华北克拉通北缘中段古元古代花岗岩类地球化学、年代学与构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北克拉通北缘中段古元古代花岗岩可分为埃达克质(adakitic)花岗岩、赞岐状岩(sanukitoids)、Closepet花岗岩、富Nb辉长岩、黑云母花岗岩-正长岩和强过铝(SP)花岗岩等。这些花岗岩在区域上成带状分布:埃达克质花岗岩-赞岐状岩组合主要分布于固阳-武川断裂南北两侧,赞岐状岩和Closepet花岗岩组合主要分布于固阳-武川断裂与大青山山前断裂之间,SP型花岗岩主要分布于大青山山前断裂南侧,少量分布于乌拉山哈达门沟一带。此外,还发育有古元古代变中基性火山岩。这些变中基性火山岩原岩主要为玄武岩、安山岩和英安岩。部分变中基性火山岩地球化学特征显示具有镁质安山岩(MA,MgO≈6%)、埃达克岩和富Nb玄武岩(NEB, 7 20×10-6)/高Nb玄武岩(HNB,Nb>20×10-6)的岩石化学特征。
    地球化学模型显示,埃达克质花岗岩形成于俯冲作用早期板片熔融,为基性岩在含石榴石角闪岩相和榴辉岩相过渡条件下发生熔融,石榴子石和角闪石在残留相保留。在大青山,高压麻粒岩可能就是其残留体。赞岐状岩(sanukitiods)是由于埃达克质岩浆在其上升过程中和地幔橄榄岩进行混染,由于其地幔物质的加入,使其Mg质和过渡元素Cr、Ni等元素也显著增加。在俯冲作用的中晚期由于地壳物质的加入,使其钾质含量、大离子亲石元素增加,形成Closepet花岗岩。被埃达克质岩浆交代的地幔橄榄岩的熔融形成富Nb玄武岩(NEB)熔浆,在其未喷出地表时则形成富Nb辉长岩。黑云母花岗岩,主要是深熔花岗岩;正长花岗岩-二长花岗岩,属A型花岗岩。SP花岗岩是原地、半原地地壳物质熔融的产物。地球化学特征显示,南部SP花岗岩具有澳大利亚拉克伦造山带的特点,是一热(>875℃)环境形成,其原岩主要为成熟度不高的杂砂岩为主,同时还有少量粘土岩。是碰撞峰期后岩石圈伸展的产物。
    利用SHRIMP和TIMS方法,在华北克拉通北缘中段取得了如下年龄:埃达克质花岗岩,2435±16Ma;赞岐状岩(sanukitoids),2426±41Ma;Closepet花岗岩,2416~2330Ma年龄;富Nb辉长岩,1845±14Ma;SP花岗岩具有两组年龄:凉城-和林格尔一带1904~1933Ma;乌拉山SP花岗岩,2438±43Ma~2231±17Ma。在原一直认为是中太古代~新太古代的变质火山岩(乌拉山群)取得1953~1967Ma的锆石U-Pb SHRIMP年龄(王惠初等,未刊资料)。深熔黑云母花岗岩锆石U-Pb同位素也显示两组年龄:2277-1953Ma和1853~1803Ma
    通过对本地区古元古代埃达克质花岗岩-赞岐状岩(sanukitoids)-Closepet花岗岩,黑云母花岗岩、SP花岗岩和正长岩地球化学特征、同位素年代学研究,认为华北克拉通北缘古元古代发生了和现代俯冲作用机制一样的俯冲作用,并认为本区古元古代存在2期造山作用,其时限分别为~2.3Ga和~1.9Ga。这些花岗岩代表古元古代华北克拉通北缘从俯冲、碰撞造山、造山后抬升和伸展作用不同阶段的岩浆岩组合。通过研究认为华北克拉通克拉通化开始于~2.3Ga,最终完成时间约1.9Ga。吕梁运动(~1.9Ga )在本区是一次重要的造山作用,该造山运动时间(2.3~1.9Ga)和其后的裂解(1.84~1.74Ga)作用时间,和Clumbia超大陆的汇聚和裂解时限基本一致。本研究从岩浆岩在造山带演化,研究了华北克拉通古元古代造山作用从俯冲-碰撞造山-造山后抬升和伸展过程。为研究华北前寒武纪构造演化,确定Columbia超大陆的性质,吕梁运动的性质等方面具有重要的意义。
The PaleoProterozoic granitoids are generally classified into six types as adakitic granitoids,sanukitiods, Closepet type granitoids, Nb-enriched gabbros (NEG), Biotite-bearing granites and stronglyperaluminous granites in the central segment of North China craton (CSNCR). The adakitic granitoids andsanukitoids are occrenced northern and southern region along the Guyang-Wuchuan fault;sanukitoids andClosepet-type granites are occreenced middle region between Guyang-Wuchuan fault and Daqingshanmountain front fault;and strongly peralumious (SP) granitoids are mainly occenced south region alongJining-Liangcheng-Helingeer-Helanshan Mountain. Furthermore, they are usually company with themetamorphic intermedial-basic volcanic rocks as basalts and andesites, sometimes dacites. The some ofmetamorphic volcanic rocks are chemically characterized by relatively high MgO content and transitionmetals element (such Cr and Ni), and depleted in high field strength element (HFSE). They are like adkites,Nb-reriched basalts (NEB, 7 20×10-6)/high Nb basalts (HNB, Nb>20×10-6) and magnesian andesites(MA, MgO≈6%).
