氧化低密度脂蛋白诱导人系膜细胞凋亡及其在慢性肾炎进展中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肾小球硬化的重要病理特征是进行性肾小球细胞外基质积聚和细胞丧失。在肾小球炎症过程中,系膜细胞和其它固有细胞发生了凋亡,系膜细胞被细胞外基质取代。细胞过度凋亡导致细胞减少是肾小球硬化的重要原因。
    脂质异常引起肾小球进行性硬化的一个重要病理特征就是肾小球细胞数下降。肾脏沉积的脂质可以诱导肾脏细胞凋亡,系膜细胞凋亡可能是晚期肾小球硬化中肾小球细胞数减少的主要原因。
    当LDL在肾小球内沉积后,系膜细胞、局部浸润的巨噬细胞及其释放的氧自由基,氧化LDL,形成氧化低密度脂蛋白(Ox-LDL)。Ox-LDL可以导致细胞坏死或凋亡,在肾小球硬化的发生发展中起重要作用。
    Ox-LDL本身以及它刺激系膜细胞产生的MCP-1都是巨噬细胞的趋化因子。Ox-LDL比天然LDL对系膜细胞和巨噬细胞有更高的亲和力,更易被系膜细胞和巨噬细胞摄取。系膜细胞和巨噬细胞通过清道夫受体(Scavenger receptor, SR) 优先大量摄入Ox-LDL,导致PGE2合成增多,使肾小球内血流动力学和血管通透性改变进一步加剧,并产生细胞因子刺激系膜细胞合成基质,系膜细胞和巨噬细胞摄入大量Ox-LDL后变成泡沫细胞,最终细胞死亡,导致了肾小球硬化。
    研究表明,Ox-LDL在低浓度(<100μg/ml)时抑制肾小球系膜细胞增殖,促进肾小球系膜细胞凋亡,这可能参与了肾小球硬化过程中的细胞丧失过程。Ox-LDL促进系膜细胞凋亡的作用机制尚不清楚,推测其机制与Bcl-2、Bax有关。Bcl-2和Bax是一对凋亡正负调节基因。Bcl-2能抑制凋亡,抗氧化损伤是其作用机制之一,这种作用能被二聚化的Bax抵消。 Bax
    
    是Bcl-2家族成员,能拮抗Bcl-2的抗凋亡作用,促进凋亡。Bcl-2与Bax蛋白量的比值决定异源二聚体(Bcl-2/ Bax)与同源二聚体(Bax/ Bax)的比值,决定细胞命运。本课题旨在回答Ox-LDL促进系膜细胞凋亡的机制是否与Bcl-2、Bax有关?
    本实验研究了Ox-LDL对HMC增殖、凋亡以及Bax/ Bcl-2蛋白表达的影响;伴有肾小球硬化的慢性肾炎患者血浆LDL水平与肾小球细胞凋亡及Bcl-2、Bax的蛋白表达的关系。旨在阐明Ox-LDL诱导HMC凋亡的作用机制,以进一步了解脂质肾损伤的机理。
    主要结果如下:
    1. Ox-LDL在0~100 μg/ml浓度范围内,能抑制肾小球系膜细胞增殖,诱导肾小球系膜细胞凋亡,呈剂量依赖关系。MTT结果提示,Ox-LDL刺激后48h,肾小球系膜细胞增殖受抑制,随着Ox-LDL浓度增加,肾小球系膜细胞被抑制的程度更明显;TUNEL和DNA电泳结果提示,Ox-LDL刺激后48h,有系膜细胞凋亡,随着Ox-LDL浓度增加,肾小球系膜细胞凋亡的程度更明显。
    2. 在低浓度范围内,Ox-LDL能升高肾小球系膜细胞Bax/ Bcl-2蛋白表达比值。免疫细胞化学结果提示,Ox-LDL刺激24h Bax的表达明显升高,Bcl-2表达轻度升高;到48h,随着刺激时间的增加和剂量的增大,Bax表达继续升高,而Bcl-2表达下降;到72h,Bax升高更明显,而Bcl-2表达下降也更明显,导致Bax/ Bcl-2比值随着Ox-LDL刺激浓度和时间的增加而增大;给予抗氧化剂维生素E预处理后,各时相点以及各浓度组Bax和Bcl-2蛋白表达与对照组相比差异无显著性意义。
    3.TUNEL结果提示,正常肾小球中有少量细胞凋亡,LDL正常和升高的慢性肾炎患者肾小球的硬化指数和凋亡指数都升高;慢性肾炎患者血浆LDL水平与肾小球的硬化指数和凋亡指数有显著的正相关关系。
    4. 免疫细胞化学结果提示,血浆LDL正常和升高的慢性肾炎患者,其肾小球凋亡基因Bax蛋白表达显著升高,Bcl-2蛋白表达升高不显著;LDL升高的慢性肾炎患者肾小球的Bax蛋白表达显著高于LDL正常的患
    
