山西临县紫金山碱性杂岩体的地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山西临县紫金山碱性杂岩体出露于吕梁山中段西侧,大地构造位置处于华北克拉通中部带西部—吕梁造山带西麓与鄂尔多斯地块的过渡带,靠近大型断裂—离石断裂带。论文对该杂岩体进行了详细系统的岩石学、年代学、岩石地球化学研究,探讨了岩体岩浆作用时限、岩浆演化过程、岩浆起源及岩石成因等问题。
     紫金山碱性杂岩体是一个经历侵入和喷发两个岩浆作用阶段、多期次、不同岩性组成的环带状中心式碱性杂岩体,野外地质特征表明各岩石单元侵入的先后顺序为二长岩、霓辉正长岩、含霞霓辉正长岩、霞石正长岩,粗面质角砾岩和响岩质角砾岩是喷发作用阶段的产物。LA-ICP-MS锆石U-Pb测年数据证实,从二长岩到霞石正长岩侵入作用阶段岩浆作用时限为133.7~116.1Ma,322~282Ma之间紫金山地区深部具有岩浆热力作用,证明华北克拉通中西部破坏的深部热力作用始于晚古生代晚石炭世。
     紫金山碱性杂岩体全碱含量高,均属于钾质的碱性-过碱性系列岩石,偏铝质、低/贫钙、较富铁(少数极富铁)、贫镁。主量元素Harker图解表明,岩石成分变化与结晶分异作用无关,主要与岩浆起源有关。构造环境判别显示岩体为拉张环境中派生的碱性杂岩体。
     紫金山碱性杂岩体总体具有富集右倾的稀土元素配分模式,不具负Eu异常,表明不同侵入单元岩石以平衡结晶为主,结晶分异作用不占主导。各侵入岩石单元从早期到晚期,ΣREE和LREE/HREE逐渐降低,说明他们的源区物质组成不同。仅霞石正长岩显示以Nd为高点的弱上凸的稀土配分模式,可能与后期热液作用有关。
     紫金山碱性杂岩体各侵入单元过渡族元素模式为典型的“W”型;Ba、Sr、K等大离子亲石元素(LILE)富集和Nb、Ta、Ti等高场强元素(HFSE)亏损;微量元素(Sr、Zr、La、Yb、Nb、Th)与SiO2相关关系差;Th/Hf-Ta/Hf构造判别等表明岩体不是单一源区背景下结晶分异或部分熔融的产物,岩浆源区可能为大陆岩石圈地幔,或者至少有岩石圈地幔物质的参与。
     二长岩具有最高的初始87Sr/86Sr比值(0.70495~0.70518),最低的εNd(t)值(-11.5~-9),在Sr-Nd关系图解上,Sr-Nd值落入于典型的EMⅠ(Ⅰ型富集地幔);霓辉正长岩与二长岩比较,含有较高的εNd(t)值(-7.4~-3.5)和较低的87Sr/86Sr(t)比值(0.70428~0.70448),Sr-Nd值介于EMⅠ和DM(亏损地幔)之间;含霞霓辉正长岩具有与霓辉正长岩相近的87Sr/86Sr(t)比值(0.70404~0.70475)和εNd(t)值(-7.8~-2.5),推测其与霓辉正长岩具有相似的岩浆起源;霞石正长岩最低的87Sr/86Sr(t)值(0.70412~0.70432)和最高的εNd(t)值(-5~0.2),显示DM组份参与更多。主、微量元素及Sr-Nd-Pb同位素地球化学总体特征表明,二长岩的岩浆起源于下地壳与岩石圈地幔的混合,霓辉正长岩和含霞霓辉正长岩岩浆起源于亏损软流圈地幔和富集岩石圈地幔部分熔融的混合;霞石正长岩的岩浆亦起源亏损软流圈地幔和富集岩石圈地幔部分熔融的混合,相比较而言,软流圈地幔对霞石正长岩岩浆的生成贡献可能更大。
     综合紫金山碱性杂岩体野外地质特征和岩体主、微量元素、同位素地球化学特征及岩浆起源特点,结合年代学和区域大地构造背景,笔者认为古太平洋板块向北西方向的俯冲挤压,导致了华北克拉通中西部拉张伸展,紫金山地区发生了碱性—过碱性的岩浆作用。岩浆作用经历了起初仅发生了岩石圈地幔与下地壳局部熔融混合,到软流圈地幔更大规模的上涌,与岩石圈地幔部分熔融产物混合,形成了典型的碱性岩—霞石正长岩的由弱到强的过程。随后所发生的强烈火山爆发作用,更加说明了这一点。晚侏罗到早白垩世形成的紫金山碱性杂岩体,揭示了紫金山地区深部岩浆作用过程,这一过程与华北克拉通中西部盆山构造格局转变相吻合,晚侏罗到早白垩世亦是华北克拉通中西部发生破坏的主要时期。
The Zijinshan alkaline complex outcrops on the western wing of in the middle part of the Lüliang Mountain, Shanxi Province. Its tectonic location is in the western central North China Craton—the transition zone of Lüliang orogenic belt and Ordos block, and near the Lishi faults zone. In this paper, the author has detailedly and systematically studied on the complex by the method of lithology, geochronology, petrochemistry, and discussed the scientific problems such as time, sources, magmatism evolution and mechanisms of genesis.