    Adakites are generally suggested producing slab melt in the early collision. Geochemical modellingshows that the source of adakites cannot be ultramafic but rather basaltic in composition. This implies thatadakitic magmas are produced by melting of a basaltic source transformed into garnet-bearing amphiboliteor eclogite such that garnet±hornblende could be residual phases. In Daqingshan area, the high-pressuregranulite may be the residual phases. Sanukitoids genesis model was proposed that an adakitic melt risingthrough peridotite is able to assimilate olivine, resulting in a “hybridised slab melt”. Which increased speedMg#, Cr and Ni in melt. Closepet-type granite is commonly late-to post-kinematic and generally associatesthe matter of crustal, which increased K and other LILE. And the Nb-enriched gabbros (NEGs) aresuggested that intruded on low crustal from the melt of peridotite hybridesed adakitic melt. Biotite-bearinggranites (BBG) are mostly anatectic granites, monzogranites and syenogranite are A-type granite.According to SHRIMP and TIMS, we have attained lots of ages for different kinds granitoids in NCR:adakitic granitoid is 2435±16Ma;sanukitoids are 2426±41Ma;Closepet granites are 2416~2330Ma;andNEG is 1845±16Ma. The SP granites are 1904 to 1933 Ma in south, but that is 2231Ma to 2438Ma in thenorth. And, the BBG and A-type granite are two stages (2277-1953Ma and 1853~1803Ma). However,Wanghuichun et al. (unpublished data) has obtained U-Pb zircon SHRIMP age for Wulashan amphibolitesuggested as middle to new Archean in past literature from the southwest of Guyang that are1953~1967Ma.
    Base on the geochemistry, petrology and geochronology of the Paleoproterozoic granitoids, wesuggested that subduction bearing an analogy to modern plate has taken on the Paleoproterozoic in NCR.We suggested it has two orogenic episodes, which are ~2.3Ga and ~1.9Ga. And adakitic granitoids/adkties,sanukitoids/HMA, closepet-type granites and other granites are producted with the process of subduction –collision – orogeny – uplift – extension. After studying the magma rock assemblage, we suggested thecraton time is started in ~2.3Ga, and finished in ~1.9Ga. Lüliang movement (~1.9Ga) is very importantorogenics in CSNCR, which orogenic movement time (2.3~1.9Ga) and post-orogenic cracking time(1.84~1.74) are similar to the converging and cracking time of Columbia suppercontinent. It is significantlyto studying the crustal evolution, the characteristics of Lüliang movement and paleoproterozoic Columbiasuppercontinent.
引文
[1] Ahl M. Sundblad K.Geology and Sch?berg H.1999. Geochemistry, age and geotectonic evolution of the Dala granitoids, central Sweden. Precambrian Research, Vol. 95 (1-2) pp. 147-166
    [2] Atherton, M.P., Petford, N., 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362,144–146.
    [3] Atherton, M.P., Petford, N.,1996. plutonism and the growth of Andean crust at 9°S from 100 to 3 Ma. J. South Am. Earth Sci.,9:1-9
    [4] Bai J, Dai F Y. 1998. Archean crust of China. In: Ma X Y, Bai J, eds. Precambrian Crust Evolution of China. Beijing: Geological Publishing House, 15~86.
    [5] Balakrishnan, S., Rajamani, V., 1987. Geochemistry and petrogenesis of granitoids around the Kolar Schist belt, South India: constraints for the evolution of the crust in the Kolar area. J. Geol. 95, 219–240.
    [6] Barton, J.M., Doig, R., Smith, C.B.et al. 1992. Isotopic and REE characteristics of the intrusive charnoenderbite and enderbite geographically associated with the Matok Pluton, Limpopo Belt, southern Africa. Precambrian Res. 55 (1–4), 451– 467.
    [7] Beakhouse, G.P., Heaman, L.M., Creaser, R.A., 1999. Geochemical and U–Pb zircon geochronological constraints on the development of a Late Archean greenstone belt at Birch Lake, Superior Province, Canada. Precambrian Res. 97 (1–2), 77– 97
    [8] Belousova E A, Griffin W L, O'Reilly S Y, et al. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 143: 602~622
    [9] Beyth M , Stern R J , Altherr R , et al . 1994. The Late Precambrian Timna igneous complex , Southern Israel : Evidence for comagmatictype sanukitoid monzodiorite and alkali granite magma. Lithos ,31 : 103~124.
    [10] Blundy J D & Holland T J B.1990.Cacic amphibole equilibria and a new amphibole-plagiocalse geotherm-ometer. Contrib Mineral Petrol, 104: 208~224
    [11] Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite study. In: Henderson P. (ed.), Rare earth element geochemistry. Elsevier,pp.63-114.
    [12] Calmus T, Aguillon-Robles A. , Maury R. C. et al, 2003. Spatial and temporal evolution of basalts and magnesian andesites(‘‘bajaites'') from Baja California, Mexico: the role of slab melts. Lithos 66(2003)77-105
    [13] Carswell DA ,O′ Brien P J. 1993. Therm obarometry and geotectonic significance of high-pressure granulites: example from the Moldanubian Zone of the Bohemian Massifin Lower Austria [J]. J Petrol, 34:427~459.
    [14] Champion, D.C., Smithies, R.H., 2003. Slab melts and related processes—Archaean versus Recent. In: Arima, M., Nakajima, T., Ishihara, S. (Eds.), Hutton Symposium V, The Origin of Granites and Related Rocks. Geological Survey of Japan, pp. 19.
    [15] Chappell B W, White A J R. 1974. Two contrasting granite types[J ] . Pacific Geol. , 8 : 173~174.
    [16] Collins WJ . 1998. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: implications for crustal architecture andtectonic models . Australian Journal of Earth Sciences , 45 : 483~500.
    [17] Composton W, Williams I S, Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia using a sensitive high mass-resolution ion microprobe. J Geophys Res, 89: B525~B534
    [18] Condie K C,2005. TTGs and adakites: are they both slab melts? Lithos,80:33-44
    [19] Condie K C. 2002. Breakup of a Paleoproterozoic supercontinent.Gondwana Res, 5: 41~43
    [20] Condie K. C,Boryta M D,Liu J Z et al.1992. The origin of khondlites: geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China craton. Precambrain Res.,59:207~223
    [21] Condie K. C. 2000. Episodic continental growth:afterthoughts and extensions. Tectonphysics, Vol.322:153-162
    [22] Daly J.S. , Balagansky V.V. Timmerman M.J. et al . 2001. Ion microprobe U{unknown entity -}Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland--Kola Orogen, northern Fennoscandian Shield .Precambrian Research. Vol. 105 (2-4) pp. 289-314
    [23] Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662– 665.
