蚌埠荆山“混合”花岗岩的形成时代和地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对蚌埠隆起荆山花岗岩进行了锆石SHRIMP U-Pb定年和岩石学、矿物学、地球化学以及锆石Hf同位素的研究,确定了荆山花岗岩的形成时代和成因类型,探讨了荆山花岗岩的岩浆源区性质和花岗岩形成的构造背景以及荆山花岗岩形成与大别-苏鲁造山带的关系。
    研究结果表明,蚌埠荆山花岗岩的形成时代为160 Ma——即晚侏罗世早期。岩体的野外关系、岩相学和具有韵律环带的岩浆锆石的存在及地球化学特征均表明荆山花岗岩为岩浆成因,属于弱过铝质系列,具有“I”型花岗岩的成因特征。
    继承锆石和Sr、Nd、Pb同位素及锆石Hf同位素示踪研究表明,荆山花岗岩的岩浆源区为扬子克拉通下地壳物质。蚌埠隆起区深部地壳中扬子克拉通基底物质的存在暗示扬子克拉通可能沿着郯庐断裂带于北西方向或近东西向俯冲于华北克拉通之下。
The relationship between origin of granite and evolution of continental crusthas been one of the issues in the field of earth sciences. The Bengbu uplift islocated in the southeastern edge of the North China craton (NCC), with theTan-Lu fault zone and Sulu orogenic belts as its eastern margin and adjacent toDabie orogenic belt in the south. Chronology and petrogenesis of granites inBengbu uplift, and their relationship with the formation and evolution ofDabie-Sulu orogenic belts have been controversial. However, it is of greatsignificance for us to solve above-mentioned problems not only to understandthe regional tectonic evolution, but also to reveal the effects of Dabie-Suluorogenic belts on adjacent areas. Therefore, the thesis takes the Jingshan granitein Bengbu as a example, reports its chronology, mineralogy, petrology andgeochemistry, as well as Hf isotope of zircons, and discusses the nature ofmagma sources and its tectonic background.
    1. Chronology of Jingshan granite
    Zircon U-Pb isotopic chronology was determined for Jingshan granitesusing SHRIMP method. The dating results for magmatic zircons with oscillatory
    zoning rims indicate that they range from 158 to164Ma on the concordia, andyield a mean 206Pb/238U age of 160.2±1.3 Ma, suggesting the Jingshan graniteformed in early stage of the Late Jurassic.2. Geochemistry of Jingshan granite and Hf isotope of zirconJingshan granite shows similar geochemical characteristics with the lategranitic veins, i.e. SiO2 contents ranging from 72.82 wt % to 75.07 wt %,K2O/Na2O ratios being between 0.75 and 0.98, Al2O3 contents and A/CNKvalues ranging from 13.88% to 15.05% and from 0.96 to 1.06, respectively. Theybelong to sub-aluminous to weak peraluminous series. In the Harker diagram, itcan be seen that the contents of Al2O3, Fe2O3, FeO, MgO and CaO decreaselinearly following the increase of SiO2 contents, showing a trend of fractionalcrystallization.Jingshan granites have low ∑REE abundances, ranging from 23.16μg/g to45.41μg/g, average being 31.58 μg/g, and are characterized by relativeenrichment in light rare earth elements (LREE), and depletion in heavy rare earthelements (HREE), and obvious positive Eu anomalies (1.23~2.54). TheirLREE/HREE ratios and (La/Yb)N values range from 1.33 to 11.57 and from 0.71to 10.17, respectively.Chondrite-normalized REE distribution patterns of Jingshan granites show“U” type in shape, which is similar to the high-degree fractionation granites. Therelative HREE enrichment can be related to the existence of garnet and zircon.In addition, Jingshan granites are enriched in large ion lithophile elements(LILE) such as Rb, Ba, and Sr, and depleted in high field strength elements(HFSE) such as Zr, Hf, Nb and Ta. Ba, U, Sr, Eu and Y elements for the graniteshow obvious positive anomalies in the spider diagram. In contrast, Th, Nd, and