     The Zijinshan alkaline complex is a ring-type alkaline complex, which has experienced muti-petrogenesis stages and epochs, and includes incursionand and eruptive facies. Field geological characteristics indicate that the sequence of irruptive rock units is monzonite, aegirine augite syenite, nepheline-bearing aegirine augite syenite and nepheline syenite. Trachytic breccia and phonolitic breccia are formed at the eruption stages. LA-ICP-MS Zircon U-Pb dating datas confirm that, intrusive magnatism time horizon from monzonite to nepheline syenite was 133.7~116.1Ma, and the deep magmatic thermal effect between 322~282Ma happened in Zijinshan area. All above proves that the deep thermal effect of central and western North China Craton destruction began at Late Carboniferous, Late Paleozoic.
     The Zijinshan alkaline complex has the chemical characteristics of alkali-rich, Al2O3 -medium, CaO-lean, Fe-rich and Mg-lean, which is belonged to the potassic alkaline-parlkaline series rock. Harker diagrams of major elements indicate that the changes of rock composition have nothing to do with the fractional crystallization, mainly with the origin of the magma. Tectonic discrimination shows that the complex derived from extension environment.
     Rich in LREE and no significant negative Eu anomalies REE patterns demonstrate that magmatism is characterized by equilibrium crystallization and no dominant crystal fractionation.ΣREE and LREE/HREE gradual reduction from early to late explains that the sources of intrusive rock units are different. Only nepheline syenite has the weak convex REE patterns with Nd as the high point, and it may be related to late hydrothermal effects.
     Transition elements patterns of the Zijinshan alkaline complex are typical“W”-types; lithophile elements (LILE) such as Ba, Sr, K are riched and high field strength elements (HFSE) such as Nb, Ta ,Ti are defective; trace elements (Sr, Zr, La, Yb, Nb, Th) have poor correlation with SiO2; and Th/Hf-Ta/Hf structural discrimination suggests that the complex is not the fractional crystallization or the partial melting product from a single source. Its source regions may be continental lithosphere mantle, or at least involved lithosphere mantle substances.
