伏隔核中型多棘神经元兴奋性及海马长时程增强在抑郁症发病中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑郁症是现今世界上最流行的精神疾病,在中国有超过2600万人患有抑郁症,具有高发病率及低诊断率的特点,对当今社会带来了严重的影响。同时,抑郁症的产生原因复杂,遗传和环境因素兼而有之,而且在病理上不易显现出可检测的实质性病变特征,因此对人们研究抑郁症的发病机制造成了极大的困扰,直接影响到抗抑郁药物的开发。因此阐明抑郁症的发病机制,为抑郁症的临床治疗提供有效的思路与方法是当今中国乃至世界精神疾病研究领域亟待解决的科学问题之一。近年来负责奖赏及成瘾机制的重要脑区——伏隔核(Nuclear accumbens, NAc)在抑郁发病和抗抑郁药物治疗中的作用受到越来越多的关注。NAc是基底核区域的一个信息整合核团,主要接受来自中脑腹侧背盖区(ventraltegmental area, VTA)的多巴胺能神经投射,参与与情绪调节相关的神经环路。同时,抑郁症发病假说之一的单胺类假说认为多巴胺在抑郁症发病及抗抑郁治疗中有着不可忽视的作用,但是多巴胺对脑内相关脑区神经活动的影响仍不明了,因此如果能够从电生理学的角度,对NAc的神经元放电特点进行研究,并结合行为学和生化学的研究,则能够帮助我们更加全面深入的了解脑内多巴胺系统中的NAc神经元活性在抑郁症的发病过程中的作用及变化情况。另外,我们也对来自于郭熙志教授实验室的一种干细胞因子(stem cell factor, SCF)及其酪氨酸激酶受体c-Kit通路功能受损的基因突变小鼠进行了电生理学的研究。这种基因突变小鼠具有显著的抑郁样行为表现,并且伴随着学习与记忆功能的缺陷和海马区域的神经元再生障碍。因此通过对其海马区突触可塑性的研究,能够帮助我们了解这种基因突变对海马的突触传递及其可塑性的影响,从电生理学的角度解释这种抑郁小鼠在学习与记忆方面出现缺陷的原因。
     在本研究中,我们选取了两种抑郁症模型鼠Wistar Kyoto (WKY)大鼠和c-KitV922G/+杂合突变小鼠,在进行行为学检测验证抑郁样行为的基础上,1)研究幼年期WKY大鼠在抑郁发生及药物治疗过程中,多巴胺NAc的中型多棘神经元(Medium spiny neurons, MSNs)兴奋性的变化;2)研究成年c-KitV922G/+杂合突变小鼠海马(hippocampus, HP)的CA1区及CA3区突触传递及长时程增强(long-term potentiation, LTP)形成的变化。通过以上检测,我们探讨了NAc的MSNs放电特点及海马神经环路的信号传导变化在抑郁症发病中的作用。
     主要的方法及结果:
     1检测幼年期WKY大鼠在抑郁发生及药物治疗过程中,多巴胺D2类受体(dopamine D2-like receptor)介导的NAc MSNs膜兴奋性的变化。
     (1)制作4~5周健康雄性WKY大鼠和其正常对照组Wistar大鼠的大脑冠状切片(含有NAc),切片厚度300μm。
     (2)通过可视化全细胞膜片钳的方法,记录并分析在给予多巴胺D2类受体激动剂喹吡罗(quinpirole)前后,NAc中心核(core)区域的MSNs动作电位的发放情况。在记录过程中,始终在灌流液中加入伽马氨基丁酸A(GABAA)受体阻断剂木防己苦毒素(picrotoxin, PTX)和兴奋性谷氨酸受体阻断剂犬尿喹啉酸(kynurenic acid)。在电流钳模式下给予细胞膜间隔20sec、强度呈步进递增形式的电流刺激,电流强度范围为0-500pA,步幅为50pA,记录其诱发的动作电位数量及产生阈值。结果发现在幼年期WKY大鼠中,多巴胺D2类受体介导的信号通路对NAc core区域的MSNs膜兴奋性的抑制作用缺失;
     (3)给予幼年期WKY大鼠持续12天的诺米芬新(nomifensine,一种多巴胺和去甲肾上腺素重摄取抑制剂)治疗,通过一系列的行为学检测发现治疗前的WKY大鼠在糖水偏好、开场实验和强迫游泳的行为学实验中均表现出显著的抑郁样行为,而nomifensine治疗后其在糖水偏好和强迫游泳实验中的抑郁样行为显著减少。
     (4)对治疗后的WKY大鼠NAc core区域的MSNs进行电生理学检测,并与未治疗组的WKY大鼠以及正常对照组Wistar大鼠比较,结果发现在接受nomifensine治疗后WKY大鼠NAc core区域的MSNs膜兴奋性减弱。
     2检测成年c-KitV922G/+杂合突变小鼠在抑郁发生过程中,Mossyfiber-CA3(MF-CA3)和Schaffer collateral-commissural fiber-CA1(Sch-CA1)通路上高频刺激诱导的LTP形成情况。
     (1)制作2~3月龄的健康雄性c-KitV922G/+杂合突变小鼠和其野生型对照小鼠的急性海马切片,切片厚度400μm。
     (2)在场电位模式下给予海马切片MF-CA3通路100Hz/1sec两次,以及Sch-CA1通路100Hz/1sec1次的高频刺激,观察LTP的形成情况。实验结束后灌流含有0.1μM DCG IV的人工脑脊液(artificialcerebrospinal fluid, ACSF),观察突触反应的被抑制情况,以验证所记录的通路确实为MF-CA3。结果发现c-KitV922G/+杂合突变小鼠的MF-CA3通路的LTP形成受损,而Sch-CA1通路的LTP形成未受影响。主要结论:
