攀西地区碱性岩的年代学研究及其地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱性岩来源较深,是深部地球动力学过程在浅部地壳的直接表现和历史记录,它的这种深源浅成的属性带来了地球深部的物质组成、演化、地球动力学、构造和物理化学等重要信息,因此通过碱性岩的研究来探索地球深部奥秘是一个重要的途径。再加上,碱性岩的产出常与张性构造环境有关,被认为是这种环境下的特征产物,以及常与基性、超基性岩密切共生等特性,因此长期以来一直为岩石学家们所关注。研究区位于康滇地轴中段,东亚地壳由东西向阶梯状增厚的过渡带,为我国重要的构造带之一,它北接秦岭褶皱系,西临松潘-甘孜褶皱系,南靠三江褶皱系,属扬子板块西缘的一部分,为我国南-北向地质构造带的典型地区之一。20世纪60年代初期,在对攀西古裂谷开展地质和地球物理等综合研究期间,涉及到碱性岩的主要是岩石学和岩石地球化学方面的研究,年代学研究则开展的相对较晚,直到20世纪90年代末期才有一些研究结果。
     本文对分布在攀西古裂谷带内的禄丰县鸡街和大向坪超基性碱性环状杂岩体中霞辉岩进行全岩~(40)Ar-~(39)Ar坪年龄测定,结果表明鸡街岩体和大向坪岩体中霞辉岩年龄范围在214~193 Ma,相当于晚三叠世,属于印支期,比该区猫猫沟、攀枝花等中性碱性岩侵位时间要晚,同时表明该区中性碱性岩侵位时间在前,超基性碱性岩侵位时间在后。
     攀西会理猫猫沟环状碱性杂岩体中碱性长石正长岩为钠质碱性岩,含有暗色造岩矿物为钙铁辉石、铁韭闪石和黑云母,定年结果显示:碱性长石正长岩的锆石U-Pb年龄为224±8Ma,反映出岩浆结晶时间相当于晚三叠世,属于印支期;老核最大的U-Pb年龄为2818Ma,相当于晚太古代,这一年龄为康滇古陆地区存在太古宙的古老基底提供了锆石年代学方面的科学依据。
     对攀西古裂谷带内茨达和太和两个层状辉长岩体进行了~(40)Ar/~(39)Ar法和锆石ELA-ICP-MS法定年。结果表明:茨达不含矿层状辉长岩中黑云母~(40)Ar/~(39)Ar坪年龄为256 Ma,太和含矿层状辉长岩中锆石U-Pb年龄为215 Ma,其年龄范围在256~215 Ma,相当于晚二叠世—晚三叠世,属于海西晚期—印支期,而且不含矿层状辉长岩侵位时间在前,含矿层状岩体侵位时间在后。鸡街和大向坪超基性碱性环状杂岩体的侵位时间略晚于含矿层状辉长岩的侵位时
Alkaline rocks are often associated with extensional tectonism and regarded as the characteristic products occurring in continental margins or rift zones. They were usually generated in deep-large-fault zone and closely connected with basic/ultrabasic rocks in space.Therefore, alkaline rocks are of significance in tectonic petrology. At the beginning of the 1980s, geological and geophysical studies were performed in Panzhihua-Xichang paleo-rift zone. However, these studies only involved geology and petrochemistry of the ring alkali complexes. The geochronological study was conducted during the 1990s.Because layered intrusions in Panxi paleorift host large-scale economic V-and Ti-bearing magnetite deposits, some geochronological studies have been done on it since the 1960s'. The dating techniques include K-Ar, Ar-Ar, Rb-Sr, Sm-Nd and U-Pb dating etc., but different researchers provided different results on the same layered intrusions so that the contentious ages on the timing of layered rocks have been produced. The present paper analyzes the age of the nephline-pyroxenite in ultrabasic ring alkalic complexes of Jijie and Daxiangping by Ar/ Ar method. These data shows the age of nephline-pyroxenite in ultrabasic ring alkalic complexes of Jijie and Daxiangping rang from 214~ 193Ma, which is consistant with the late Triassic epoch, belonging to Indosinian period. Generally speaking, the emplacement of ultrabasic ring alkalic complexes occurred later than that of the gabbro ore bearing.Alkali-feldspar syenites from the Maomaogou area of Huili County in Panxi of Sichuan Province, SW China are sodium alkaline rock, the minerals of which are mainly composed of calcic ferroaugite, ferroamphibole and biotite.The age of zircon SHRIMP U-Pb dating is 224 ± 8Ma, suggesting that the Maomaogou alkali-feldspar syenite was formed in the late Triassic period. At the same time, two old age periods of relict cores of zircon are determined, they are the Archean age(2692-2818Ma) and Neoproterozoic age (622-691 Ma), respectively. These periods indicate that the cores derived from the crystal basement. Furthermore, the Archean age of zircon provides the first reliable SHRIMP U-Pb zircon dating
    evidence of >2.8G basement in the Xikang-Yunnan Axis of southwest of China.The Cida and Taihe layered intrusions in the Panxi paleorift were studied in this paper. The biotite 40Ar/39Ar dating and the zircon ELA-ICP-MS U-Pb dating for these layered intrusions have been performed. The ages obtained are as follows: the Cida rock body has biotite 40Ar/39Ar age of 256Ma; and the Taihe rock body has a zircon U-Pb age of 215Ma. These data suggest that the Cida and Taihe layered rock bodies were formed possibly in the late Variscan-Indosinian period about 256-215Ma ago.Further more, it is established that the ore-lean and low-grade layered gabbro bodies intruded earlier than ore-bearing and high-grade layered gabbro ones. Generally speaking, the emplacement of ultrabasic ring alkalic complexes occurred later than that of the gabbro ore bearing. It is believed that the timing of early intrusion emplacement(259-256Ma) is not the timing of pre-rift doming, but is consistent with the timing of rift during the late Permian, which is synchronous with the outpouring of Emeishan basalts during the late Permian-late Triassic Period(256-215Ma). Consequently, the whole process of layered gabbro magmatism after outpouring is closely related with the fault structure and mantle-plume activity.