    者,Bax/ Bcl-2比值增大。血浆LDL水平与Bax/ Bcl-2蛋白量比值、Bax蛋白表达有显著正相关关系。
    结论:
    1.Ox-LDL可以抑制肾小球系膜细胞增殖,诱导肾小球系膜细胞凋亡,提示Ox-LDL通过诱导细胞凋亡,导致肾小球系膜细胞数量减少,这可能是Ox-LDL参与肾小球硬化发生发展的重要机制之一。
    2.肾小球系膜细胞Bax/ Bcl-2比例失衡,可能是Ox-LDL诱导肾小球系膜细胞凋亡的机制之一。
    3. 慢性肾炎患者的血浆LDL水平与肾小球细胞的硬化指数、凋亡指数、Bax/ Bcl-2蛋白量比值、Bax蛋白表达有显著的正相关关系,说明Bax/Bcl-2基因表达的失衡可能是脂质导致慢性肾炎患者肾小球固有细胞过度凋亡的重要机理。
The accumulation of glomerular extracellular matrix(ECM) and the decrease in glomerular cell number were prominent and important pathologic features of progressive glomerulosclerosis which resulted from a variety of glomerular injuries.Some studies indicated that glomerular mesangial cells and other resident cells occurred apoptosis and glomerular mesangial cells were replaced by the extracellular matrix during glomerular inflammation.The excessive apoptosis of glomerular cells which leaded to the deletion of glomerular cells was an important cause of glomerulosclerosis .
    An important feature of glomerulosclerosis caused by lipid abnormality was glomerular cell number decrease .Lipids deposited in kidney could induce glomerular cell apoptosis. The apoptosis of glomerular mesangial cells might be an main cause of glomerular cell number decrease during late glomerulosclerosis.
    LDL deposited abnormally in glomeruli might excite mesangial cells and macrophages to release oxygen-derived free radidicals which made body at oxidative stress and leaded to lipid peroxidation. LDL was oxidized to be Ox-LDL. Ox-LDL which might result in cell necrosis or apoptosis played an important role in the development of glomerulosclerosis.
    Ox-LDL had higher affinity to mesangial cells and macrophages than LDL and was more readily taked up by mesangial cells and macrophages. Both Ox-LDL itself and MCP-1 produced by macrophages which are stimulated by Ox-LDL were
    