     Monzonite is of the highest initial 87Sr/86Sr ratios (0.70495 ~ 0.70518), and the lowestεNd (t) values (-11.5 ~ -9), and its Sr-Nd values fall in the typical EMⅠ(Ⅰtype enriched mantle) in the Sr-Nd relationship diagrams; compared with monzonite, aegirine augite syenite exhibits a higherεNd (t) values (-7.4 ~ -3.5) and lower 87Sr/86Sr (t) ratios (0.70428 ~ 0.70448), and Sr-Nd values are between EMⅠand DM (depleted mantle); according to similar 87Sr/86Sr(t) ratios (0.70404 ~ 0.70475) andεNd (t) values (-7.8 ~ -2.5) with aegirine augite syenite, we presumed that nepheline-bearing aegirine augite syenite possessed the resemble magma origin with aegirine augite syenite; with the lowest 87Sr/86Sr (t) ratios (0.70412 ~ 0.70432) and the highestεNd (t) values (-5 ~ 0.2), nepheline syenite shows more DM sources. Major and trace elements and Sr-Nd-Pb isotopes geochemistry general characteristics concluded that monzonite magma originated from the lower crust and lithosphere mantle mixing; aegirine augite syenite and nepheline-bearing aegirine augite syenite were from depleted aesthenosphere mantle and partial melt of enriched lithosphere mantle; nepheline syenite also was from depleted aesthenosphere mantle and partial melt of enriched lithosphere mantle, but by comparison, aesthenosphere mantle contributed more in nepheline syenite magma generation.
     Integrated field geological features, rock major and trace elements, isotopes geochemistry and the magma origin, combined chronology with regional tectonic settings, this paper considered that the northwest subduction and extrusion of ancient Pacific plate, stretching was resulted in central and western North China Craton, and induced alkaline-parlkaline magmatism to occur in Zijinshan area. Magmatism experienced a process from weak to strong. From firstly lithosphere mantle and lower crust partially melted to aesthenosphere mantle larger scale upwelled and mixed with lithosphere mantle, forming a typical alkaline rock—nepheline. The following strong volcanic eruptions even illustrated this point. Zijinshan alkaline complex which generated in late Jurassic to early Cretaceous revealed that the deep magmatism process was consistent with the central and western North China Craton tectonic shift pattern. Late Jurassic to early Cretaceous was also the main stage of North China Craton destructon.
引文
[1] Zinlder A and Hart S R. Chemical Geodynamics. Annual review of earth and planetary sciences, 1986, 14: 493~571.
    [2] Hofmann A W. Mantle geochemistry: the message from oceanic vocanism. Nature, 1997, 385: 219~229.
    [3]赵振华.富碱侵入岩-窥探地幔成分的窗口[C].见:欧阳自远,主编.中国矿物岩石地球化学研究进展.兰州:兰州大学出版社,1994,113-114.
    [4]赵振华,熊小林,王强,等.我国富碱火成岩及有关的大型-超大型金铜矿床成矿作用[J].中国科学D辑,2002,32(增刊):1-10.
    [5]吴利仁,等.若干地区碱性岩研究[M],北京:科学出版社,1966.
    [6]邱家骧,等.秦巴碱性岩[M].北京:地质出版社,1993.
    [7]曾广策,邱家骧.碱性岩的概念及其分类命名综述[J].地质科技情报,1996,15(1):31~37.
    [8] Bailey D. K. Mantle metasomatism-perspective and prospect. Geological Society Special Publication. 1987 No 30: 1~13.
    [9] Fitton, J. G. and Upton, B. G. Alkaline igneous rocks. Geological Society Special Publication. 1987 No 30: Introduction.
    [10]朱宗元.十八世纪以来欧美学者对我国西北地区的地理环境考察研究[J].干旱区资源与环境.1999,13(3):54~64.
    [11]山西省地质局区测普查队.山西省临县紫金山碱性岩初评报告[R].1964.
    [12]吴利仁,张兆忠,张玉学.山西台背斜碱性岩的成因及矿化作用[A],见吴利仁等:若干地区碱性岩研究[M].北京:科学出版社.1966:1~76。
    [13]吴利仁,张兆忠,张玉学,等.论山西台背斜碱性岩岩浆的成因与演化[J].地质科学,1964(2):128~132.