    [24] Defant M J., Jackson, T E, Drummond M S et al. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an review. Journal of the Geological Socity of London 149,569-579.
    [25] Defant MJ.许继峰,Kepezhinsksa P 等.2002. Adakites:some variations on a theme .岩石学报, 18(2): 129~142
    [26] Drummond, M.S., Defant, M.J. 1990. A model for trondhjemite –tonalite–dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. J. Geophys. Res.95, 21503– 21521.
    [27] Drummond M S , Defant MJ and Kepezhinskas P K. 1996. Petrogenesis of slab-derived trondhjemite -tonalite -dacite/ adakite magmas. Trans. R. Soc. Edinb. Earth Sci. , 87 : 205~215.
    [28] Evans, O.C., Hanson, G.N. 1997. Late-to post-kinematic Archean granitoids of the S.W. Superior Province: derivation through direct mantle melting. In: de Wit, M.J., Ashwal, L.D. (Eds.), Greenstone Belts. Oxford Univ. Press, Oxford, pp. 280–295.
    [29] Frost, C.D., Frost, B.R., Chamberlain, K.R., Hulsebosch, T.P., 1998. The late Archaean history of the Wyoming province as recorded by granitic magmatism in the Wind River Range. Wyoming.Precambrian Res. 89, 145– 173.
    [30] Glebovitsky V.A. 2001.Ptrcambrian collision orogen formation and supercontinents tectonic, petrologic and isotope geochronological evidence .Gondwana Research pp621
    [31] Green N L .1994. Mount St. Helens:potential example of partial melting of subducted lithosphere in a volcanic arc: comment. Geology, 22:188-189
    [32] Guo J H, Sun M Chen F K et al. 2005. Sm–Nd and SHRIMP U–Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences 24 :629–642.
    [33] Gutscher M A. Maury, R, Eissen J P et al. 2000. Can slab melting be caused flat subduction? Geology, 28:535~538
    [34] Halla J. 2005. Late Archean high-Mg granitoids (sanukitoids) in the southern Karelian domain, eastern Finland: Pb and Nd isotopic constraints on crust-mantle interactions. Lithos 79 (2005) 161– 178
    [35] Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision-zones magmatism[A] . Coward M P , Ries A C. Collision Tectonics[C] . Geol. Soc. Spec. Publ. , 19 : 67~81.
    [36] Hoffman P F. 1988. United plates of America, the brith of a craton: early Proterozoic assembly and growth of Laurentia Ann Rev Earth Planet Sci, 16:543-603
    [37] Hollings P. Kerrich á R. An Archean arc basalt±Nb-enriched basalt±adakite association:the 2.7 Ga Confederation assemblage of the Birch±Uchi greenstone belt, Superior Province. Contrib Mineral Petrol (2000) 139: 208±226
    [38] Jahn, B., Auvray, B., Shen, Q.et al. 1988. Archaean crustal evolution in China: the Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Res. 38, 381–403.
    [39] Jayananda, M., Martin, H., Peucat, J.-J., Mahabaleswar, B., 1995. Late Archaean crust-mantle interactions: geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, Southern India. Contrib. Miner. Petrol. 199, 314–329.
    [40] Johnston S T & Thorkelson D J. 1997. Cocos-Nazca slab window beneath Central America. Earth Planet. Sci. Lett. 146:465-474
    [41] Kamei A, Owada M, Nagao T., et al. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Janpan arc: evidence from clinopyroxene and whole rock compositions. Lithos, 75(2004):359-371
    [42] Karl E. Karlstrom et al. 2001. Long-lived (1.8-1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia, Precambrian Research, Vol.111(1-4) pp. 5 – 30
    [43] Kay, R.W., 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J. Volcanol. Geotherm. Res. 4,117– 132.
    [44] Kay S M, Ramos V A and Marquez M.1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. J Geol., 101: 703-714.
    [45] Kay S M, & Mpodozis, C. 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, No. 3:4-9
    [46] Kelemen, P.B., Johnson, K.T.M., Kinzler, R.J., Irving, A.J., 1990. High-field-strength element depletion in arc basalts due to mantle–magma interaction. Nature 345, 521– 524.
    [47] Kepezhinskas, P.K., Defant, M.J., Drummond, M.S., 1996. Progressive enrichment of island arc mantle by melt–peridotite interaction inferred from Kamchatka xenoliths. Geochim. Cosmochim. Acta 60, 1217– 1229.
    [48] Kovalenko A V and Savatenkov V M. 2003. Sm-Nd and Rb-Sr isotopic data on the sannukitoid intrusions of the Karelia , Baltic shield .European Geophysical Society 2003 , Geophysical Research Abstracts , 5 , 01508.
    [49] Krogstad, E.J., Hanson, G.N., Rajamani, V., 1995. Sources of continental magmatism adjacent to the late Archean Kolar Suture Zone, South India: distinct isotopic and elemental signatures of two late Archean magmatic series. Contrib. Miner.Petrol. 122, 159–173.
    [50] Kusky T M. & Li J H.2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences 22 : 383–397.
    [51] Le Maitre R W 主编(1989)中译本.1991.火成岩分类及术语辞典.北京:地质出版社
    [52] Lee J S. The geology of China .1939. London : Thomas Murby Co , 1~70.
    [53] Li S Z. Zhao G C, Sun M. et al. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences,24:659-674.
    [54] Liégeois J.P.(Edited).Post-Collisional Magmatism. Lithos, 1998, Vol.45(1-4): pp.1-560
    [55] Liu X S, Jin W, Li S X, et al. 1993.Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. J Metamorph Geol, 11: 499~510
    [56] Mahlburg Kay, S., Ramos, V.A., Marquez, M. 1993. Evidence in Cerro Pampa volcanic rocks of slab melting prior to ridge trench collision in southern South America. J. Geol. 101, 703– 714.