引文
[1] A.M.Abdel-Rahaman.碱性、钙碱性和过铝岩浆中黑云母的性质[J].J.Petro,1994,35.
    [2] 包志伟,赵振华,周玲棣,等.冀西北水泉沟正长岩杂岩体的成因[J].岩石学报1996,12(4):562-572.
    [3] 柴东浩,陈延愚.新地球观[M].太原:山西科学技术出版社,2000.
    [4] 蔡剑辉,阎国翰,常兆山,等.王安镇岩体岩石地球化学特征及其成因探讨[J].岩石学报,2003,19(1):81-92.
    [5] 蔡剑辉,阎国翰,牟保磊,等.辽宁盖县梁屯-矿洞沟碱性正长岩杂岩体和年龄及其地质意义[J].岩石学报,2002,18(3):349-354.
    [6] 蔡学林等,西南地区前寒武纪构造演化与铁矿分布[J],四川地质学报,1980年第1卷
    [7] 陈志刚,李献华,李武显,等.赣南全南正长岩的SHRIMP锆石U-Pb年龄及其对华南燕山早期构造背景的制约[J].地球化学,2003,32(3):223-229.
    [8] Derek Wyman,Robert Kerrich.碱性岩浆作用、主要构造及金矿床—绿岩带金矿成矿作用的意义[J].
    [9] 地质部矿物原料研究所.碱性岩[Z].1959.
    [10] 丁宇.南秦岭中段亚碱性-碱性岩板块构造环境及岩浆演化[J].桂林冶金地质学院学报,1993,13(1):34-44.
    [11] 杜乐天.地幔流体与玄武岩及碱性岩岩浆成因[J].地学前缘,1998,5(3):145-157.
    [12] 段国莲.关于攀西裂谷的一些疑点[J].青海地质科技情报,1996,2:40-44
    [13] 贵阳地球化学研究所,《华南花岗岩类的地球化学》,科学出版社,1979.
    [14] 韩宗珠.鲁苏碱性岩套特征及其形成的构造背景[J].山东地质,2000,16(4):5-10.
    [15] 何斌,徐义刚,肖龙,等.攀西裂谷存在吗?[J].地质论评,2003,49(6):5;72-582.
    [16] 黄汲清,《中国主要地质构造单位》,地质出版社,1954.
    [17] 黄锦江.山西临县紫金山碱性环状杂岩体岩石学特征与成因研究[J].现代地质,1991,5(1):24-40.
    [18] 黄智龙,颜以彬,吴静,云南禄丰鸡街碱性超基性杂岩体的岩石学研究。昆明工学院学报,1993,(4):9-19
    [19] 黄智龙,颜以彬,吴静,云南禄丰鸡街杂岩体中碱性超基性岩地球化学特征及成 因探讨。地球化学,1995,24(3):276-285
    [20] 黄智龙,云南禄丰鸡街碱性超基性岩杂岩体的源区成分模拟。长春地质学院学报,1997,27(3):264-269
    [21] 洪大卫,黄怀曾等.中国北疆及其邻区晚古生代-三叠纪碱性花岗岩及其地球动力学意义初探[A].中国北方花岗岩及其成矿作用论文集[C].北京:地质出版社,1991.40-48.
    [22] 洪大卫,等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68(3):219-230.
    [23] 洪大卫,等.碱性花岗岩的构造分类及其鉴别标志[J].中国科学(B辑),1995,25(3):418-426.