    [14]阎国翰,牟保磊,曾贻善.山西临县紫金山碱性岩-碳酸岩杂岩体的稀土元素和氧锶同位素特征[J].岩石学报,1988,4(3):29~36.
    [15]阎国翰,牟保磊,曾贻善.中国北方碱性和偏碱性侵入岩的时空分布及其大地构造意义[J].中国地质科学院沈阳地质矿产研究所所刊.1989,19:(93~100).
    [16]黄锦江.山西临县紫金山碱性环状杂岩体岩石学特征与成因研究[J].现代地质,1991,5(1):24~40.
    [17]周玲棣,王扬传.碱性岩中磷灰石、榍石和锆石的稀土元素地球化学特征[J].地球化学,1988,(3):224~233.
    [18]周玲棣,王扬传,孔祐华.我国东部碱性岩中长石研究[J].矿物学报,1990,10(4):313~323.
    [19]周玲棣,王扬传.赛马和紫金山碱性杂岩体稀土元素地球化学及成因模式[J].地球化学,1991,(3):229~235.
    [20]周玲棣,赵振华.我国富碱侵入岩的岩石学和岩石化学特征[J].中国科学(B辑),1994,24(10):1093~1101.
    [21]赵振华,周玲棣.我国某些富碱侵入岩的稀土元素地球化学[J].中国科学(B辑),1994,24(10):1109~1120.
    [22]周玲棣,赵振华,周国富.我国一些碱性岩的同位素年代学研究[J].地球化学,1996,25(2):164~171.
    [23]肖媛媛,任战利,秦江锋,曾震.山西临县紫金山碱性杂岩LA-ICP MS锆石U-Pb年龄、地球化学特征及其地质意义[J].地质论评,2007,53(5):656~663.
    [24]杨兴科,杨永恒,季丽丹,等.鄂尔多斯盆地东部热力作用的期次和特点[J].地质学报,2006,80(5):705~711.
    [25]杨永恒.鄂尔多斯盆地东部紫金山岩体地球化学特征及热力构造演化[D].长安大学,2006.
    [26]杨兴科,晁会霞,杨永恒,等.2006年全国岩石学与地球动力学研讨会[G].
    [27]杨永恒,杨兴科.紫金山岩体的热力构造类型、期次及其对鄂尔多斯盆地东缘多种能源矿产的影响作用[J].地质学报,2007,28(6):620~626.
    [28]杨兴科,晁会霞,郑孟林,姚卫华,杨旭升.鄂尔多斯盆地东部紫金山岩体SHRIMP测年地质意义[J].矿物岩石,2008,28(1):54~63.
    [29] Jifeng Ying, Hongfu Zhang, Min Sun, Yanjie Tang, Xinhua Zhou, Xiaoming Liu. Petrology and geochemistry of Zijinshan alkaline intrusive complex in Shanxi Province, western North China Craton: Implication for magma mixing of different sources in an extensional regime[J]. Lithos, 2007,98:45-66.
    [30]胡建勇,周安朝.山西临县紫金山碱性杂岩体的地球化学特征[J].太原理工大学学报,2007,38(4):339~343.
    [31]胡建勇.山西临县紫金山碱性杂岩体的岩浆作用及其动力学背景[D].太原理工大学,2007.
    [32]赵国春,孙敏,S A Wilde.华北克拉通基底构造单元特征及早元古代拼合[J].中国科学(D辑),2002,32(7):538-548.
    [33]朱日祥.地球内部结构探测研究-以华北克拉通为例[J].地球物理学进展,2007,22(4):1090-1100.
    [34] Wu F Y,Lin J Q,Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth Planet. Sci. Lett, 2005, 233:103-119.
    [35] Fan W M, Menzies M A. Destruction of aged lower litho-sphere and accretion of asthenosphere mantle beneath eastern China[J]. Geotectonic et Metallogenia, 1992,16(3-4):171-180.
    [36]邓晋福,莫宣学,赵海玲等.中国东部岩石圈根、去根作用与大陆“活化”[J].现代地质,1994,8:349-356.