    chemoattractants for macrophages. Mesangial cells and macrophages preferentially taked up Ox-LDL over LDL through scavenger receptors .The uptake of Ox-LDL by mesangial cells and macrophages might further stimulate other immune effector cells to produce PGE2 ,cytokines and other mediators capable of stimulating matrix synthesis and to intensify the alteration of hemodynamics and blood vessel permeability in glomeruli . Mesangial cells and macrophages might die finally after taking up Ox-LDL and forming foam cells. All this could lead to glomerulosclerosis .
    Ox-LDL could inhibit mesangial cell proliferation and accelerate mesangial cell apoptosis at low concentration (<100μg/ml),which might be involved in the process of glomrular hypercellularity to hypocellularity during glomerulosclerosis.The regulation mechanism of mesangial cell apoptosis induced by Ox-LDL was unclear. Bcl-2 was a proto-oncogene related with apoptosis. One of its mechanisms was anti-oxidation injury. Bax which could counteract the anti-apoptosis role of Bcl-2 was a member of Bcl-2 family .The ratio of Bax to Bcl-2 protein decided the ratio of hetero- dimers(Bax / Bcl-2) and homodimers (Bax/ Bax) and the fate of cells. We guessed that Bcl-2 (antiapoptotic antigen)and Bax(proapoptotic antigen) might be involved in the regulation of mesangial cell apoptosis induced by Ox-LDL.
    In order to elucidate the regulation mechanism of mesangial cell apoptosis induced by Ox-LDL , we investigated the effect of Ox-LDL on the expression of Bcl-2 and Bax protein in vitro cultured glomerular mesangial cells by immunohistochemistry and the apoptosis by TUNEL and gel electrophoresis.We also studied the relationship of the blood LDL level with the apoptosis and the expression of Bcl-2 and Bax in the glomeruli of chronic glomerular nephritis patients accompanied with different degree glomerularsclerosis.
    The main results are as follows:
    1. Through stimulating human mesangial cells by Ox-LDL , Ox-LDL could inhibit the proliferation of human mesangial cells and induce the
    
    apoptosis of human mesangial cells in dose-dependent fashion at concentrations of 0 to 100μg/ml.MTT results indicated the larger the dose of Ox-LDL, the higher the level of inhibited mesangial cells at low concentration scope after stimulated forty-eight hours. TUNELand DNA electrophoresis results indicated the larger the dose of Ox-LDL, the higher the level of mesangial cells apoptosis at low concentration scope after stimulated forty-eight hours.
    2. Ox-LDL could upregulate the ratio of Bax to Bcl-2 protein expression
引文
1. Diamond JR, Karnovsky MJ. A putative role hypercholesterolemia in progressive glomerular injury . Annu Rev Med, 1992,43:83-92.
    2. Graham L ,Thomas, Bin Yang, et al. Cell apoptosis and proliferation in experimental renal fibrosis. Nephrol Dial Transplant, 1998,13:2216-2226.
    3. Hitoshi Sugiyama, Naoki Kashihara, Hirofumi Makino, et al. Apoptosis in glomerular sclerosis. Kidney Int , 1996,49:103-111.
    4. Agnes B, Fogo. Glomerular hypertension, abnormal glomerular growth, and progression of renal diseases. Kidney Int , 2000,57:s15-17.
    5. Keane WF, Mulcahy W, Kasiske BL, et al. Hyperlipidemia and progressive renal disease. Kidney Int, 1991,39: S41-S48.
    6. Magil AB, Frohlich JJ, Innis SM, et al. Oxidized low-density lipoprotein in experimental focal glomerulosclerosis . Kidney Int, 1993,43:1243-1250.
    7. Lee HS, Kim YS. Identification of oxidized low density lipoprotein in human renal biopsies. Kidney Int, 1998,54:848-856.
    8. Diamond JR, Ksrnovsky MJ. Exacerbation of chronic aminonucleoside nephrosis by dietary cholesterol supplementation. Kidney Int , 1987,32(5):671-677.
    9. Coritsidis G, Rifici V, Gupta S, et al. Preferential binding of oxidized LDL to rat glomeruli in vivo and cultured mesangial cells in vitro. Kidney Int, 1991,39(5):858-866.
    10. Zingg JM, Ricciarelli R, Azzi A. Scavenger receptors and modified lipoproteins: fatal attractions? IUBMB Life, 2000 ,49(5):397-403.
    11. Diamond JR,Pesek L. Glomerular tumor necrosis factor and interleukin 1 during acute aminonucleaside nephrosis. An immunohistochemical study. Lab Invest , 1991,64:21-28.
    Kasiske BB, O'donnell MP, Cleary MP, et al. Treatment of hyperlipidemia
    