    [24] 怀特AJR.碱性-偏碱性岩浆活动与金属成矿作用[J].国外矿床地质,1997,3(总81):117-137.
    [25] 景立珍,郭裕嘉,丁彩霞.辽宁赛马碱性岩的年代及碱性岩浆的形成[J].辽宁地质,1995,4:257-271.
    [26] Ken watson et al.科罗拉多Iron Hill碱性岩复合体多谱热红外数据的岩性分析[J].石油物探译从,1997,90.
    [27] 李石.鄂北地区碱性岩的时代及成因[J].岩石学报,1991,3:27-36.
    [28] 李石.论碱性岩的定义和碱性花岗岩的分标[J],湖北地质.1992,6(1):70-77.
    [29] 李石.南秦岭武党-桐柏地区碱性岩研究[J].中国区域地质,1991,1:40-53.
    [30] 李守义.辽吉古裂谷中的双峰式火山岩及其岩浆演化[J].长春地质学院学报,1994,24(2):143-147.
    [31] 黎彤,饶纪龙,中国岩浆岩的平均化学成分。地质学报,第3期,1983.
    [32] 廖忠礼,莫宣学,喻学慧,等.从31届地质大会看火成岩石学的研究方向[J].岩石矿物学杂志,2001,20(3):360-366.
    [33] 梁华英,莫测辉,王秀樟.张家口水泉沟碱性杂岩体单颗粒锆石~(207)Pb/~(206)Pb年龄分析[J].地球化学,1998,27(1):59-65.
    [34] 刘朝基,我国西南地区基性超基性岩的分布规律、岩体类型及含矿性,中国地质科学院成都地质矿产研究所分刊,第1卷,第1号,1980.
    [35] 刘楚雄,许保良,邹天人,等.塔里木北缘及邻区海西期碱性岩岩石化学特征及其大地构造意义[J].新疆地质,2004,22(1):44-49.
    [36] 刘瑞.中国东部碱性基性岩与金刚石矿床成矿机制研究[J].长春工程学院学报, 2003,4(4):1-4.
    [37] 刘振声,须同瑞,1983,攀西地区层状基性超基性岩体岩石类型、岩相特征及成岩成矿机理,中国地质科学院成都地质矿产研究所分刊,第2卷,第1号,1983.
    [38] 吕伯西,钱祥贵.滇西新生代碱性火山岩、富碱斑岩深源包体岩石学研究[J].云南地质,1999,13(2):127-143.
    [39] 卢德林,汪建军.硅同位素在金矿成矿物质来源研究中的应用-以碱性岩中东坪金矿为例[J].地质与勘探,1992,28(1):28-31.
    [40] 陆松年,李怀坤,李惠民,等.华北克拉通南缘龙于瞳碱性花岗岩U-Pb年龄及其地质意义[J].地质通报,2003,22(12):762-768.
    [41] 毛德宝.与碱性岩有关的金矿床[J].前寒武纪进展,1998,21(4):13-17.
    [42] 梅厚均,徐义刚,许继峰,等.攀西古裂谷内龙帚山玄武岩-碱玄响岩建造[J].地质学报,2003,77(3):341-358.
    [43] 莫测辉,梁华英,王秀樟,等.冀西北水泉沟碱性杂岩体锆石U-Pb定年[J].科学通报,1997,42(1):75-78.
    [44] 莫测辉,王秀樟,程景平,等.冀西北水泉沟碱性杂岩体的成因探讨[J].矿物岩石地球化学通报,1997,16(1):19-21.
    [45] 莫柱孙,叶伯丹等,《南岭花岗岩地质学》,地质出版社,1980.
    [46] 牟保磊,阎国翰,许保良.华北极块中生代碱性偏碱性岩浆活动与构造格局转化[A],见:欧阳自远,主编.中国矿物岩石地球化学研究进展[C].兰州:兰州大学出版社.1994.115-117.
    [47] 聂凤军,张辉旭,编译.碱性岩浆活动与金成矿作用[J],国外矿床地质,1997,3(总第81期):1-33.
    [48] 南京大学地质系,《华南不同时代花岗岩类及其成矿关系》,科学出版社,1981.
    [49] 牛来正夫著,林强等译,《火成论》,地质出版社,1983.
    [50] 彭勇民,罗建宁,潘桂棠.三江地区高吉碱性岩体的岩石化学特征[J].四川地质学报,1997,17(1):17-22.
    [51] 彭勇民,潘桂棠,罗建宁.碱性岩的稀土元素地球化学行为-以昌都盆地高吉岩体为例[J].四川地质学报,1997,17(4):307-312.
    [52] 皮切尔,W.S.著,洪大卫泽,花岗质岩浆的性质、上侵和定位,国外地质科技,1978年第7期,地质出版社.