    Sm elements display obvious negative anomalies in the spider diagram.Jingshan granites have high initial 87Sr/86Sr ratios (ISr) (0.7082 ~ 0.7090)and low εNd(t) values (-15.30 ~ -16.20), corresponding Nd model ages (TDM) of2.47 ~ 2.94Ga. They have relatively average Pb isotopic compositions, i.e.,206Pb/204Pb ratios ranging from 17.030 to 17.095, 207Pb/204Pb ratios ranging from15.404 to 15.443, and 208Pb/204Pb ratios ranging from 37.399 to 37.535.The inherited cores and magmatic zircon rims with oscillatory zoning havesimilar initial 176Hf/177Hf ratios, ranging from 0.282060 to 0.282252 andfrom0.282158 to 0.282258, respectively. Inherited cores show relatively low εHf(t)values (-0.71 ~ -7.33), corresponding Hf model ages is 1.44~1.70Ga. Comparedwith inherited cores, the magmatic zircons have lower εHf(t) values (-15.05~-18.39), being similar to the granite, corresponding Hf model age being1.51~1.64Ga.3. Petrogenesis of Jingshan graniteThe field relationship, petrography, the magmatic zircon rims withoscillatory zoning and geochemical data for the Jingshan granite indicate that itshould be derived from the crystallization of granitic magma. Jingshan granitesare characterized by low SiO2 content (<76%), low K2O/Na2O ratios (<1.0), andlow A/CNK values (<1.1), suggesting it belongs to weak peraluminous rocks.Most of the (La/Yb)N values are <5, and Eu/Eu* ratios >0.7. The above lines ofevidence, combined with the presence of epidote, garnet and sphene, and theabsence of cordierite together, suggests that the Jingshan granite is ofcharacteristic of “I” type granite.4. Magma source and its nature of Jingshan graniteSr, Nd and Pb isotopic compositions of granite, Hf isotope of zircons and
    the SHRIMP U-Pb dating results indicate that Jingshan granites have affinitieswith the Yangtze craton basement. The primary magma for the granite should bederived from the partial melting of lower continental crust of the Yangtze craton.5. Tectonic setting of formation for Jingshan graniteThe Bengbu uplift is located in southeastern margin of the North Chinacraton (NCC), i.e., belonging to the NCC. The geochemical data for the granitehave indicated that the magma source for the granite should be the Yangtzecraton basement, implying that the Yangtze craton basement could exist withindeep crust of the NCC. It is consistent with the tectonic features that Yangtzecraton subducted beneath the NCC in north-west direction.Combined with the inherited zircon chronology on the Mesozoic granites ineastern NCC, the discovery of eclogites xenoliths in the Mesozoic adakitic rocksfrom the Xu-Huai area the direction of the Xu-Huai nappe, and geochemicalfeatures on the Mesozoic high-Mg diorites and Fangcheng -Feixian basalts inwestern Shandong together, it is suggested that the collision of the Yangtzecraton with the NCC could take place along the Tan-Lu fault zone in NW or nearW-E direction.It can be concluded that the Jingshan granites in Bengbu uplift could formunder the extensional environment after the rapid exhumation of the Dabie-Suluorogenic belt based on petrogenetic type and petro-geochemical characteristicsof the granite, as well as the analysis for regional tectonic history, which can alsobe demonstrated by the simultaneous volcanic rocks formed under riftenvironment.