    [57] Martin, H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14, 753–756.
    [58] Martin, H. 1999. The adakitic magmas: modern analogues of Archaean granitoids. Lithos 46 (3), 411– 429.
    [59] Martin H.,Smithies R.H.,Rapp R. et al. 2005. An overview of adakite, tonalite–trondhjemite– granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Litho,79(2005):1-24
    [60] Martin J. W. and David B.2001. Geochronological constraints on Paleoproterozoic crustal evolution and regional correlations of the northern Outer Hebridean Lewisian complex, Scotland, Precambrian Research,Vol.105 (2-4)pp. 227 – 245
    [61] Middlemost, E A K. 1994. Naming materials in the magama/igneous rock system. Earth Sci. Rev. 37:215-224
    [62] Mishra, D.C. Singh, B. Tiwari, V.M. Gupta S.B. and Rao, M.B.S.V. Two cases of continental collisions and related tectonics during the Proterozoic period in India -insights from gravity modelling constrained by seismic and magnetotelluric studies, Precambrian Research,2000,Vol.99 (3-4) pp. 149-169
    [63] Moyen, J.-F., Martin, H., Jayananda, M.et al. 2003a. Late Archaean granites: a typology based on the Dharwar Craton (India). Precambrian Res. 127 (1–3), 103– 123.
    [64] Moyen, J.-F., Nedelec, A., Martin, H., et al. 2003b. Syntectonic granite emplacement at different structural levels: the Closepet granite, South India. J. Struct. Geol. 25 (4), 611 –631.
    [65] Nironen M. Elliott B.A. and R?m? O. T. 2000. 1.88-1.87 Ga post-kinematic intrusion of the Central Finland Granitoid Complex: a shift from C-type to A-type magmatism during lithospheric convergence . Lithos, 53:37-58
    [66] Pamic, J., Lanphere, M., Belak, M. 1996. Hercynian I-type and S-type granitoids from the Slavonian mountains southern. Pannonian Basin, northern Croatia . N. Jb. Mineral. Abh. 171,155–186.
    [67] Pearce JA.Lippard SJ.Robert S.1984.Characteristics and tectonic significance of supra-subduction zone ophiolite.in:Marginal basin geology.GS Lond.spe.pub.,16:77~94
    [68] Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera blanca Batholith,Peru.Journal of Petrology,37:491-521
    [69] Pither W S. 1983. Granite type and tectonic environment [A] . Hsu K. Mountain Biulding Processes[ C] . London : Academic Press , 19~40.
    [70] Polat, A., Kerrich, R., 2001. Magnesian andesites, Nb-enriched basalts and adakites from late-Archaean 2.7 Ga Wawa greenstone belts, superior Province, Canada. Implications for late Archaean subduction zone petrogenetic processes. Contrib.Mineral. Petrol. 141, 36– 52.
    [71] Rapp R P, Shimizu N., Norman M D, et al. 1999.reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8GPa. Chemical Geology, 160(1999):335-356
    [72] Rogers J, Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Res, 5: 5~22
    [73] Romano D. Holm D. K. and K.A. 2000. Foland Determining the extent and nature of Mazatzal-related overprinting of the Penokean orogenic belt in the southern Lake Superior region, north--central USA .Precambrian Research . Vol. 104 (1-2) pp. 25-46
    [74] Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184 : 123~138
    [75] Sajona, F.G, Mury, R C , Bellon, H et al. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21:1007-1010
    [76] Sajona, F.G, Mury, R C ,Pubelier, M et al.1994.Magmatic source enrichment by slab-derived melts in a young post-collision setting, cental Mindanao(Philippines). Lithos, 54:173~206.
    [77] Sajona, F.G., Maury, R., Bellon, H., et al. 1996. High field strength element enrichment of Pliocene–Pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). J. Petrol. 37 (3), 693–726
    [78] Sajona, F.G., Bellon, H., Maury, R.et al. 1997. Tertiary and Quaternary magmatism in Mindanao and Leyte (Philippines);geochronology, geochemistry and tectonic setting. J. Asian Earth Sci. 15 (2–3), 121– 153.
    [79] Samsonov A V, Bogina M M , Bibikova E V et al. 2005. The relationship between adakitic, calc-alkaline volcanic rocks and TTGs: implications for the tectonic setting of the Karelian greenstone belts, Baltic Shield. Lithos 79(2005)83-106
    [80] Sanders I S , Daly J S, Davies G R. 1987. Late Proterozoic high-pressure granulite facies metamorphism in the north-east Oxinlier, northwest tIreland [J]. J Metamorphic Geol, 5: 69~85
    [81] Schiano, P., Clochiatti, R., Shimizu, N., et al. 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationships with erupted arc lavas. Nature 377, 595– 600.
    [82] Schmidt N W.1992. Amphibole composition in tonalite as a founction of pressur, an experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol.,110,304~310.
    [83] Sen, C., Dunn, T., 1994. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contrib. Mineral. Petrol. 119, 422– 432
    [84] Sheppard S, Griffin T J, Tyler, I M et al. 2001. High-and low-K granites and adakites at a Paleoproterozoic plat boundary in northwestern Australia. J. Geol. Sco. London, 158:547~560.
    [85] Shimoda G., Tatsumi Y., Nohda S., Ishizaka K. and Jahn B.M. 1998. Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments.Earth. Planet. Sci. Lett., 160, 479-492.
    [86] Shirey, S.B., Hanson, G.N., 1984. Mantle-derived Archaean monzodiorites and trachyandesites. Nature 310, 222–224.
    [87] Smithies, R.H., Champion, D.C., 1999. High-Mg diorite from the Archaean Pilbara Craton: anorogenic magmas derived from a subduction-modified mantle. Geol. Surv. West. Aust. Annu. Rev. 1998–1999, 45– 59.
    [88] Smithies, R.H., 2000a . The Archaean tonalite – trondhjemite – granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet. Sci. Lett. 182, 115– 125.