    [53] 蒲广平.攀西地区稀土成矿历史演化与喜山期成矿特征Ⅰ.稀土成矿历史演化[J]. 四川稀土,2001,3:6-8.
    [54] 蒲广平.攀西地区稀土成矿历史演化与喜山期成矿特征Ⅰ.喜山期成矿特征[J].四川稀土,2001,4:8-13.
    [55] 齐成栋,纪春华,韩江,等.吉林省敦化地区晚三叠世碱性-亚碱性侵入杂岩体的地质特征及构造背景分析[J].吉林地质,2003,22(3):12-18.
    [56] 戚学祥,旷宏伟,陈培良,等.长江中下游燕山期侵入岩地球化学特征及其地质意义[J].资源调查与环境,2002,23(1):52-59.
    [57] 秦朝建,裘愉卓.岩浆(型)碳酸岩研究进展[J],地球科学进展,2001,16(4):501-507.
    [58] 秦震.攀西地区碱性岩类稀有、稀土矿成矿条件及找矿前景[J].四川地质学报,1995,15(2):102-112.
    [59] 卿敏,卫万顺.碱性岩型金矿床研究述评[J].黄金科技技术,2001,9(5):1-8.
    [60] 邱家骧,等.秦巴碱性岩[M].北京:地质出版社,1993.
    [61] 邱家骧.岩浆岩岩石学[M].北京:地质出版社,1990.
    [62] 邱家骧,林景仟.岩石化学[M].北京:地质出版社,1991.
    [63] 任富根,李惠民,殷艳杰,等.熊耳群火山岩系的上限年龄及其地质意义[J].前寒武纪研究进展,2000,23(3):140-146.
    [64] 任康绪.碱性岩研究进展述评[J].化工矿产地质,2003,25(3):151-163.
    [65] 孙鼎,彭亚鸣.火成岩岩石学[M].北京:地质出版社,1985.171-186.
    [66] R.H.米切尔.钾镁煌斑岩是碱性岩的一族[J].
    [67] S.E.Douglass,A.R.Campbell.新墨西哥洲林肯县诺加尔矿区与碱性岩有关的成矿作用[J].12-21.
    [68] 瑟伦森 H.碱性岩述评[J].顾赤峰译,马万钧校.国外地质科技,1987,(7,总79):51-65.
    [69] 沈发奎.攀西裂谷火山岩系某些成因特点的地球化学证据[J].地球化学,1989,2:158-166.
    [70] 孙淑荣,郭原生.甘肃永登碱性熔岩中残留单斜辉石特征[J].兰州大学学报(自然科学版),1993,29(4):241-244.
    [71] 谭锡畴等,四川和西康东部地质图,前中央地质调查所,1935.
    [72] 涂光炽.初议中亚成矿域[J],地质科学,1999,34(4):397-404.
    [73] 涂光炽.关于富碱侵入岩[J].矿产与地质,1989,13:1-4.
    [74] 涂光炽,西藏南部花岗岩类的特征和演化,地球化学,第1期,1981.
    [75] 涂光炽,张玉泉,赵振华.华南两个富碱侵入岩带的初步研究[A],见:徐克勤,涂光炽,主编,花岗岩地质和成矿关系[C],南京:江苏科学技术出版社,1984.21-37.
    [76] 王德滋,《光性矿物学》,上海人民出版社,1975.
    [77] 王登红,屈文俊,李纯杰,等.攀西地区铂族元素矿床研究新进展[J].
    [78] 王和胜.辽宁碱性岩及其相关的金矿床与找矿方向[J].辽宁地质,1999,16(1):57-69.
    [79] 王强,许继峰,赵振华,等.河北矾山燕山期侵入岩地球化学特征及其成因[J].矿物学报,2002,22(2):160-168.
    [80] 王强,赵振华,简平,等.武夷山洋坊霓辉石正长岩的锆石SHRIMP的U-Pb年龄及其构造意义[J].科学通报,2003,48(14):1582-1588.
    [81] 王强,赵振华,熊小林,等.华南绍兴-恩平富碱侵入岩带的厘定及其动力学意义初探[J].地球化学,2002,31(5):433-442.
    [82] 王式光,等.新疆乌伦古河碱性花岗岩的地球化学及其构造意义[J].地质科学,1994,29(4):373-383.
    [83] 王希渠.一种确定火成岩系列碱度的新方法.岩石矿物学杂志,1986,5(4):376-378.
    [84] 王振荣.四川攀西拼贴构造[J].成都理工学院学报,1996,23(1):78-84
    [85] 王中刚,王元龙,毕华,等.昆仑山-阿尔金山地区的三条富碱侵入岩带[J].华南地质与矿产,2002,3:2-8.
    [86] 吴静,颜以彬,黄智龙.滇中罗茨地区超基性碱性岩中橄榄石、辉石和角闪石的成分及演化浅析[J].1994,13(1):106-119.