引文
1. Ames L, Tilten G R, Zhou G. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons,Central China.Tectonic, 1996, 15: 47-89
    2. Atherton M P, Ghani A A. Slab breakoff:a model for Caledonian, Late granite syn-collisional magmatism in the orthotectonic(metamorphic)zone of Scotland and Donegal, Ireland. Lithos, 2002, 62: 65-85
    3. Ayers J C, Dunkle S, Gao S, et al. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, east-central China, using U–Th–Pb dating of zircon and monazite. Chemical Geology, 2002, 186: 315-331
    4. Barbarin B .A reviwe of the relationship berween granitoids types, their origins and their geodynamic environments. Lithos, 1999, 46: 605-626
    5. Black L P. Recent Pb loss in zircon: a natural or laboratory-induced phenomenon?. Chemical Geology, 1987, 65: 25-33
    6. Cherniak D J, Watson E B. Pb diffusion in zircon. Chemical Ge-ology, 2000, 172: 5-24
    7. Compston W, Froude D O, Reland T R, et al. The age of (a tiny part of ) the Australian continent. Nature, 1985, 317: 359-360
    8. Compston W, Pidgeon R T. Jack Hills, evidence of more very old detrital zircons in western Australian. Nature, 1986, 321: 766-769
    9. Drummond M S and Defant M J.A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting:Archean to modern comparisons.Geophys.Res., 1990, 95 (B13): 21503-2152l
    10. Feng R, Machado N, Ludden JN. Lead geochronology of zircon by laser probeinductively coupled plasma mass spectrometry(LP-ICPMS). Geochim. Cosmochim. Acta, 1993, 35: 3479-3486
    11. Freyer B J, Jackson S E, Longerich H P. The application of laser ablation microprobe inductively coupled plasmamass spectrometry (LAM-ICP MS) to in situ (U)-Pb geochronology . Chem. Geol. , 1993, 109: 1-8
    12. Froude D O, Itreland T R, Kinny P D. Ion microprobe identification of 4, 100-4, 200Myrold terrestrial zircons. Nature, 1983, 304: 616-618
    13. Gao S, Zhang BR., Jin ZM., et a1. How ma fic is lower continental crust. Earth Planet Sci Lett, 1998, 161: 101-117
    14. Gebauer D and Grunenfelder M. U-Pb zircon and Rb-Sr whole rock dating of low-grade metasediments, example: Montagne Noir (Southern France). Contrib. Mineral. Petrol., 1976, 59: 13-32
    15. Guo JH, Chen FK, Siebel W et al., Crust structure and tectonics in post UHP Collisional environment of the Sulu orogen, eastern China: implications for SHRIMP Zircon U-Pb dating on Jurassic granites Terra Nova, 2005(inpress)
    16. Harris N.B.W., Pearce J.A. and Tindle A.G. Geochemical characteristics of collision-zone magmatism. In: Coward M.P. and Reis A.C. (eds.), Collision tectonics . Spec. Publ. Grol.Soc. Lond., 1986, 19, 67-71
    17. Harrison T M, Aleinikoff J N and Compston W. Observations and controls on the occurrence of inherited zircon in concord-type granitoids, NewHampshire. Geochmica et Cosmochimica Acta, 1987, 52: 2549-2558
    18. Jahn BM, Wu FY, LO CH, Tsai CH. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol., 1999, 157: 119-146