    [37] Gao S, Lu T C, Zhong B R, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochim CosmochimActa, 1998, 62: 1959-1975.
    [38] Menzies M A, Xu Y. Geodynamics of the North China craton[A]. Flower M F J, Chung S-L, Lo C-H, et al. Mantle Dynamics and Plate Interaction in East Asia[M]. American Geophysical U-nion,Geodynamics Series, 1998, 27, 100:155-164.
    [39] Wu F Y, Walker R J, Ren X W, et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China[J]. Chem Geol, 2003, 196:107-129.
    [40]周新华,张国辉,杨进辉等.华北克拉通北缘晚中生代火山Sr-Nd-Pb同位素填图及其构造意义[J].地球化学,2001,6(4):10-23.
    [41]阎国翰,牟保磊,许保良等.燕辽-阴山三叠纪碱性侵入岩年代学和Sr-Nd-Pb同位素特征及意义.中国科学(D),2000,30:383-387.
    [42]刘红涛,翟明国,刘建明等.华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J].岩石学报,2002,18(4):433-448.
    [43]袁洪林,柳小明,刘勇胜等.北京西山晚中生代火山岩U-Pb锆石年代学及地球化学研究[J].中国科学D辑,地球化学,2005,35(9):821-836.
    [44]邵济安,张宏福,柳小明等.华北北缘早中生代岩浆底侵作用的年代学记录:来自辽西晚中生代安山岩锆石U-Pb定年结果[J].自然科学进展,2007,7(5):609-613.
    [45]马昌前.花岗质岩浆起源和多次岩浆混合的标志:包体—以北京周口店岩体为例[J].地质论评,1992,38(2):109-119.
    [46]马芳,穆治国,刘玉琳.北京房山侵入岩体:微量元素、稀土元素及Sr同位素组成对其成因的制约[J].地球学报,2003,24(2):105-110.
    [47]何斌,徐义刚,王雅玫等.北京西山房山岩体岩浆底辟构造及其地质意义[J].地球科学:中国地质大学学报,2005,30(3):298-308.
    [48]陶继东,张超,马昌前等.房山侵入岩体高Sr低Y地球化学特征及其成因[J].地质科技情报,2006,25(2):11-18.
    [49]汤艳杰,张宏福,英基丰.太行山中段新生代玄武岩中高镁橄榄石捕掳晶:残留古老岩石圈地幔样品[J].岩石学报,2004,20(5):1243-1252.
    [50]汤艳杰,张宏福,英基丰等.太行山地区中、新生代玄武质岩浆的源区特征与时空演化[J].岩石学报,2006,22(6):1657-1664.
    [51] Wang W Y, Takahashi E, Sueno S. Geochemical prop-erties of lithospheric mantle beneath the Sino-Korean Creton:Evidence from garnet xenocrysts and diamond inclusions[J]. Phs Earth Planet Interiors,1998,107:249-260.
    [52] Zhou X M, Li I W X. Origin of Late Mesoz ood P A, et al, oic igneous rocks in southeastern China:implications for lithosphere subduction and under plating of mafic magmas[J]. Tectonophysics, 2000, 326:269-287.
    [53] Zheng J P, O′Reilly S Y, Grffin W L, et al. Relict refractory mantle beneath the eastern North China block:Significance for lithosphere evolution[J]. Lithos, 2001, 57, 43-66.
    [54] Wu F Y, Sun D Y, Li H M, et al. A-type granites in North-eastern China:Age and geochemicalconstraints on their petrogenesis[J]. Chem Geol, 2002, 187:143-173.
    [55]徐义刚.华北岩石圈减薄的时空不均一特征[J].高效地质学报,2004,10(3):324-330.
    [56]许文良,王清海,王冬艳等.华北克拉通东部中生代岩石圈减薄的过程与机制:中生代火成岩和深源捕掳体证据[J].地学前缘,2004,11(3):309-317.