    [87] 吴利仁,等.若干地区碱性岩研究[M],北京:科学出版社,1966.
    [88] 肖渊蒲,马润则,何政伟,等.米仓山碱性杂岩单元特征及构造环境分析[J].矿物岩石,1997,17(增刊):59-66.
    [89] 肖振宇,汪礼明,杨学明,等.广东石岭碱性杂岩的岩石学特征及其地质意义[J].矿产与地质,1998,12(65):155-159.
    [90] 许保良,等.A型花岗岩的岩石学亚类及其物质来源[J].地学前缘,1998,5(3):113-124.
    [91] 许保良,等.富集性和亏损性A型花岗岩:以华北燕山和新疆乌伦古河地区岩石为例[J].北京大学学报(自然科学版),1998,34(2-3):352-362.
    [92] 许保良,等.雾灵山A型花岗岩系的矿物学特征及其成因意义[J].北京大学学报(自然科学版),1994,30(6):703-716.
    [93] 许保良,黄福生.A型花岗岩的类型、特征及其地质意义[J].地球探索,1990,3:113-120.
    [94] 许保良,阎国翰,黄福生,等.冀北雾灵山碱性花岗质杂岩的岩石学、成因类型及构造意义[J].岩石学报,1996,12(1):145-155.
    [95] 许保良,阎国翰,路凤香,等.北山-阿拉善地区二叠-三叠纪富碱侵入岩的岩石学特征[J].岩石矿物学杂志,2001,20(3):263-272.
    [96] 许保良,阎国翰,牟保磊,等.辽宁盖县梁屯-矿洞沟碱性正长岩Rb-Sr年龄及其意义[J].科学通报,1998,43(17):1885-1887.
    [97] 许继峰.米仓山碱性岩中的主要矿物研究及其成因信息[J].岩石矿物学杂志,1993,12(3):269-278.
    [98] 徐良耀.南秦岭关垭子碱性岩及其有关矿床的研究[J].华东地质学院学报,1989,12(4):35-41.
    [99] 徐钰,邹天人,杨岳清,等.新疆塔里木地块北缘碱性岩带的地质构造环境[J].地学前缘,1999,6(1):54.
    [100] 阎国翰,牟保磊,许保良,等.中国北方显生宙富碱侵入岩年代学和Nd、Pb、Sr同位素特征及其意义[J],地质论评,2002,48(增刊):69-76.
    [101] 阎国翰,牟保磊,许保良,等.中国北方中、新生代板内拉张性岩浆作用及其地球动力学意义[A],见:北京大学地质系,编.北京大学国际地质科学学术研讨会论文集[C].北京:地震出版社,1998.650-659.
    [102] 阎国翰,牟保磊,曾贻善.中国北方碱性和偏碱性侵入岩的时空分布及大地构造背景[J],中国地质科学院沈阳地质研究所所刊,1989,29:93-100.
    [103] 阎国翰,许保良,牟保磊.板内拉张性岩浆作用与深部地球动力学[C],见:欧阳自远,主编.中国矿物岩石地球化学研究进展,兰州:兰州大学出版社,1994.92-93.
    [104] 阎国翰,许保良,牟保磊,等.中国北方中生代富碱侵入岩钕、锶、铅同位素特征及其意义[J].矿物岩石地球化学通报,2001,20(4):234-237.
    [105] 阎国翰,潭林坤,许保良,等.阴山地区印支期碱性侵入岩岩石地球化学特征[J].岩石矿物学杂志,2001,20(3):281-292.
    [106] 颜以彬,滇中古裂谷带岩浆系列。云南地质,1985,4(4):353-372
    [107] 阳正熙,Anthony E Williams-Jones,蒲广平.四川冕宁牦牛坪稀士矿床地质特征[J]. 矿物岩石,2000,20(2):28-34.
    [108] 喻学惠.秦巴地区碱性岩与造山带构造演化关系及其特征[J].中国区域地质,1992,3:233-240.
    [109] 袁忠信,白鸽.中国碱性侵入岩的空间分布及有关金属矿床[J],地质与勘探,1997,33(1):42-48.
    [110] 曾广策,邱家骧.碱性岩的概念及分类命名综述[J].地质科技情报,1996,15(1):31-37.
    [111] 曾绪伟等,四川红格基性超基性岩体岩石类型、岩相特征及成岩成矿机理,中国地质科学院成都地质矿产研究所分刊,第2卷,第1号,1981.
    [112] 翟明国,杨瑞英等,清源太古代花岗岩-绿岩区花岗岩的稀士地球化学。岩石矿物及测试,1984年第三卷.
    [113] 张成立,高山,张国伟,等.南秦岭早古生代碱性岩墙群的地球化学及其地质意义[J].中国科学D辑,2002,32(10):819-829.