     (1)Nomifensine能够改善幼年期WKY大鼠的抑郁样行为;
     (2)多巴胺D2类受体介导的对MSNs兴奋性的抑制的缺失可能参与幼年期WKY大鼠抑郁样行为的发生。
     (3)Nomifensine可能通过影响幼年期WKY大鼠海马和纹状体区域的DRD2发挥抗抑郁作用。
     (4)成年小鼠海马的SCF/c-Kit通路异常对MF-CA3通路LTP形成的抑制,可能参与其学习与记忆的形成障碍。
Depression is the most popular mental illness in the world today. InChina, there are about over26million people suffering from depression withhigh morbidity and low diagnostic rate, which causes severe impact onChina's economic, cultural and social development. Meanwhile, thecomplex pathogenic mechanisms of depression, including genetic andenvironmental factors, and less of detectable changes in the pathologicalaspect bring great obstacles to the investigation of pathogenic mechanismsof depression and the development of antidepressant. Therefore, theclarification of the pathological mechanism, and providing effective ideasand methods for the clinical treatment are important topics and urgentscientific issues in the world’s mental illness area. Nowadays, nuclear accumbens (NAc), which responsible for the mechanism of reward andaddiction attracted more and more attentions in the field of depression andantidepressant studies. NAc, located in the basal ganglia area, areresponsible for information integration which mainly receives thedopaminergic neural projections that send from ventral tegmental area(VTA), participates in neurological circuits that relevant to the emotionregulation. Meanwhile, based on the hypothesis of pathogenesis, it wasconsidered that dopamine plays a not negligible role in pathogenesis ofdepression. However, the functions of dopamine system that regulate theactivities of neural transmission among several related brain areas are stillunclear. Therefore, it would be helpful for us to deeply understand theneuronal activity in NAc in the pathogenesis of depression, by studying thecharacteristics of neural signals. On the other hand, we also studied themutant mice which had impaired stem cell factor (SCF)/c-Kit signalingpathway in hippocampus by electrophysiology. The mutant mice exhibitsignificant depression-like behaviors and impairment of memory formationand neuronal regeneration in hippocampus. Therefore, it would be helpfulfor us to understand the effects of gene mutant on synaptic transmission andplasticity in hippocampus and the reasons for the defects of learning andmemory were analyzed.