    [57]闫峻,陈江峰.华北地块东部晚中生代至新生代岩石圈不均一减薄与改造模式[J].地质论评,2005,51(1):16-26.
    [58]路凤香,郑建平,张瑞生等.华北克拉通东部显生宙地幔演化[J].地学前缘,2005,(01):67-73.
    [59]张宏福,周新华,范蔚茗等.华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理[J].岩石学报,2005,21(4):1271-1280.
    [60]张宏福.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式[J].地学前缘,2006,13(2):65-74.
    [61]郑建平,路凤香,余淳梅等.华北克拉通破坏的物理、化学过程:地幔橄榄岩证据[J].矿物岩石地球化学通报,2007,26(4):327-335.
    [62]汪方跃,高山,牛宝贵等.河北承德盆地114Ma大北沟组玄武岩地球化学及其对华北克拉通岩石圈地幔减薄作用的制约[J].地学前缘,2007,14(2):98-108.
    [63]邓晋福,赵海玲,莫宣学.中国大陆根柱构造—大陆动力学的钥匙[M].北京:地质出版社,1996,97.
    [64]吴福元,孙德有,张广良等.论燕山运动的深部地球动力学本质[J].高校地质学报,2000,6:379-388.
    [65] Menzies M A, Fan W, Zhang M. Paleaozoic and Cenozoic litho-probes and the loss of 120 km of Archean lithosphere, Sino-Kerean craton, China[A]. Prichard H M, Alabaster T, Harris N B, et al. Magmatic Processes and Plate Tectonics[M]. Geological Society of London Special Publication, 1993,76:71-81.
    [66] Griffin W L, Zhang A, O′Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton[A]. Flower M F J, Chung S-L, Lo C-H, et al. Mantle Dynamics and Plate Interaction in East Asia[M]. American Geophysical U-nion, Geodymamics Series,1998,27,100:107-126.
    [67] Xu Y G. Thermo-tectonic destruction of the Archaean lithospheric, keel beneath the Sino-Korean Craton in China:Evidence, timing and mechanism[J]. Physics and Chemistry of the Earth, 2001, 26A:747-757.
    [68] Gao S., Rudnick, R.L., Carlson R.W., McDonough W.F., Liu Y.S. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North Chian Craton[J]. Earth Planet. Sci. Lett., 2002, 198: 307-322.
    [69]许文良,王冬艳,王嗣敏.中国东部中新生代火山作用的PTTC模型与岩石圈演化[J].长春科技大学学报,2000,30(4):329-335.
    [70]吴福元,葛文春,孙德有等.中国东部岩石圈减薄研究中的几个问题[J].地学前缘,2004,10(3):51-60.
    [71]高山,Roberta L R,Richard W C等.华北克拉通岩石圈地幔置换作用和壳幔生长耦合的Re-Os同位素证据[J].地学前缘,2003,10(3):61-67.
    [72]郑建平.中国东部地幔置换作用与中新生代岩石圈减薄[M].武汉:中国地质大学出版社,1999,126.
    [73]翟明国,樊祺诚.华北克拉通中生代下地壳置换:非造山过程的壳幔交换[J].岩石学报,2002,18(1):1-8.
    [74]路凤香,郑建平,李伍平等.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型[J].地学前缘,2000,7(1):97-107.
    [75]路凤香,郑建平,邵济安等.华北东部中生代晚期—新生代软流圈上涌与岩石圈减薄[J].地学前缘,2006,13(2):86-92.
    [76] R. Vollmer. Origin of alkaline rocks[J]. Nature, 1975, 257:116-117.
    [77] Bernard Bonin. Alkaline Rocks and Geodynamics[J]. Tr. J. of Earth Sciences, 1998, 7:105-118.
    [78] Zhao G C, Wilde S A, Caw. Archaean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Res, 2001, 107: 45-73.