    [89] Smithies, R.H.2002. Archaean boninites-like rocks in intracratonic setting. Earth and Plantetary Science Letters, 197(2002):19-34
    [90] Smithies, R.H., Champion, D.C. 2000b. The Archaean high-Mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. J. Petrol. 41 (12), 1653– 1671.
    [91] Smithies, R.H., Champion, D.C., Cassidy, K.F., 2003. Formation of Earth's early Archaean continental crust. Precambrian Res. 127 Dacites and Related Rocks. Elsevier, Amsterdam, pp. 275– 299.
    [92] Smithies, R.H., Champion D C, Van Krarendonk M J et al. 2005. Modern-style subduction processes in the Mesoarchean: geochemical evidence from the 3.12Ga Whundo intra-oceanic arc. Earth Plat. Sci. Lett. 231:221-231
    [93] Stern, R., 1989. Petrogenesis of the Archaean Sanukitoid Suite. State University at Stony Brook, New York. 275 pp
    [94] Stern, R.A., Hanson, G. 1991. Archaean high-Mg granodiorites: a derivative of light rare earth enriched monzodiorite of mantle origin. J. Petrol. 32, 201–238.
    [95] Stevenson, R., Henry, P., Garie′py, C. 1999. Assimilation–fractional crystallization origin of Archaean sanukitoid suites: Western Superior Province, Canada. Precambrian Res. 96, 83– 99
    [96] Steyrer, H.P. 1997. Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral. Petrol. 61, 67–96.
    [97] Sylvester P J. 1998. Post-collisional strongly peraluminous granites[J ] . Lithos , 45 : 29~44
    [98] Tatsumi, Y., Ishizaka, K. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics. Earth and Planetary Science Letters 60, 293– 304.
    [99] Tatsumi Y, Shukuno H , Sato K, et al . 2003. The petrology and geochemistry of high-magnesium andesites at the western tip of the Setouchi volcanic belt , SWJapan[J ] . Journal of Petrology , 44 : 1 561~1 578.
    [100] Tchameni R., Mezger K., Nsifa N.E. and Pouclet A..2001. Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon.Lithos, 57 (1) pp. 23-42
    [101] Tsuchiya N , Suzuki S , Kimura J I , et al . 2005. Evidence for slab melt/mantle reaction : petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains , Japan[J ] . Lithos , 79 :179~206.
    [102] Turner, S., Arnaud, N., Liu, J., et al.1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau:implications for convective thinning of the lithosphere and the source of ocean island basalts. J. Petrol. 37, 45–71.
    [103] Vaisanen M. Manttari I. Kriegsman L.M. and Holtta P. 2000. Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland. Lithos, Vol. 54(1-2):61-83
    [104] Vavra G, Gebauer D, Schmid R, et al. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contrib Mineral Petrol, 122: 337~358
    [105] Vavra G, Schmid R, Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol, 134: 380 ~ 404
    [106] Wang H Z, Mo X X. An outline of the tectonic evolutionof China. Episodes , 1995 , 18(1/ 2) : 6~16.
    [107] Wilde S A, Zhao G C, Sun M. 2002. Development of the North China Craton during the Archae and its final a malgamation at 1.8 Ga: some speculations on its position within a global Paleoproterozoic supercontinent Gondwana Research, 5(1):85-94
    [108] Williams I S. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben M A, Shanks W C, Ridley W I, eds. Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 7: 1~35
    [109] Wyellie P J. 1977. Crustal anatexis : An experimental review[J ] . Tectonophysics , 43 : 41~71.
    [110] Wyman, D., Ayer, J., Devaney, J., 2000. Niobium-enriched basalts from the Wabigoon subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone. Earth and Planetary Science Letters 179, 21–30.
    [111] Xia X. P., Sun M., Zhao G. C. et al.2006. LA-ICP-MS U–Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research 144:199–212
    [112] Xia X. P., Sun M., Zhao G. C. et al.2006. U–Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane,Western Block of the North China Craton, Earth and Planetary Science Letters 241:581– 593
    [113] Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V.et al. 1994. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, FarWestern Aleutians. J. Petrol. 35, 163-204.
    [114] Yogodzinski, G.M., Kay, R.W., Volynets, O.N. et al. 1995. Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geol. Soc. Am. Bull. 107(5), 505– 519.
    [115] Yogodzinski, G.M., Lees J M, Churikova T G et al. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409:500~504.
    [116] Yumul Jr, G P , Dimalanta C B ,Bellon, H et al. 2000. Adakitic lavas in the central Luzon back-arc rogion, Philippines: lower crust partial melting products ? The Island Arc, 9:499~512
    [117] Zhai, M G and Liu W J. 2003a. Palaeoptroterozoic tectonic history of North China craton: a review. Precambrain Research, 122:183-199
    [118] Zhai M G, Guo J H, Li Y G. et.al. 2003b. Two linear granlite belts in the central-western North China Craton and their implication for Late Neoarchaean-Palaoproterozic continental evolution. Precambrain Research, 127:267-283
    [119] Zhai M G, Guo J H, Liu W J.2005.Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a revie. Journal of Asian Earth Sciences 24 :547–561
    [120] Zhao G C, Wilde S A, Cawood P A, et al. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Inter Geol Rev, 40: 706~721
    [121] Zhao G C, Wilde S A, Cawood P A, et al. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310: 37~53
    [122] Zhao G.C., Peter A. Cawood, Simon A. Wilde,et al. 2000. Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution, Precambrian Research,103(:1-2) pp. 55-88
    [123] Zhao G C, Cawood P A, Wilde S A, et al, 2001a. Polymetamorphism of Archean mafic granulites from the Trans-North China Orogen: textural and thermobarometric evidence and tectonic implications. In: J Miller I S Buick, eds. Continental Reworking and Reactivation. Geol Soc Spec Publ, The Geological Society, London, 184: 323~342
    [124] Zhao G C, Wilde S A, Cawood P A, et al. 2001b.Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45~73
    [125] Zhao G C. Paleoproterozic amalgamation of the North China Craton.2001c, Geological Magazine, Vol.138:87-91
    [126] Zhao G C, Cawood P A, Wilde S A et. al. 2002. Review of global 2.1-1.8Ga orogens:implications for a pre-Rodinia supercontient. Earth-Science Reviews, 59:125-162
    [127] Zhao G C, Sun M, Wilde,S.Late 2005.Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Journal of Asian Earth Sciences 24 :177-202
    [128] Zhong Changting. 2000. Two stages high-pressure granulite in Jin-Ji-Meng (Shanxi--Hebei-Inner Mongolia) terrain: Implications for the crustal evolutions of the late Archean to early Proterozoic of North China craton. In: Abstracts of 31ICG, Brazil .