    19. Keay S, Steele D, Compston W. Identifing granite sources by SHRIMP U-Pb zircon geochronology:an application to the Lachlan foldbelt. Contrib.Mineral. Petrol, 1999, 137: 323-341
    20. Klemperer S. Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen, eastern China,from seismic reflection profiling. International Workshop on Geophysics & Structure Geology of UHPM terranes, Sep. 2002, 20-21
    21. Koschek G. Origin and significance of the SEM cathodoluminescence from zircon. Journal of Microscopy, 1993, 171: 223-232
    22. Kr?ner A, Cui WY, Wang SQ, et al. Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning Province, NE China. J. Asian Earth Sci., 1998, 16, 519-532
    23. Krough T E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta, 1973, 27: 485-494
    24. Krough T E. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion techniques. Geochim. Cosmochim. Acta, 1992, 46: 637-649
    25. Lanyon R, Black RP and Seitz H M. U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestford Hills, East Antarctica. Contrib. Mineral. Petrol., 1993, 115: 84-203
    26. Lee J, Williams I, Ellis D. Pb, U and Th diffusion in nature zircon, Nature, 1997, 390(13): 159-162
    27. Li SG. Collision of the North China and the Yangtze blocks and formation of coesite-bearing eclogites: timing and process. Chemical Geology, 1993. 109: 89-11
    28. Li ZX, Li XH, and Kinny P D. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth and Planet. Sci. Lett., 1999, 173: 171-181
    29. Li ZX. Collision between the North and South China blocks: A crust -detachment model for suturing in the region east of the Talu fault. Geology, 1994, 22: 739-742
    30. Liegeois LP. Preface-Some words on the Post-collisional magmatism. Lithos, 1998, 45: 15-17
    31. Ma X, and Bai J. Precambrian crustal evolution of China. Springer, Berlin, Geological Publication House. 1998. 1-331
    32. Mezger K and Krogstad E J. Interpretation of discordant U-Pb zircon ages: An evaluation. J. Metamorphic Geol., 1997, 15: 127-140
    33. Middlemost E A K. Naming materials in the magma/igneous rock system.Earth Planet. Sci. Lett., 1994, 67: 137-150
    34. Morrison G W. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 1980, 13: 97-108
    35. Okay A, Sengor A M C. Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China. Geology, 1992, 20: 411-414
    36. Patchett P J, White W M, Feldmann H, Kielinczuk S and Hofmann A W. Hafnium/Rare Earth Element fractionation in the sedimentary system and crustal recycling into the Earth Mantle. Earth Planet. Sci. Lett., 1984, 69: 365-378
    37. Pearce J.A. and Cann J.R. Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y. Earth Planet. Sci. Lett., 1971, 12, 339-349
    38. Pearce J.A. and Cann J.R. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet. Sci. Lett., 1973, 19, 290-300
    39. Pearce J.A., Harris N.B.W. and Tindle A.G. Trece element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol, 1984, 25, 956-983
    40. Peter D K and Roland M. Lu-Hf and Sm-Nd isotope systems in zircon. In: Hanchar J M, Hoskin and Paul W O. America: Mineralgical society of America. 2003: 327-341