    [79] Zhao G C, Sun M, Wilde S A. Major tectonic units of the North China Craton and their Paleoproterozoic assembly[J]. SCIENCE IN CHINA(Series D), 2003, 46: 23-38.
    [80] Jhan B.M., et al. 3.5 Ga old amphibolites from eastern Hebei Province, China—field occurrence, petrography, Sm-Nd isochron age and REE geochemistry. Precambrian Res, 1987, 34: 311-346.
    [81] Liu D.Y., Nutman A.P., Compston W., Wu J.S., Shen Q.H.. Remnants of≥3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 1992, 20: 339-342.
    [82] Ma X.Y.. Atlas of Active Fault of China. Seismologic Press. Beijing, 1989. 120pp.
    [83]张步春等.华北断块区构造单元的划分及其边界问题[M].北京:科学出版社,1980:5-8.
    [84]赵重远,刘池洋.华北克拉通沉积盆地形成与演化及其油气赋存[M].西安:西北大学出版社,1990.
    [85]李兆鼐,等.中国东部中、新生代火成岩及其深部过程[M].北京:地质出版社,2003.
    [86]邓辉.离石大断裂及其与紫金山碱性杂岩体的成生关系研究[D].太原理工大学,2009.
    [87]山西省地质矿产局.山西省区域地质志[M].北京:地质出版社,1989,410~412,440~441.
    [88]谢桂青,胡瑞忠,蒋国豪,等.锆石的成因和U-Pb同位素定年的某些进展[J].地质地球化学.2001,29(4):64-67.
    [89] Lee J., Williams I., Ellis D. Pb, U and Th diffusion in nature zircon[J]. Nature, 1997, 1997, 390(13): 159-162.
    [90] Cherniak D.J., Watson E.B. Pb diffusion in Zircon[J]. Chemical Geology, 2000, 172: 5-24.
    [91] Harrison T.M., Aleinikoff J.N., Compston W. Observations and Controls on the occurrence of inheritedzircon in concord-type granitoids, New Hampshire[J]. Geochmica et Cosmochimica Acta, 1987, 52: 2549-2558.
    [92] Williams I. S. Some observations on the use of zircon U-Pb geochronology on the study of granitic rocks. Transactions of the Royal Society of Edinburge: Earth Sciences, 1992, 88: 447-458.
    [93] Lanyon R., Black R. P., Seitz H. M. U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestford Hills, East Antarctica[J]. Contrib. Mineral. Petro., 1993, 115: 84-203.
    [94]陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述兼论大别造山带锆石定年[J].岩石学报,2001,17(1): 129-138.
    [95] Ballard J.R., Palin J. M., Williams I.S., Campbel I.H., Faunes A. Two ages of porphyry intrusion resolved for the super– giant Chuquicamata copper deposit if northern Chile by ELA-ICP-MS and SHRIMP[J]. Geology, 2001, 29: 383-386.
    [96]袁洪林,吴福元,高山,柳小明,徐平,孙德有.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
    [97]刘民武,赫英.激光剥蚀等离子质谱微区分析在固体地球科学中的应用进展[J].地球科学进展. 2003, 18(1): 116-121.
    [98] Harris A.C., Allen C.M., Bryan S.E.,Campbell I.H., Holcombe R.J., Palin J.M. LA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit implication for porphyry-related mineralization[J]. Mineral. Dep., 2004, 39: 46-67.
    [99] Jackson S.E., Pearson N. J., Griffin W. L., Belousova E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS) to in-situ U-Pb zircon geochronology[J]. Chem. Geol., 2004, 211: 331-335.
    [100]裴福萍.辽南-吉南中生代侵入岩锆石U-Pb年代学和地球化学:对华北克拉通破坏时空范围的制约[D].吉林大学博士学位论文. 2008.
    [101] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chem Geol, 2002, 192: 59-79.
    [102] Ludwig KR. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication. 4: 1-70.
    [103]谢成龙.郯庐断裂带南段晚中生代岩浆活动及其对岩石圈减薄的指示[D].合肥工业大学博士学位论文. 2008.