     In the present study, we selected two kinds of depression model rats:Wistar Kyoto (WKY) rats and c-KitV922G/+heterozygous mutant mouse.Based on the behavioral studies,1) we studied the changes of excitability ofmedium spiny neurons (MSNs) in the pathogenesis of depression inchildhood WKY rats;2) we also studied the LTP induction in thehippocampus of adult c-KitV922G/+heterozygous mutant mice. Depending onall above studies and experiments, we discussed the characteristics of NAcMSNs’ firing pattern and the changes of synaptic plasticity in hippocampusduring the pathogenesis of depression.
     Main methods and results:
     1. The membrane excitability changes of MSNs in NAc core region inthe process of depression and its improvement in childhood WKY rats.
     1) Prepared coronal brain acute slices (300μM, contained NAc region)from healthy WKY and Wistar rats (4-5weeks old, male).
     2) Through visually guided whole-cell patch clamp recording, wecalculated the membrane excitability of MSNs in the core of NAc of WKYrats. Under the current clamp mode, the stimulation was applied to MSNs byincreasing current intensity from0pA to500pA, with50pA increment.During the process of experimental recording, picrotoxin and kynurenic acid were applied to block the inhibition GABAAreceptors and the excitatoryglutamate receptors respectively. The results showed that the inhibition ofMSNs membrane excitability by dopamine D2-like receptor-mediatedsignaling was attenuated.
     3) Treated childhood WKY rats with nomifensine for12day(nomifensine, a dopamine and norepinephrine reuptake inhibitor), and toexamine the depression-like behavior through open field test and forcedswimming test. Childhood WKY rats have shown significant depressivebehaviors in sucrose preference test, open field test, and forced swimmingtest, while accepted the nomifensine treatment, childhood WKY ratsexhibited decreased the depressive behaviors in sucrose preference andforced swimming test.
     4) Compared the membrane excitability of MSNs to control WKYrats and normal wistar rats, the excitability of MSNs in NAc core region oftreated WKY rats was suppressed.
     2. The formation of long-term potentiation (LTP) in Mossy fiber-CA3(MF-CA3) and Schaffer collateral-commissural fiber-CA1(Sch-CA1)pathway in c-KitV922G/+heterozygous mutant mouse.
     1) Prepared hippocampal acute slices (400μm) from c-KitV922G/+heterozygous mutant mouse and the wild control mouse (2~3months old, healthy, male).
     2) By using field potential recording technique, HFS (100Hz/1sec)twice, was delivered to MF-CA3pathway or Sch-CA1pathway respectivelyto induce LTP. At the end of experiments, ACSF containing DCG IV wasapplying to block EPSP response to verification the MF-CA3pathway. Theresults showed that LTP induction was impaired in MF-CA3but not inSch-CA1pathway in c-KitV922G/+heterozygous mutant mice.
     Main conclusions:
     1) Nomifensine treatment could improve depressive-like behavior ofWKY rat.
     2) The impairment of inhibition on MSNs membrane excitability whichmediated by dopamine D2-like receptor may be involved in the formation ofdepression-like behavior in childhood WKY rats.
     3) Nomifensine may act on WKY rats via modulation of DRD2expression in hippocampus and striatum, but not in NAc.
     4) The disturbed function of SCF/c-Kit pathway could inhibit the LTPinduction, which possibly participates in the impairement of learning andmemory in mutant mice.
引文
1. Kessler, R.C., et al., Lifetime prevalence and age-of-onset distributions of mental disorders in theWorld Health Organization's World Mental Health Survey Initiative. World Psychiatry,2007.6(3):p.168-76.
    2. Dailly, E., et al., Dopamine, depression and antidepressants. Fundam Clin Pharmacol,2004.18(6):p.601-7.
    3. Nestler, E.J. and W.A. Carlezon, Jr., The mesolimbic dopamine reward circuit in depression. BiolPsychiatry,2006.59(12): p.1151-9.