    [114] 张乾,潘家永,刘家军,等.滇西地区上地幔铅同位素组成的确定及其应用[J].地质地球化学,2002,30(3):1-6.
    [115] 张耀国,雷建成,唐荣昌,等.攀西地区“逻辑树”地震区划结果及其对比[J].中国地震,1996,12(增刊):32-39.
    [116] 张玉泉,谢应雯.碱性岩研究进展[A].见:欧阳自远,主编.世纪之交的矿物学岩石学地球化学的回顾与展望[C].北京:原子能出版社,1998.144-145.
    [117] 张玉泉,谢应雯.青藏高原及邻区富碱侵入岩——以苦干子和太和二岩体为例[J].中国科学(B辑),199,24(10):1102-1108.
    [118] 张玉泉,谢应雯,涂光炽.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究[J].岩石学报,1987,1:17-26.
    [119] 张岳桥,杨农,孟辉,等.四川攀西地区晚新生代构造变形历史与隆升过程初步研究[J].中国地质,2004,31(1):23-33.
    [120] 张云湘,试论关于攀枝花-西昌裂谷带。四川地质学报,第3卷,第3,4期,1982.
    [121] 张招崇,王永强.冀北印支期碱性岩浆活动及其地球动力学意义[J].矿物岩石地球化学通报,1997,16(4):214-217.
    [122] 张招祟,李兆鼎.冀北水泉沟偏碱性杂岩的起源与两种岩浆演化趋势[A].见:第30届国际地质大会论文集[C],1998,15:159-169.
    [123] 张正伟,戴耕.嵩县南部碱性岩体构造与金矿化[J].13-16.
    [124] 张正伟,潘振祥,戴耕.华北陆块南缘富碱侵入岩岩石组合及时空分布[J].河南地质,1996,14(4):263-271.
    [125] 张正伟,周玲棣,朱柄泉,等.东秦岭北部富碱侵入岩的主要矿物组成[J].矿物学报,2002,22(1):67-74.
    [126] 张正伟,朱柄泉,常向阳.东秦岭北部富碱侵入岩的钕、锶、铅同位素特征及构造意义[J].地球化学,2000,29(5):457-461.
    [127] 张正伟,朱柄泉,常向阳.东秦岭北部富碱侵入岩岩石化学与分布特征[J].岩石学报,2002,18(4):468-474.
    [128] 赵广涛,王德滋,曹钦臣.崂山花岗岩岩石地球化学与成因[J].高校地质学报,1997,3(1):1-15.
    [129] 赵广涛,王文正.崂山花岗岩中角闪石成分的变化及其意义[J].青岛海洋大学学报,1998,28(4):609-614.
    [130] 赵振华.富碱侵入岩-窥探地幔成分的窗口[A].见:欧阳自远,主编。中国矿物岩石地球化学研究进展[C],兰州:兰州大学出版社.1994.113-114.
    [131] 赵振华,周玲棣.我国某些富碱侵入岩的稀土元素地球化学特征[J].中国科学(B),1994,24(10):1109-1120.
    [132] 周玲棣,王扬传.赛马和紫金山碱性杂岩体稀土元素地球化学及成因模式[J].地球化学,1991,3:229-235.
    [133] 周玲棣,赵振华.我国富碱侵入岩的岩石学和岩石化学特征[J].中国科学(B),1994,20(10):1093-1101.
    [134] 周玲棣,赵振华,周国富.我国一些碱性岩的同位素年代学研究[J].地球化学,1996,25(2):164-171.
    [135] 周玲棣,周国富.四川南江坪河超基性-碱性岩体矿物学与地球化学研究[J].成都理工学院学报,1998,25(2):246-256.
    [136] 朱学波,陈玉禄.冕宁冶勒地区石炭纪花岗岩的确定及其意义[J].四川地质学报,2000.20(1).13-16.
    [137] Ackermann, C., Cemic, L. & Langer, K. 1983: Hydrogarnet substitution in pyrope: a possible location for "water" in the mantle, Earth Planet. Sci. Lett. 62: 207-214.
    [138] Augustithis, S. S., 1973, Atlas of the textural patterns of granites, gneisses and associated rock types. Amsterdam, London, New York.
    [139] Bernard Griffiths J, et al. Continental Lithospheric Contribution to Alkaline Magmatism: Isotopic(Nd, Sr, Pband Geochemical(REE) Evidence from Derra de Monchique and Mount Ornconde Complexs[J]. J. Petrol, 1997, 38:115-132.
    [140] Best M G. Igneous and Metamorphic Petrology [M], W. H. Freeman and company, San Franciso, 1982.
    [141] Black, D. C. 1972: On the origin of traped heliun, neon and argon isotopic variations in meteorites-I. Gas-rich meteorites lunar soil and breccia, Geochim. Cosmochim. Acta 36:347.