    [129] 白瑾,黄学光,王惠初等. 中国前寒武纪地壳演化(第二版).北京:地质出版社,1996,pp1-259
    [130] 白瑾. 华北原地台古元古代热力活动遗迹及其构造边界意义.岩石学报,2000, 16(1):39~48
    [131] 白益良. 冀东地区的古褶皱. 地质研究, 1980, 3(1): 68~90
    [132] 邓晋福, 赵海玲, 莫宣学,吴宗絮,罗照华.中国大陆根-柱构造——大陆动力学的钥匙.北京:地质出版社,1996,1-110
    [133] 邓晋福,吴宗絮,赵国春,赵海玲,罗照华,. 华北地台前寒武花岗岩类、陆壳演化与克拉通形成. 岩石学报,1999,vol.15(2):190-198.
    [134] 邓晋福,罗照华,苏尚国等,火成岩成因、构造环境与成矿作用.北京:地质出版社,2004,pp.1-148
    [135] 董其贤,周俊昌.内蒙古乌拉山区原乌拉山群地层划分新议.中国区域地质,1984,10:19-37
    [136] 胡学文, 张满江, 权桓. 冀北红旗营子群同位素年龄及其时代归属. 中国区域地质, 1996 , (2) : 186 -192.
    [137] 耿元生,吉成林.河北怀安东洋河地区石榴基性麻粒岩的变质演化.见:钱祥麟,王仁民主编.华北北部麻粒岩带地质演化[C].北京:地震出版社,1994.89~99.
    [138] 耿元生,万渝生,杨崇辉.吕梁地区古元古代的裂陷型火山作用及其地质意义. 地球学报,2003,Vol.24(2): 97-104
    [139] 郭敬辉,翟明国,张毅刚等.怀安蔓菁沟早前寒武纪高压麻粒岩混杂岩带地质特征,岩石学和同位素年代学[J].岩石学报,1993,9(4):329~340.
    [140] 郭敬辉, 翟明国, 李永刚, 等. 晋冀内蒙交界地区早前寒武纪变质杂岩同位素年代及其构造意义[A] . 钱祥麟, 王仁民. 华北北部麻粒岩带地质演化[C] . 1994. 130 -144.
    [141] 郭敬辉,翟明国,李江海等.华北克拉通早前寒武纪桑干构造带的岩石组合特征和构造性质[J]. 岩石学报,1996,12(2):193~207.
    [142] 郭敬辉,石昕,卞爱国,许荣华,翟明国,李永光.桑干地区早元古代花岗岩长石 Pb 同位素组成和锆石 U-Pb 年龄:变质与地壳熔融作用及构造-热事件演化.岩石学报,1999,Vol.15(2):199-207
    [143] 郭敬辉,翟民国.华北克拉通桑干地区高压麻粒岩变质作用的 Sm-Nd 年代学.科学通报,2000,45(19):2055-2061
    [144] 吉林大学地质调查院.2004,内蒙古包头市 1:25 万区域地质调查报告(送审稿).
    [145] 简平、张旗、刘敦一等.2005.内蒙古新太古代赞岐岩(Sanukite)-角闪花岗岩 SHRIMP 定年及其意义.岩石学报,21:151-157
    [146] 金巍, 李树勋, 刘喜山. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报, 1991, 7(4): 27~35
    [147] 金巍, 李树勋, 刘喜山.内蒙古大青山早前寒武纪变质岩和早期陆壳演化. 长春地质学院学报, 1992, (3) : 281~ 289.
    [148] 金巍,李树勋.内蒙古大青山地区早元古造山带的岩石组成及特征.见:钱祥麟,王仁民主编, 华北北部麻粒岩带地质演化.北京:地震出版社,1994,32~42
    [149] 金巍,李树勋.华北早太古代-早元古代高级变质区的变质 PTt 轨迹及其地壳热动力学演化模式[J].岩石学报,1996,12(2):208~221.
    [150] 李江海.P、T 记录及其对麻粒岩成因模式的制约.见:钱祥麟,王仁民主编.华北北部麻粒岩带地质演化[C].北京:地震出版社,1994.7~20.
    [151] 李江海,钱祥麟,翟明国,郭敬辉.华北中北部高级变质岩区的构造区划及其晚太古代构造演化[J].岩石学报,1996,12(2):179~192.
    [152] 李江海,钱祥麟,翟明国.华北北部高级麻粒岩相带构造区划及其早前寒武纪构造演化[J].地质科学,1997,32(3):254~266
    [153] 李江海,钱祥麟.恒山早前寒武纪地壳演化[M].太原:山西科学技术出版社,1994.pp.116
    [154] 李江海,翟明国,李永刚等.冀北滦平-承德一带晚太古代高压麻粒岩的发现及其构造地质意义[J].岩石学报,1998a,14(1):34~41.
    [155] 李江海,翟明国,钱祥麟等.华北中北部晚太古代高压麻粒岩的产状及其出露的区域构造背景[J].岩石学报,1998b,14(2):176~189.