    4. Koob, G.F. and M. Le Moal, Drug addiction, dysregulation of reward, and allostasis.Neuropsychopharmacology,2001.24(2): p.97-129.
    5. Wise, R.A., Drug-activation of brain reward pathways. Drug Alcohol Depend,1998.51(1-2): p.13-22.
    6. Nieoullon, A. and A. Coquerel, Dopamine: a key regulator to adapt action, emotion, motivationand cognition. Curr Opin Neurol,2003.16Suppl2: p. S3-9.
    7. Pallis, E., K. Thermos, and C. Spyraki, Chronic desipramine treatment selectively potentiatessomatostatin-induced dopamine release in the nucleus accumbens. Eur J Neurosci,2001.14(4): p.763-7.
    8. Rada, P., et al., Glutamate release in the nucleus accumbens is involved in behavioral depressionduring the PORSOLT swim test. Neuroscience,2003.119(2): p.557-65.
    9. Gershon, A.A., T. Vishne, and L. Grunhaus, Dopamine D2-like receptors and the antidepressantresponse. Biol Psychiatry,2007.61(2): p.145-53.
    10. Dziedzicka-Wasylewska, M., et al., Effect of repeated treatment with tianeptine and fluoxetine oncentral dopamine D(2)/D(3) receptors. Behav Pharmacol,2002.13(2): p.127-38.
    11. Klimek, V. and J. Maj, Repeated administration of antidepressants enhances agonist affinity formesolimbic D2-receptors. J Pharm Pharmacol,1989.41(8): p.555-8.
    12. Lammers, C.H., et al., Selective increase of dopamine D3receptor gene expression as a commoneffect of chronic antidepressant treatments. Mol Psychiatry,2000.5(4): p.378-88.
    13. Maj, J., et al., Effect of antidepressant drugs administered repeatedly on the dopamine D3receptors in the rat brain. Eur J Pharmacol,1998.351(1): p.31-7.
    14. Maj, J., et al., Antidepressant drugs given repeatedly change the binding of the dopamine D2receptor agonist,[3H]N-0437, to dopamine D2receptors in the rat brain. Eur J Pharmacol,1996.304(1-3): p.49-54.
    15. Rogoz, R. and M. Dziedzicka-Wasylewska, Effects of antidepressant drugs on the dopamineD2/D3receptors in the rat brain differentiated by agonist and antagonist binding--anautoradiographic analysis. Naunyn Schmiedebergs Arch Pharmacol,1999.359(3): p.178-86.
    16. Berton, O. and E.J. Nestler, New approaches to antidepressant drug discovery: beyondmonoamines. Nat Rev Neurosci,2006.7(2): p.137-51.
    17. Harrison, P.J., The neuropathology of primary mood disorder. Brain,2002.125(Pt7): p.1428-49.
    18. Nestler, E.J., et al., Neurobiology of depression. Neuron,2002.34(1): p.13-25.
    19. Drevets, W.C., Neuroimaging and neuropathological studies of depression: implications for thecognitive-emotional features of mood disorders. Curr Opin Neurobiol,2001.11(2): p.240-9.
    20. Sheline, Y.I., Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry,2003.54(3): p.338-52.
    21. Ressler, K.J. and H.S. Mayberg, Targeting abnormal neural circuits in mood and anxietydisorders: from the laboratory to the clinic. Nat Neurosci,2007.10(9): p.1116-24.
    22. Mayberg, H.S., et al., Deep brain stimulation for treatment-resistant depression. Neuron,2005.45(5): p.651-60.
    23. Schlaepfer, T.E., et al., Deep brain stimulation to reward circuitry alleviates anhedonia inrefractory major depression. Neuropsychopharmacology,2008.33(2): p.368-77.
    24. Ruhe, H.G., N.S. Mason, and A.H. Schene, Mood is indirectly related to serotonin, norepinephrineand dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry,
    2007.12(4): p.331-59.