    [142] Blichest Toft J, et al. Precambrian Alkaline Magamatism [J], Lithos, 1996, 37: 97-111.
    [143] Bowen, N. L., 1982. The evolution of the igneous rocks. Princeton Univ. Press, Princeton.
    [144] Boettcher, A. L. &O'Neil, J. R. 1980: Stable isotope, chemical and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle, Amer. J. Sci. 280A: 594-627.
    [145] Bowden, P. & Turner, D. C. 1974: Peralkaline and associated ring-complexes in the Nigeria-Niger province. West Africa, In Sorensen, N. (eds): The alkaline rocks, P. 330-51. John Wiley & Sons.
    [146] Bonin, B., Grelou-Orsini, C. & vilette, Y. 1978: Age, origin and evolution of the anorogenic complex of Evisa (Corsica): A K-Li-Pb-Sr study, Contrib. Mineral. Petrol. 65: 425-32.
    [147] Breemen, O. V. & Bowden, P. 1973: Sequential age trends for some Nigerian MesozoicGranites, Nature Phys. Sci. 242: 9-10.
    [148] Breemen, 0. V. et al., 1975: Age and origin of the Nigeria Mesozoic Granites: A Rb-Sr isotopic study, Contrib. Mineral. Petrol. 50: 157-72.
    [149] Brewer, M. S. & Lippolt, H. J. 1974: Petrogenesis of basement rocks of the Upper Rhine region elucidated by Rb-Sr systematics, Contrib. Mineral. Petrol. 45: 123-41.
    [150] Brigham, R. H. &O'Neil, J. R. 1985: Genesis and evolution of water in a two-mica pluton: A hydrogen isotope: study, Chem. Geol. 49: 159-78.
    [151] Brown, G. M. and Peckett, A., 1977, Fluorapatites from the Skaergaard intrusion, east Greenland. Mineralogical Magzine, Vol. 41, No. 318.
    [152] Buma, G., Frey, F. A. &Wones, D. R. 1971: New England Granites: Trace element evidence regarding their origin and differentiation, Contrib. Mineral. Petrol. 31:300-20.
    [153] Butakova E L. Regional distribution and tectonic relations of the alkaline rocks of Siberia, In the Alkaline Rocks edited by Sorensen [M]. John Wiley and Sons, London, New York, 1974.
    [154] Creaser R A, et al. A-type granites revisited: Assessment of aresidual-source model [J], Geology, 1991, 19: 163-166.
    [155] Edgar A D. The genesis of alkaline magmas with emphasis on the source region, inferences from experimental studies. From Alkaline Igneous Rocks [M]by Fitton J G, et al. Blackwell Sci. Publication, Oxford, London, 1987.
    [156] Elizabeth Ann Dunworth and Keith Bell. The Turiy Massif, Kola Peninsula, Russia: Isotopic and Geochemical evidence for Multi-source Eolution [J], J. Petrol., 2001, 42: 377-405.
    [157] Eward A, et al. Etendeka volcanism of the Goboboseb Mountains and Messum igneous complex, Namibia, Part hgeochemical evidence of early Cretaceous Tristan Plum melts and the role of crustal contamination in the Parana-Etendeka CFB [J]. J. Petrol., 1998,39: 191-225.
    [158] Fitton J G, et al. Alkaline Igneous Rocks[M]. Blackwell Sci. Publication, Oxford, London, 1987.
    [159] Faure G. Origin of Igneous Rocks [M], Springer-Verlag Berlin Herdelberg New York, 2001.
    [160] Graham, G. M., Harmon, R. S. &Sheppard, S. M. F., 1984: Experimental hydeogen isotope study: hydrogen isotope exchange between amphibole and water, Amer Mineralogist, 69:128.
    [161] Harris, N. B. W., 1981: The role of fluorine and chlorine in the petrogenesis of a peralkaline complex from Saudi Arabia, Chem. Geol., 31: 303-10.
    [162] Hydman, D. W., 1972, Petrology of igneous and metamorphic rocks. McGraw-Hill Book. Lithos, 5 No.3.
    [163] Ishihara, S. ,1977, The magnetite-series and ilmentite-series granitic rocks. Min. Geol. V. 37.5
    [164] Jackson, N. J. et al., 1984: Geology, geochemistry and petrogenesis of late Precambrian graniteids in the central Hijaz Region of the Arabian Shield, Contrib. Mineral. Petrol(?). 87:205-19.
    [165] James D. Twyman, John Gittins. Alkalic carbonatite magmas: parental or derivative From Alkaline Igneous Rocks [M], by Fitton J G, et al. Blackwell Sci. Publication, Oxford, London, 1987.
    [166] Jianping Zheng, et al. Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution [J]. Lithos, 2001, 57: 43-66.