    [156] 李江海,侯贵廷,钱祥麟,Halls H.C.,Davis D. 恒山中元古代早期基性岩墙群的单颗粒锆石U-Pb 年龄及其克拉通构造演化意义.2001, 地质论评, Vol. 47(3):234-238
    [157] 李树勋,刘喜山,张履桥.内蒙古色尔腾山地区花岗岩-绿岩带地质特征.长春地质学院学报(变质地质专辑)1987,81-102
    [158] 李树勋,徐学纯,刘喜山等.内蒙古乌拉山区早前寒武纪地质.北京:地质出版社,1994,1-140
    [159] 李伍平. 贺兰山群早元古代花岗岩的地质特征和岩石谱系单位划分.西安地质学院学报,1994,Vol.19(3):46-53
    [160] 李伍平 . 内蒙古呼鲁斯太地区早元古代花岗岩的地质特征及成因 . 西安地质学院学报,1995,Vol.17(2):19-25
    [161] 刘建忠,强小科,刘喜山等. 内蒙古大青山造山带含假蓝宝石尖晶石片麻岩的成因网格及动力学.岩石学报,2000, 16(2):245-255.
    [162] 刘喜山, 金巍, 李树勋. 蒙古中部早元古代造山事件中麻粒岩相低压变质作用. 地质学报, 1992 , 66 (3) : 244~25
    [163] 卢良兆, 徐学纯, 刘福来. 中国北方早前寒武纪孔兹岩系[M] . 长春:长春出版社, 1996. 1 -273.
    [164] 卢良兆,靳是琴,徐学纯,等. 内蒙古东南部早前寒武纪孔兹岩系成因及其含矿性[M] . 长春:吉林科学技术出版社,1992. 1 -15 ,47 -79.
    [165] 陆松年,杨春亮,李怀坤等.华北古大陆和哥伦比亚超大陆. 地学前缘,2002,Vol.9(4):225-233
    [166] 陆松年,李怀坤,王惠初等.对国际地层委员会前寒武纪划分参考方案的简介及评述.地质论评,2005,Vol51(2):169-173
    [167] 马杏垣,白瑾,索书田等.中国前寒武纪构造格局及研究方法.北京地质出版社,1987,77-93
    [168] 马杏垣. 江苏响水至内蒙满都拉地学断面南北两段的地学观察.地质科学,1989,14:1-6.
    [169] 毛德宝,钟长汀,陈志宏等.承德北部高压麻粒岩的同位素年龄及其地质意义.岩石学报,1999(15)4:524-531
    [170] 梅华林,吴昌华,钟长汀.内蒙古中南部地区含石榴石基性麻粒岩和紫苏花岗岩变质 PTt 轨迹和热模拟比较.见:钱祥麟,王仁民主编.华北北部麻粒岩带地质演化[C].北京:地震出版社,1994.110~119.
    [171] 莫宣学, 路凤香, 沈上越, 等.三江特提斯火山作用与成矿[M] . 北京: 地质出版社, 1993,267.
    [172] 内蒙古地质矿产局.内蒙古自治区区域地质志.地质专报(一)区域地质,第 25 号,北京:地质出版社,1991, PP.725
    [173] 钱祥麟.华北北部太古宙克拉通化过程及地体拼贴与板块构造运动学模式.见:“七五”地质科技重要成果学术交流会论文集[C]:北京科学技术出版社,1992.
    [174] 钱祥麟.早前寒武纪大陆地壳的性质与构造演化问题[J].岩石学报,1996,12(2):169~178.
    [175] 钱祥麟,李江海.华北克拉通新太古代不整合事件的确定及其大陆克拉通构造演化意义[J].中国科学(D 辑),1999,29(1):1~8.
    [176] 沈其韩, 张荫芳, 高吉凤, 等. 内蒙古中南部太古宙变质岩[J ] . 中国地质科学院地质研究所所刊. 1990, 21 :1 -192.
    [177] 沈其韩,张宗清,耿元生等.冀西北大东沟富石榴石基性变质岩的岩石学、地球化学和同位素年龄.见:钱祥麟,王仁民主编.华北北部麻粒岩带地质演化[C].北京:地震出版社,1994.120~129.
    [178] 宋彪, 张玉海, 万渝生, 等. 锆石 SHRIMP 样品靶制作、年龄测定及有关现象讨论. 地质论评, 2002, 48(增刊): 26-30
    [179] 陶继雄,胡凤翔.内蒙古卓资地区深熔作用形成的石榴石混合花岗岩.前寒武纪研究进展,2002,Vol.25(1):59~64
    [180] 陶继雄,许立权. 蒙古中部召河庙地区金矿成矿规律及找矿预测.华南地质与矿产,2003, Vol(1):33-38
    [181] 万渝生, 耿元生, 沈其韩, 等. 孔兹岩系-山西吕梁地区界河口群的年代学和地球化学[J ] . 岩石学报, 2000a , 16 (1) :49 -58.
    [182] 万渝生、耿元生、刘福来,等.华北克拉通及邻区孔兹岩系的时代及对太古宙基底组成的制约.前寒武纪研究进展.2000b,Vol.23(4):221-237
    [183] 王惠初, 修群业. 内蒙古二道洼群的单颗粒锆石年龄. 内蒙古地质, 1996 , 1~2 , 13~17
    [184] 王惠初,修群业,袁桂邦.内蒙古呼和浩特北部古元古代二道洼群的变质演化.前寒武纪研究进展 1999,Vol22(4):39-48
    [185] 王惠初,袁桂邦、辛后田.内蒙古固阳村空山地区麻粒岩的锆石 U-Pb 年龄及其对年龄解释的启示.前寒武纪研究进展,2001,Vol24(1):28~34
    [186] 王惠初,陆松年,赵凤清等. 华北克拉通古元古代地质记录及其构造意义. 地质调查与研究,2005, Vol28(3):129-143.
    [187] 王辑,陆松年等.内蒙古中部变质岩群同位素年代格架.中国地质科学院天津地质矿产研究所所刊,1995,pp1-77
    [188] 王仁民 , 陈珍珍 , 陈飞 . 恒山灰色片麻岩和高压麻粒岩包体及其地质意义 [J]. 岩石学报,1991,7(4):36~45.