    [104] Mezger K and Krogstad EJ. 1997. Interpretation of discordant U-Pb zircon ages: An evaluation[J]. Metamorphic GeoL, 15: 127-140.
    [105]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报. 2004, 49(16): 1589-1602.
    [106] Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples from the western Alps. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, Germany. 2000, 373~400.
    [107] Mller A, O’Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway). EMU Notes in Mineralogy, 2003, 5: 65-82.
    [108] Rowley D B, Xue F, Tucker R D. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth and Planet Science Letters, 1997, 151: 191-203.
    [109] Mojzsis S J, Harrison T M. Establishment of a 3.83-Ga magmatic age for the Akilia tonalite (Southern West Greenland). Earth and Planetary Science Letters, 2002, 202: 563-576.
    [110]吴元保,陈道公,夏群科,等.大别山黄镇榴辉岩锆石的微区微量元素分析:榴辉岩相变质锆石的微量元素特征.科学通报,2002,47(11): 859-863.
    [111] Gebauer D A. P-T-t Path for an High-Pressure Ultramafic-Mafic Rock-Association and Its Felsic Country-Rocks Based on SHRIMP—Dating of Magmatic and Metamorphic Zircon Domains. Example: Alpe Arami(Central Swiss Alps). In: Earth Processer Reading the Isotopic Code, 1996, Geophysical Monograph 95: 307-329.
    [112] Hidaka H, Shimizu H, Adachi M. U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan: Evidence for an Archean provenance. Chem Geol, 2002, 187: 278-293.
    [113] Belousova E, Suzanne G W, Fisher Y. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 2002, 143: 602-622.
    [114]邱家骧,林景仟.岩石化学[M].中国地质出版社. 1993.
    [115]罗照华,莫宣学,侯增谦等.板块碰撞过程中壳幔相互作用及其成藏成矿效应.见郑度,姚檀栋等著:青藏高原隆升与环境效应,第三章,北京:科学出版社,2004,117-163.
    [116]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社.1992.
    [117]陈德潜,陈刚.实用稀土元素地球化学[M].北京:冶金工业出版社.1990.
    [118] Rollinson H.R. Using geochemical data:Evaluation,Presentation,Interpretation. Longman scientific & technical,NewYork,1993,1-352.
    [119]路远发. Geokit:一个用VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459-464.
    [120] Depaolo D J. Crustal growth and mantle evolution:inference from models of element transport and Nd isotopes. Geochim. Cosochim. Acta.,1980,44:1185-1196.
    [121] Chen B. , Zhai M. Geochimistry of late Mesozoic lamprophyre dykes from the Taihang Mountains, north China, and implications for the sub-continental lithospheric mantle. Geol. Mag. 2003,140: 87-93.
    [122] Hart S.R., A large scale isotope anomaly in the southern hemisohere mantle. Nature, 1984, 309:753-757.
    [123]邱检生,胡建,蒋少涌.鲁西中、新生代镁铁质岩浆作用与地幔化学演化[J].地球科学,2005,30(6):646-658.
    [124] Taylor S.R., Mclennan S.M. The continental crust:its composition and evolution. Blackwell:Oxford Press, 1985, 1-312.
    [125]闫峻,陈江峰,谢智,等.长江中下游地区蝌蚪山晚中生代玄武岩的地球化学研究:岩石圈地幔性质与演化的制约[J].地球化学,2005,34(5):455-469.
    [126] Foley S.F., Barth M.G., Jenner G.A. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta, 2000, 64: 933-938.
    [127]张理刚.东亚岩石圈块体地质—上地幔、基底和花岗岩同位素地球化学及其动力学.北京:科学出版社,1995,1-252.
    [128]吴宗絮,邓晋福,赵海玲,杨主恩,罗淑兰.华北大陆地壳—上地幔岩石学结构与演化[J].岩石矿物学杂志,1994,13(2):106-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700