage Fields, IEEE Trans. on PAS, 1978, 97(6): 2434~2440.
    [32]孙明礼,胡仁喜,崔海蓉,等.ANSYS10.0电磁学有限元分析实例教程.北京:机械出版社,2007.
    [33]肖耀荣.高祖绵.互感器原理与设计基础.辽宁:辽宁科学技术出版社,2003.
    [34]魏朝晖.油浸倒立式电流互感器设计.变压器,2000,37(9):6~9.
    [35]互感器制造技术编审委员会.互感器制造技术.北京:机械工业出版社,1998.
    [36] Ho S L, Yang Shiyou, et al. Development of an efficient global optimal design technique acombined approach of MLS and SA algorthm. Compel, Journal, 2002, 21: 604~614.
    [37]魏海坤.神经网络结构设计的理论与方法.北京:国防工业出版社,2005.
    [38]沙丽容.神经网络在结构疲劳中的应用:(硕士学位论文).吉林,吉林大学,2007.
    [39]李烁,徐元铭,张俊.复合材料加筋结构的神经网络响应面优化设计.机械工程学报,2006,42(11):115~119.
    [40]刘希玉,刘弘.人工神经网络与微粒群优化.北京:北京邮电大学出版社,2008.
    [41]曹云东,刘晓明,刘东,等.动态神经网络法及在多变量电器优化设计中的研究.中国电机工程学报,2006,26(8):112~116.
    [42]谢德馨,杨仕友.工程电磁场数值分析与综合.北京:机械工业出版社,2008.
    [43]龚纯,王正林.精通MATLAB最优化计算.北京:电子工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700