    41. Pitcher W S. Granites and yet more granites forty years on. Geology Rund, 1987, 76: 51-79
    42. Pitcher W S. The Nature and origin of Granite. London: Chapman and Hall, 1993, 193-291
    43. Stephens W E, Sial A N, Ferreira V P. Granites and associated mineralization. Lithos, 1999, 46: 335-626
    44. Stern T W, Goldich S S and Newel M F. Effect of weathering on the U-Pb zircon ages from the Morton gneiss, Minnesota. Earth and Planetary Science Letters, 1966, 1: 369-378
    45. Vervoort J and Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks throuph time. Geochim. Cosmochim. Acta, 1999, 63: 533-556
    46. Williams I S. Some observations on the use of zircon U-Pb geochronology on the study of granitic rocks. Transactions of the Royal Society of Edinburge: Earth Sciences, 1992, 83: 447-458
    47. Wu FY, Yang JH, Simon A. Wilde, Zhang XO. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology, 2005, 221: 127-156
    48. Wyllie P J. Granitic magmas: Possible and impossible sources, water contents, and crystallization sequences. Can J Earth Sci, 1976, 13(8): 1007-1019
    49. Xu JW, Zhu G. Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northeast of the Pacific Ocean. Tectono-physics, 1987, 134: 273-310
    50. Xu YG, Huang XL, Ma JL, Wang YB, Iizuka Yoshiyuki, Xu JF. Crust-mantle interaction during the tectono-thermal reactiovation of the North China Craton: constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contrib. Mineral. Petrol, 2004, 147: 750-767
    51. Yang JS. A 4000km ultrahigh-pressure metamorphic belt in China: new evide-nce. International Workshop on Geophysics & Structure Geology of UHPM terranes, 2002, Sep. 20-21
    52. Yin A and Nie S. An indentation model for the north and south China collision and the development of the Tan-Lu and Honam fault systems, east Asia. Tectonics, 1993, 12(4): 801-813
    53. Yin A and Nie S. An indentation model for the north and south China collision and the development of the Tan-Lu and Honam fault systems, east Asia.Tectonics, 1993, 12(4): 801-813
    54. Zhang HF, Sun M, Zhou XH, et al. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-,trace-element and Sr-Nd-Pb isotopie studies of Fangcheng basalts. Contrib. Mineral. Petrol., 2002, 144: 241-253
    55. Zhang KJ. North and South China collision along the eastern and southern North China margins. Tectonophysics, 1997, 270: 145-156
    56. Zhang RY, Liou JG. Exsolution lamellae in minerals from ultrahigh-pressure rocks. International Geology Review, 1999, 41: 981-993
    57. Zhao G, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res., 2001, 107: 45-73
    58. Zheng YF, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci. Rev, 2003, 62: 1-57
    59. Zheng YF, Zhao ZF, Li SG, et al. Oxygen isotope equilibrium between ultrahigh-pressure metamorphic minerals and its constraints on Sm-Nd and Rb-Sr chronometers. In: Vance D, Muller W and Villa I M (eds.) Geochronology: Linking the Isotope Record with Petrology and Textures. Geological Society Special Publcation, No. 20, London, 2003b, 93-117