    12. reduces glomerular injury in obese Zucker rats. Kidney Int , 1988, 33(3):667-672.
    13. Pratima Sharma, Kriihna Reddy . Native and oxidized low density lipoproteins modulate mesangial cell apoptosis. Kidney Int, 1996 50:1604-1611.
    14. Hockenbery DM, Oltvai ZN, Yin XM, et al. Bcl-2 functions in an antioxidation pathway to prevent apoptosis. Cell, 1993,75(2):241-251.
    15. Oltvai ZN, Millman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog ,Bax , that accerlerates programmed cell death. Cell , 1993, 74:609-619.
    16. Korsmeyer SJ. Bcl-2 Gene family and the regulation of programmed cell death. Cancer Res, 1999,59:s1693-s1700.
    17. Kerr JFK, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26:239-257.
    18. Morel DW, Dicarleto PE, Chisolm GM. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis , 1984,4:357-364.
    19. Shapiro RJ, XieY. Mesangial cells modify low density lipoprotein by a lipoxygenase dependent pathway. J Am Soc Nephrol , 1991,2:778.
    20. Berliner JA, Territo HHMC, Sevanian A, et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest, 1991 ,85:1260-1266.
    21. Quinn MT. Parthasarathy S, Fong LG, et al. Oxidatively modified low density lipoproteins: A potential role in recuitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA ,1987, 84:2995-2998.
    Cushing SD, Berliner JA, Valente AJ, et al. Minimally modified low
    
    22. density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA , 1991 ,87:5134-5138.
    23. Deltlef Schlondorff . Cellular mechanisms of lipid injury in the glomerulus. Am-J-Kidney-Dis , 1993, 22(1): 72-82.
    24. Yokode M, Kita T, Kikawa Y, et al. Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low density lipoprotein. J Clin Invest, 1988, 81:720-729.
    25. Klahr S, Harris K. Role of dietary lipids and renal eicosanoids on progression of renal disease. Kidney Int , 1989, 36:s27-s31.
    26. Schlondorff D, Ardaillou R. Prostaglandins and other arachidonic acid metabolites in the kidney. Kidney Int, 1986,29:108-119.
    27. Van Goor H, Fidler J, Weening J, et al. Determinants of focal and segmental glomerulosclerosis in the rat after renal ablation:evidence for involvement of macrophages and lipids. Lab Invest , 1991,64:754-765.
    28. 田信奎. 细胞凋亡与脂质肾损伤. 国外医学院泌尿系统分册, 2000,20:s193-s194.
    29. David C, Wheeler, Ravinder S Chana, Nicholas Topley, et al. Oxidation of low density lipoprotein by mesangial cells may promote glomerular injury. Kidney Int, 1994, 45:1628-1636.
    30. Mene P. Physiology of the mesangial cell. Physiol Rev ,1989, 69:1347-1424.
    31. Graham L ,Thomas, Bin Yang, et al. Cell apoptosis and proliferation in experimental renal fibrosis. Nephrol Dial Transplant, 1998,13:2216-2226.
    32. 孟紫强,张连珍. 应用单细胞微凝胶电泳技术研究细胞DNA损伤的原理与方法. 癌变畸变突变, 1998,10(6):377-382.
    33. 焦建峰,陈冠英,黄玫等.rhTFAR19蛋白质对射线诱导MCF-7细胞周期及凋亡影响的初步研究. 中华肿瘤杂志 ,2000,22(2):102-104.
    