    25. Krishnan, V. and E.J. Nestler, The molecular neurobiology of depression. Nature,2008.455(7215):p.894-902.
    26. Binder, E.B. and F. Holsboer, Pharmacogenomics and antidepressant drugs. Ann Med,2006.38(2): p.82-94.
    27. Perlis, R.H., et al., Association between treatment-emergent suicidal ideation with citalopram andpolymorphisms near cyclic adenosine monophosphate response element binding protein in theSTAR*D study. Arch Gen Psychiatry,2007.64(6): p.689-97.
    28. Serretti, A., A. Drago, and D. De Ronchi, HTR2A gene variants and psychiatric disorders: areview of current literature and selection of SNPs for future studies. Curr Med Chem,2007.14(19): p.2053-69.
    29. Pittenger, C. and R.S. Duman, Stress, depression, and neuroplasticity: a convergence ofmechanisms. Neuropsychopharmacology,2008.33(1): p.88-109.
    30. Trivedi, M.H., et al., Evaluation of outcomes with citalopram for depression usingmeasurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry,2006.163(1): p.28-40.
    31. Krishnan, V., et al., Molecular adaptations underlying susceptibility and resistance to socialdefeat in brain reward regions. Cell,2007.131(2): p.391-404.
    32. Hu, H., et al., Emotion enhances learning via norepinephrine regulation of AMPA-receptortrafficking. Cell,2007.131(1): p.160-73.
    33. Svenningsson, P., et al., Alterations in5-HT1B receptor function by p11in depression-like states.Science,2006.311(5757): p.77-80.
    34. Duman, R.S. and L.M. Monteggia, A neurotrophic model for stress-related mood disorders. BiolPsychiatry,2006.59(12): p.1116-27.
    35. Monteggia, L.M., et al., Essential role of brain-derived neurotrophic factor in adult hippocampalfunction. Proc Natl Acad Sci U S A,2004.101(29): p.10827-32.
    36. Chao, M.V., R. Rajagopal, and F.S. Lee, Neurotrophin signalling in health and disease. Clin Sci(Lond),2006.110(2): p.167-73.
    37. Taliaz, D., et al., Knockdown of brain-derived neurotrophic factor in specific brain sitesprecipitates behaviors associated with depression and reduces neurogenesis. Mol Psychiatry,
    2010.15(1): p.80-92.
    38. Angelucci, F., S. Brene, and A.A. Mathe, BDNF in schizophrenia, depression and correspondinganimal models. Mol Psychiatry,2005.10(4): p.345-52.
    39. Hoshaw, B.A., J.E. Malberg, and I. Lucki, Central administration of IGF-I and BDNF leads tolong-lasting antidepressant-like effects. Brain Res,2005.1037(1-2): p.204-8.
    40. Siuciak, J.A., et al., Antidepressant-like effect of brain-derived neurotrophic factor (BDNF).Pharmacol Biochem Behav,1997.56(1): p.131-7.
    41. Groves, J.O., Is it time to reassess the BDNF hypothesis of depression? Mol Psychiatry,2007.12(12): p.1079-88.
    42. Martinowich, K., H. Manji, and B. Lu, New insights into BDNF function in depression andanxiety. Nat Neurosci,2007.10(9): p.1089-93.
    43. Eisch, A.J., et al., Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbenspathway: a role in depression. Biol Psychiatry,2003.54(10): p.994-1005.
    44. Berton, O., et al., Essential role of BDNF in the mesolimbic dopamine pathway in social defeatstress. Science,2006.311(5762): p.864-8.
    45. Sahay, A. and R. Hen, Adult hippocampal neurogenesis in depression. Nat Neurosci,2007.10(9):p.1110-5.
    46. Hunsberger, J.G., et al., Antidepressant actions of the exercise-regulated gene VGF. Nat Med,2007.13(12): p.1476-82.
    47. Warner-Schmidt, J.L. and R.S. Duman, VEGF is an essential mediator of the neurogenic andbehavioral actions of antidepressants. Proc Natl Acad Sci U S A,2007.104(11): p.4647-52.