    60. Zheng YF. Neoproterozoic magmatic activity and global change. Chinese Science Bulletin, 2003a, 48(16): 1369-1656
    61. Zhou JB, Zheng YF, Wu YB. Zircon U-Pb ages and its geological significance in Wulian granite from northwestern edge of Sulu orogenic belt. Chinese Science Bulletin, 2003, 48(4): 379-384
    62. 安徽省地质局区域地质调查队. 1:20 万蚌埠幅区域地质调查报告. 1979
    63. 安徽省地质矿产局. 安徽省区域地质志. 北京: 地质出版社, 1987, 262-468
    64. 蔡剑辉, 阎国翰, 肖成东, 王关玉, 牟保磊, 张任祜. 太行山-大兴安岭构造岩浆带中生代侵入岩 Nd、Sr、Pb 同位素特征及物质来源探讨. 岩石学报, 2004, 20(5): 1225-1242
    65. 陈道公, 李彬贤, 夏群科, 等. 变质岩中锆石U-Pb计时问题评述―兼论大别造山带锆石定年. 岩石学报, 2001, 17(1): 129-138
    66. 陈文寄, HarrisonT H, Heizler M T, 等. 苏北-胶南构造混杂岩冷却历史的多重扩散域 40Ar/39Ar 热年代学研究. 岩石学报, 1992, 8(1): 1-17
    67. 陈志刚, 李献华, 李武显, 等. 赣南全南正长岩的 SHRIMP 锆石 U-Pb 年龄及其对华南燕山早期构造背景的制约. 地球化学, 2003, 32(3): 223-229
    68. 邓晋福. 大陆裂谷岩浆作用及深部过程. 见:池际尚主编. 中国东部新生代玄武岩及上地幔研究. 武汉: 中国地质大学出版社, 1988. 201-218
    69. 董树文, 吴宣志, 高锐, 等. 大别山造山带地壳结构与动力学. 地球物理学报, 1998, 41(3): 349-361
    70. 洪大卫. 花岗岩研究的最新进展及发展趋势. 地学前缘, 1994, 1: 79-84
    71. 黄方, 李曙光, 周红英, 李惠民. 大别山后碰撞镁铁-超镁铁岩的 U-Pb 同位素地球化学:壳-幔相互作用及 LOMU 端元. 中国科学(D 辑), 2002, 32(8): 625-634
    72. 江西省地质矿产局. 江西省区域地质志. 北京: 地质出版社, 1984
    73. 靳是琴, 李鸿超. 成因矿物学. 长春: 吉林大学出版社. 1984
    74. 李昌年. 火成岩微量元素岩石学. 武汉: 中国地质大学出版社. 1992
    75. 李曙光, 李惠民, 陈移之, 等. 大别山-苏鲁地体超高压变质年代学Ⅱ. 锆石 U-Pb同位素体系.中国科学(D 辑), 1997, 27(3): 200-206
    76. 李曙光, 杨蔚. 大别造山带深部地缝合线与地表地缝合线的解耦及大陆碰撞岩石圈楔入模型:中生代幔源岩浆岩 Sr-Nd-Pb 同位素证据. 科学通报, 2002, 47(24): 1898-1905
    77. 李曙光. 大别山-苏鲁地体超高压变质年代学-I. Sm-Nd 同位素体系. 中国科学(D辑), 1996, 26(3): 249-257
    78. 李双英, 王道轩. 大别造山带超高压变质岩折返隆升的地层学证据—晚侏罗世榴辉岩砾石的启示. 地质论评, 2002, 48(4): 345-352
    79. 李先富, 奈研. 湖南桃林幕阜山地洼期变质核杂岩及剥离断层有关的铅锌矿化作用. 大地构造与成矿学, 1991, 15(2): 90-99
    80. 李献华, 梁细荣, 韦刚健, 等. 锆石Hf同位素组成的LAM-MC-ICPMS精确测定. 地球化学, 2003, 32: 86-90
    81. 李献华, 周汉文, 刘颖, 等. 桂东南钾玄质侵入岩带及其岩石学和地球化学特征. 科学通报, 1999, 44(18): 1992-1998
    82. 李晓勇, 郭峰王, 岳军. 造山后构造岩浆作用研究评述. 高校地质学报, 2002, 8(1): 59-78
    83. 刘敦一, 赵敦敏. 用热离子发射质谱计直接测定单颗粒锆石207Pb/208Pb年龄. 地质论评, 1988, 34(6): 496-504
    84. 刘海巨, 朱炳泉, 张展霞. LAM-ICP MS 法用于单颗粒锆石定年研究. 科学通报, 1998, 43:1103-1106
    85. 刘新秒. 后碰撞岩浆岩的大地构造环境及特征. 前寒武纪研究进展, 2000, 23(2): 121-127
    86. 路凤香, 桑隆康. 岩石学. 北京: 地质出版社, 2002
    87. 罗振宽, 苗来成. 胶东招莱地区花岗岩和金矿床. 北京: 冶金工业出版社. 2002, 20-57
    88. 马昌前. 大别山中生代钾质岩浆作用与超高压变质地体的剥露机理. 岩石学报, 1999, 1(1): 379-395
    89. 马杏垣, 刘昌铨, 刘国栋. 江苏响水至内蒙古满都拉地学断面. 地质学报, 1991, 3: 199-215
    90. 牛树银, 许传诗, 国连杰, 等. 太行山变质核杂岩的特征及成因探讨. 河北地质学院学报, 1994, 17(1): 43-53
    91. 裴福萍, 许文良, 王清海, 王冬艳, 林景仟. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学—对岩石圈地幔性质的制约. 高校地质学报, 2004, 10(1): 88-97
    92. 乔秀夫, 高林志, 彭阳, 李海兵. 古郯庐带沧浪铺阶地震事件、层序及构造意义. 中国科学(D 辑), 2001b, 31(11): 911-918
    93. 乔秀夫, 高林志, 彭阳. 古郯庐带新元古界—灾变*层序*生物. 北京: 地质出版社, 2001a, 1-128
    94. 乔秀夫. 对郯—庐断裂巨大平移之质疑. 地质论评, 1981, 27(3): 222-223
    95. 邱家骧. 应用岩浆岩岩石学. 武汉: 中国地质大学出版社, 1991
    96. 邱检生, 蒋少涌, 张晓琳, 胡建. 大别-苏鲁造山带南北两侧晚中生代富钾火山岩的成因:微量元素及Sr-Nd-Pb同位素制约. 地球学报, 2004, 25(2): 255-262