    [167] Kerr A, Fryer B J. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada [J]. Chemical Geology, 1993, 104: 39-60.
    [168] Kin, C W. and Hunahushi, M., 1972, Chronological aspects in granites, Lithos, 5 No. 3.
    [169] Kogarko L N. Alkaline Magmatism in the early history of the Earth [J], Petrology, 1998, 6:230-236.
    [170] Kovalenko V I, et al. the peralkaline granitite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, Western Mongolia [J], Economic Geology, 1995, 90:530-544
    [171] Lameyre, J., et al., 1976: Chronological evolution of the Kerguelen Islands syenite-granite complex, Nature, 263: 306-7.
    [172] Landenberger B and Collins W J. Derivation of A-type Granites from a dehydrated charnockitic lower crust: evidence from the Chaelundi complex, Eastern Australia [J]. J. Petrol, 1996, 37: 145-170.
    [173] Laves, F., 1952, Phase relation of the alkali feldspar. Jour. Geol. 60.
    [174] Le Bas M J et al. A chemical classification of volcanic rocks based on the total alkali-sillica diagram. J Petrol, 1986, 27, 745-750.
    [175] Liegeois J P. Contrasting Origin of Post-collisional High-K Calc-alkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids: the use of sliding normalization [J]. Lithos, 1998, 45: 1-26.
    [176] Marmo, V., 1971, Granite petrology and the granite problem. Elsevier Publ. Co., Amsterdam etc.
    [177] Mason B. Handbook of elemental abundances in meteorites. New York: Gordon & Breach, 1971.
    [178] Matsuo, S., 1984: Occurrence and chemical form of volatiles in the mantle, In: Proc. 27th. Intl. Geol. Congress, Vol. 11, P253-77.
    [179] Menzies M. Alkaline Rocks and their inclusions: a window on the Earth's interior. From Alkaline Igneous Rocks [M] by Fitton J G, et al. Blackwell Sci. Publication, Oxford, London, 1987.
    [180] Moghazi A M., et al. Geochemical and Petrological evidence of calc-alkaline and A-type magmatism in the Homrit Waggat and EI-Yatima areas of Egypt [J]. Journal of African Earth Sciences, 1999, 29(3): 535-549.
    [181] Pearce,J. A., Harris, N. B. W. &Tindle, A. G, 1984: Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 25:956-83.
    [182] Pervov V. A., et al. Potassic Magmatism of the Aldan Shield, Southeastern Siberia: An indicator of the Multistage Evolution of the Lithosphere Mantle [J]. Petrology, 1997, 5: 415-430.
    [183] Petro, W. L., Vogel, T. A., & Wrlband, 1979: Major-element chemistry of plutonic rock suites from compressional and extensional plate boundaries, Chem. Geol., 26: 217-35.
    [184] Philpotts A R. Principles of Igneous and Metamorphic Petrology [M], Pretice hall Englewood Cliffs, New Jersey, 1990.
    [185] Read, H. H., 19480a, A commentary on place in plutomism. QJGS , 104.
    [186] Rhodes, R. C, 1971: Structural geometry of subvolcanic ring complexes as related to pre-Cenzoic motions of continental plates, Tectonophysics, 12: 111-7.
    [187] Simonetti A, et al. Geochemical and Nd, Pb and Sr Isotope Date from Deccan Alkaline Complexes-inferences for Mantle Sources and Plume-lithosphere Interaction [J]. J. Petrol, 1998,39: 1847-1864.
    [188] Sorensen H. The Alkaline Rocks [M]. John Wiley and Sons, London, New York. 1974.
    [189] Thompson R. N., et al. Early Cretaceous Basalt and Picrite Dykes of the Southern Etendeka Region, NW Namibia: Windows into the Role of the Tristan Mantle Plume in Parana-Etendeka Magmatism [J], J. Petrol, 2001, 42: 2049-2081.
    [190] Woolley A R. Alkaline Rocks and Carbonatites of the World [M], The Geological Sociegy London, 2001.
    [191] Wright, J. B., 1973: Continental drift magmatic provinces and mantle plumes, Nature, 244: 569-7.
    [192] Zanvilevich A N, et al. Genesis of alkaline and peralkaline syenite-granite series: the Kharitonovo pluton (Transbaikalia, Russia)[J], J. Geol., 1995, 103: 127-145.
    [193] Zhao J X, et al. Geochemical and isopotic studies of syenites from the Yamato Mountains, East Antarctica: Implications for the Origin of syenitic magmas [J], Geochim. Cosmochim. Acta, 1995, 59: 1363-1382.
    [194] Zhao-Zhenhua, Bai-Zhenghua, et al. Geochemistry of alkali-rich igneous rocks ofnorthern Xinjiang and its implications for geodynamics [J]. Acta Geologica Sinica (English Edition). 2000, 74(2):0321-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700