    
    34. Staker H. Mechanisms and genes of cellular suicide. Science, 1995, 267:1445-1449.
    35. Sugiyama H, Kashihara N, Makino H. Reactive oxygen species induce apoptosis in cultured mesangial cells. J AM Soc Nephrol , 1994,6:796.
    36. Korsmeyer SJ. Bcl-2 Gene family and the regulation of programmed cell death. Cancer Res, 1999,59:s1693-s1700.
    37. Aschoff AP, Ott U, Funfstuck R, et al. Colocalization of BAX and BCL-2 in small intestine and kidney biopsies with different degrees of DNA fragmentation. Cell Tissue Res , 1999,296(2):351-357.
    38. Penault Llorca F, Bouabdallah R, Devilard E, et al. Analysis of Bax expression in human tissues using the anti-Bax,4F11 monoclonal antibody on paraffin sections. Pathol Res Pract, 1998,194(7):457-464.
    39. Dawn Chandler, Adel K, El-Naggar, et al. Apoptosis and expression of the Bcl-2 proto-oncogene in the fetal and adult human kidney: Evidence for the contribution of Bcl-2 expression to renal carcinogenesis. Human Pathology, 1994,25(8):789-796.
    40. A Yoshimura, S Uda, K Inui. Expression of Bcl-2 and Bax in glomerular disease. Nephrol Dial Transplant, 1999,14S:55-57.
    41. Uda S, Yoshimura A, Sugenoya Y, et al. Mesangial proliferative nephritis in man is associated with increased expression of the cell survival factor, Bcl-2. Am J Nephrol, 1998,18(4):291-5.
    42. Takimura T, Murakami K, Miyazato H, et al. Expression of Fas antigen and Bcl-2 in human glomerulonephritis. Kidney Int, 1995,48:1886-892.
    43. Rezzi G, Ruggenenti P, Benigni. Understanding the nature of renal disease progression. Kidney Int , 1997,51:2-15.
    44. Hitoshi Sugiyama, Naoki Kashihara, Hirofumi Makino, et al. Apoptosis in glomerular sclerosis. Kidney Int, 1996,49:103-111.
    45. Savill J. Apoptosis and the kidney. J AM Soc Nephrol, 1994,5:12-21.
    
    
    46. Sugiyama H, Kashihara N, Makino H. Role of apoptosis in renal injury. Nippon Rinsho , 1996 ,54(7):1975-1981.
    47. Cohen JJ, Duke RC. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol, 1984,132:38-42.
    48. Orrenius S. Apoptosis :molecular mechanism and implications for human disease. J Int Med , 1995,237:529-536.
    49. Harrison DJ. Cell death in the diseased glomerulus.Histopathology, 1988,12:679-683.
    50. Baker AJ, Mooney A, Hughes J, Lombardi D, et al. Mesangial cell apoptosis: The major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. J Clin Invest, 1994,94:2105-2116.
    51. Shimizu A, Kitamura H, Masuda Y, Ihizaki M, et al. Apoptosis in the repair process of experimental proliferative glomerulonephritis. Kidney Int , 1995,47:114-121.
    52. Shimizu A, Masuda Y, Kitamura H. Apoptosis in crescentic glomerulonephritis. Lab Invest , 1996,74:941-951.
    53. 刘红燕,贾汝汉,丁国华等.细胞凋亡在脂质肾损害中的作用.中国中西医结合肾病杂志 , 2001,2(4):196-199.
    54. Schmitz PG, Kasiske BL, O'Donnell MP, et al. Lipids and progressive renal injury. Sem Nephrol, 1989,9(4):354-369.
    55. Grone EF, Walli AK, Grone HJ, et al. The role of lipids in nephrosclerosis and glomerulosclerosis. Atherosclerosis , 1994,107:1-13.
    56. Keane W. Lipids and the kidney. Kidney Int, 1994,46:912-920.
    57. Grone H-J, Walli A, Grone E, et al. Induction of glomerulosclerosis by dietary lipids. Lab Invest , 1989,60(3):433-446.
    Harry van Goor, Matian L C. Van der horst, Jane Atmosoerodjio, et al.
    
    58. Renal apolipoprotein in nephritic rats. American Journal of Pathology ,1993,142(6):1804-1812.
    59. Maggi E, Bellazani R, Falaschi F, et al. Enhanced LDL oxidation in uremic patients: additional mechanism for accelerated atherosclerosis? Kidney Int ,1994,45:876-883.
    60. 薛骏,杨海春,李铭新等. Ox-LDL在尿毒症患者血管壁上的沉积及其对血管重塑的影响. 第二军医大学学报, 2001,22(4):367-369.
    61. 潘晓勤,伍晓燕,姜新猷.肾小球系膜细胞培养及鉴定.南京医科大学学报,1995,153:222-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700