    97. 邱瑞龙, 徐祥, 黄得志. 华北地块东南缘蚌埠地区荆山岩体同位素年龄及其地质意义. 安徽地质, 1999, 9(3): 161-164
    98. 邵济安, 孟庆任, 魏海泉, 等. 冀西北晚侏罗世火山-沉积盆地的性质及构造环境. 地质通报, 2003, 22(10): 751-761
    99. 宋彪, 张玉海, 刘敦一. 微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学. 质谱学报, 2002a, 23(1): 58-62
    100. 宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 2002b, 48(增刊): 26-30
    101. 宋彪. 质谱计逐级蒸发-沉积测定单颗粒锆石年龄原理及可靠性的证明―兼论锆石同位素地质年代学的适用性. 地球学报, 1994, (1-2): 206-217
    102. 索书田, 钟增球, 周汉文, 等. 大别—苏鲁超高压和高压变质带构造演化. 地学前缘, 2004, 11(3),71-82
    103. 汤加富, 许卫. 郯庐断裂带南段并无巨大平移—来自安徽境内的证据. 地质论评, 2002, 48(5): 449-456
    104. 汤加富. 郯庐断裂带的主要特征与性质讨论. 安徽地质, 1995, 5(3): 60-63
    105. 王道轩, 刘因, 李双应, 金福金. 大别超高压变质岩折返至地表的时间下陷: 大别山北麓晚侏罗世砾岩中发现榴辉岩砾石. 科学通报, 2001, 46(14): 1216-1219
    106. 王桂梁, 姜波, 曹代勇, 邹海, 金维浚. 徐州-宿州弧形双冲—叠瓦扇逆冲断层系统. 地质学报, 1998, 72(3): 228-236
    107. 王清晨, 林伟. 大别山碰撞造山带的地球动力学. 地学前缘, 2002, 9(4): 257-265
    108. 魏春景, 张立飞, 王式恍. 1997. 安徽省大别山东段中生代高钾花岗岩石及其地质意义. 中国科学(D 辑), 30(4): 355-363
    109. 吴福元, 江博明, 林强. 中国北方造山带造山后花岗岩的同位素特点与地壳生长意义. 科学通报, 1997. 42(20): 2188-2192
    110. 吴元保, 郑永飞. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约. 科学通报, 2004, (49)16: 1589-1604
    111. 徐纪人, 赵志新. 苏鲁-大别超高压变质带地壳速度结构及其俯冲、折返机制. 中国地质, 2005, 32(2): 310-319
    112. 徐嘉炜. 试论郯城—庐江断裂带的平移及其地质意义. 地质矿产研究, 1978, (5): 130-160
    113. 徐嘉炜. 郯城—庐江断裂带的平移运动. 华东地质, 1964, (5): 18-31
    114. 徐平, 吴福元, 谢烈文, 杨岳衡. U-Pb 同位素定年标准锆石的 Hf 同位素. 科学通报, 2004, 49(14): 1403-1413
    115. 徐树桐. 中国东部徐-淮地区构造格局及其形成背景. 北京: 地质出版社. 1994
    116. 许文良 ,王清海, 王冬艳, 等. 华北克拉通东部中生代岩石圈减薄的过程与机制:中生代火成岩和深源捕虏体证据. 地学前缘, 2004,11(3): 309-317
    117. 许文良, 王冬艳, 刘晓春, 王清海, 林景仟. 徐-淮地区早侏罗世侵入杂岩体中榴辉岩类包体的发现及其地质意义. 科学通报, 2002, 47(8): 618-622
    118. 许文良, 王清海, 王冬艳, 等. 徐淮地区早侏罗世侵入杂岩中辉石岩包体的矿物组合及演化. 地球科学, 2003, 28(2): 173-178
    119. 许文良, 王清海, 王冬艳, 裴福萍, 高山. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据. 地学前缘, 2004, 11: 309-317
    120. 许文良, 王清海, 杨德彬, 刘晓春, 郭敬辉. 蚌埠荆山“混合花岗岩”SHRIMP锆石U-Pb定年及其地质意义. 中国科学(D辑), 2004. 34(5): 423-428
    121. 许志琴. 谈谈裂谷. 地质论评, 1980, 36(3): 260-264
    122. 薛怀民, 董树文, 刘晓春. 大别山东部花岗片麻岩的锆石 U-Pb 年龄. 地质科学, 2002, 37(2): 165-173
    123. 阎欣, 储著银, 孙敏, 等. 激光探针等离子质谱锆石微区207Pb/206Pb测定尝试. 科学通报, 1998, 43: 2101-2105
    124. 杨德彬, 许文良, 裴福萍, 王清海, 柳小明. 蚌埠隆起区花岗岩形成时代及岩浆源区性质:锆石 LA-ICP MS U-Pb 定年与示踪. 地球化学, 2005, 34(5): 443-454
    125. 杨进辉, 朱美妃, 刘伟, 翟明国. 胶东地区郭家岭花岗闪长岩的地球化学特征及成因. 岩石学报, 2003, 19(4): 692-700
    126. 杨学明, 杨晓勇, 陈双喜 译. 岩石地球化学. 合肥: 中国科学技术大学出版社. 2000
    127. 于津海, 周新民, 赵蕾, 蒋少涌, 王丽娟, 凌洪飞. 壳幔作用导致武平花岗岩形成-Sr-Nd-Hf-U-Pb 同位素证据. 岩石学报, 2005, 21(3): 651-664
    128. 云南省地质矿产局. 云南省区域地质志. 北京: 地质出版杜, 1990
    129. 郑永飞, 陈福坤, 龚冰, 等. 大别-苏鲁造山带超高压变质岩原岩性质: 锆石氧同位素和 U-Pb 年龄证据. 科学通报, 2003, 48(2): 110-119
    130. 朱大岗, 孟宪刚, 冯向阳, 等. 辽西医巫闾山变质核杂岩构造特征及其岩石组构的动力学分析. 地球学报, 2003,24(3):225-230
    131. 朱光, 牛漫兰, 刘国生, 等. 郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件. 地质学报, 2002, 76(3): 325-334
    132. 朱光, 宋传中, 王道轩, 等. 郯庐断裂带走滑时代的 40Ar/39Ar 年代学研究及其构造意义. 中国科学(D 辑), 2001, 31(3): 250-256
    133. 朱光等. 郯庐断裂带平移时代的同位素年龄证据. 地质论评, 1995, 41(5): 452-456

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700