    [189] 王仁民,赖兴运,董卫东等.冀西北晚太古宙碰撞带的一些证据.见:钱祥麟,王仁民主编.华北北部麻粒岩带地质演化[C].北京:地震出版社,1994.7~20.
    [190] 王仁民.冀西北新太古代下部陆壳及其性质初探[J].岩石学报,1996,12(2):239~246.
    [191] 王仁民, 陈珍珍, 赖兴运. 华北太古宙从地幔柱体制向板块构造体制的转化 [J]. 地球科学,1997,22(3):317~321.
    [192] 王孝磊,周金城,邱检生等. 湘东北新元古代强过铝花岗岩的成因:年代学和地球化学证据.地质论评,2004(1):67~78
    [193] 巫祥阳, 徐义刚, 马金龙, 等. 鲁西中生代高镁闪长岩的地球化学特征及其成因探讨[J ] . 大地构造与成矿学, 2002, 27 : 228~236.
    [194] 吴昌华, 李树勋, 高吉风, 等. 华北克拉通太古代和早元古代变质区. 见: 董申保, 主编. 中国变质作用及其与地壳演化的关系. 北京: 地质出版社, 1986. 53~89
    [195] 吴昌华, 高亚东, 梅华林, 等. 内蒙古黄土窑地区孔兹岩系与麻粒岩套的构造特征及不整合接触关系的论证[A] . 钱祥麟, 王仁民. 华北北部麻粒岩带地质演化[C] . 1994. 145 -156.
    [196] 吴昌华、钟长汀、陈强安.晋蒙高级区孔兹岩的时代.岩石学报,1997,Vol.13(3):290-302
    [197] 吴昌华、李惠民、钟长汀等.内蒙古黄土窑地区孔兹岩系的碎屑锆石年龄、变生锆石年龄和金 红石(冷却)年龄.地质论评.1998a,Vol.44(6):618-626
    [198] 吴昌华,钟长汀.华北陆台中段吕梁期的 SW-NE 向碰撞-冀蒙高级区孔兹岩系进入下地壳的构造机制. 前寒武纪研究进展,1998b,21(3):28-50
    [199] 吴昌华,李惠民,钟长汀等. 阜平片麻岩和湾子片麻岩的单颗粒锆石 U-Pb 年龄—阜平杂岩并非一统太古宙基底的年代学证据.前寒武纪研究进展, 2000, Vol . 23 ( 3):129~139
    [200] 伍家善, 耿元生, 沈其韩, 等. 中朝古大陆地质特征及构造演化. 北京: 地质出版社, 1998. 1~212.
    [201] 肖庆辉,邓晋福,马大铨等,花岗岩研究思维与方法.北京:地质出版社,2002,p1-294
    [202] 杨振升,徐仲元, 刘正宏等. 孔兹岩系事件与太古宙地壳构造演化.前寒武纪研究进展,2000, 23(4):206-212
    [203] 杨振升, 徐仲元, 刘正宏等.高级变质区岩石地层系统建立的思考与实践—以内蒙古大青山-乌拉山地区为例.中国地质,2003,30(4):343-351.
    [204] 翟明国,郭敬辉,阎月华等.中国华北太古宙高压基性麻粒岩的发现及初步研究[J].中国科学(B辑),1992,(12):1325~1330
    [205] 翟明国,郭敬辉,李永刚.晋冀蒙交界地区高压基性麻粒岩带及其相邻岩石组合的性质.见:钱祥麟,王仁民主编.华北北部麻粒岩带地质演化[C].北京:地震出版社,1994.21~31.
    [206] 翟明国,郭敬辉,阎月华等.太古宙克拉通型下地壳剖面:华北怀安-丰镇—尚义的麻粒岩-角闪岩系[J].岩石学报,1996,12(2):222~238.
    [207] 翟明国,李永刚,郭敬辉,张雯华,阎月华.晋冀内蒙交界地区麻粒岩地体中两条花岗岩带及其对早前寒武纪地壳生长的意义.岩石学报,1996,Vol.12(2):299-314
    [208] 翟明国. 华北克拉通 2.1Ga~1.7Ga 地质事件群的分解和构造意义讨论.岩石学报,2004,020(6):1343~1354.
    [209] 张旗,王焰、钱青等.2004. 晚太古代 Sanukite(赞岐岩)与地球早期演化.岩石学报,20:1355-1362
    [210] 张旗,钱青,翟明国等.2005.Sanukite(赞岐岩)的地球化学特征、成因、及其地球动力学意义.岩石矿物学杂志,Vol.24(2):117-125
    [211] 张维杰,李龙、耿明山.2000.内蒙古固阳地区新太古代侵入岩的岩石特征及时代.地质学报,25:221-226
    [212] 张玉清,2004. 内蒙古白云鄂博北部宝音图岩群变质基性火山岩的年龄、构造背景及地质意义.地质通报,23(2):177-183
    [213] 赵国春,孙敏,Wilde S A,早中元古代 Columbia 超大陆研究进展.科学通报,2002,Vol.47(18):1361-1364
    [214] 赵国春,孙敏. 华北克拉通基底构造单元特征及早元古代拼合.中国科学(D 辑),2002,Vol.32(7):538-549
    [215] 赵宗溥,等. 中朝准地台前寒武纪地壳演化[M] . 北京: 科学出版社, 1993 , 366-384.
    [216] 钟长汀,吴昌华,梅华林,等.晋蒙高级地体石榴石基性麻粒岩地质特征及构造意义.前寒武纪研究进展,1998,21(1):35-44
    [217] 钟长汀.晋冀蒙高级区两期高压麻粒岩的地质特征及成因. 前寒武纪研究进展,1999,22(2):53-58
    [218] 钟长汀、毛德宝、陈志宏、赵风清.冀北高压麻粒岩带构造单元划分及其演化.前寒武纪研究进展,2001,Vol.24(3):175-183
    [219] 钟长汀、邓晋福、武永平等.华北克拉通北缘中段古元古代强过铝质花岗岩地球化学及其构造意义.地质通报,2006,Vol.25 (3): 389-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700