    48. Kempermann, G., The neurogenic reserve hypothesis: what is adult hippocampal neurogenesisgood for? Trends Neurosci,2008.31(4): p.163-9.
    49. Surget, A., et al., Drug-dependent requirement of hippocampal neurogenesis in a model ofdepression and of antidepressant reversal. Biol Psychiatry,2008.64(4): p.293-301.
    50. Santarelli, L., et al., Requirement of hippocampal neurogenesis for the behavioral effects ofantidepressants. Science,2003.301(5634): p.805-9.
    51. Parker, K.J., A.F. Schatzberg, and D.M. Lyons, Neuroendocrine aspects of hypercortisolism inmajor depression. Horm Behav,2003.43(1): p.60-6.
    52. Raison, C.L. and A.H. Miller, When not enough is too much: the role of insufficient glucocorticoidsignaling in the pathophysiology of stress-related disorders. Am J Psychiatry,2003.160(9): p.1554-65.
    53. Gourley, S.L., et al., Regionally specific regulation of ERK MAP kinase in a model ofantidepressant-sensitive chronic depression. Biol Psychiatry,2008.63(4): p.353-9.
    54. McEwen, B.S., Physiology and neurobiology of stress and adaptation: central role of the brain.Physiol Rev,2007.87(3): p.873-904.
    55. Brown, E.S., F.P. Varghese, and B.S. McEwen, Association of depression with medical illness:does cortisol play a role? Biol Psychiatry,2004.55(1): p.1-9.
    56. Evans, D.L., et al., Mood disorders in the medically ill: scientific review and recommendations.Biol Psychiatry,2005.58(3): p.175-89.
    57. Brouwer, J.P., et al., Thyroid and adrenal axis in major depression: a controlled study inoutpatients. Eur J Endocrinol,2005.152(2): p.185-91.
    58. Schatzberg, A.F. and S. Lindley, Glucocorticoid antagonists in neuropsychiatric [corrected]disorders. Eur J Pharmacol,2008.583(2-3): p.358-64.
    59. Dunn, A.J., A.H. Swiergiel, and R. de Beaurepaire, Cytokines as mediators of depression: whatcan we learn from animal studies? Neurosci Biobehav Rev,2005.29(4-5): p.891-909.
    60. Loftis, J.M. and P. Hauser, The phenomenology and treatment of interferon-induced depression. JAffect Disord,2004.82(2): p.175-90.
    61. Simen, B.B., et al., TNFalpha signaling in depression and anxiety: behavioral consequences ofindividual receptor targeting. Biol Psychiatry,2006.59(9): p.775-85.
    62. Koo, J.W. and R.S. Duman, IL-1beta is an essential mediator of the antineurogenic andanhedonic effects of stress. Proc Natl Acad Sci U S A,2008.105(2): p.751-6.
    63. Wolffe, A.P. and M.A. Matzke, Epigenetics: regulation through repression. Science,1999.286(5439): p.481-6.
    64. Tsankova, N., et al., Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci,2007.8(5):p.355-67.
    65. Petronis, A., The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolvingsynthesis. Biol Psychiatry,2004.55(10): p.965-70.
    66. Petronis, A., Epigenetics and bipolar disorder: new opportunities and challenges. Am J MedGenet C Semin Med Genet,2003.123C(1): p.65-75.
    67. Schanen, N.C., Epigenetics of autism spectrum disorders. Hum Mol Genet,2006.15Spec No2: p.R138-50.
    68. Mill, J. and A. Petronis, Molecular studies of major depressive disorder: the epigeneticperspective. Mol Psychiatry,2007.12(9): p.799-814.
    69. Holsboer, F., How can we realize the promise of personalized antidepressant medicines? Nat RevNeurosci,2008.9(8): p.638-46.
    70. Bewernick, B.H., et al., Nucleus accumbens deep brain stimulation decreases ratings ofdepression and anxiety in treatment-resistant depression. Biol Psychiatry,2010.67(2): p.110-6.
    71. Friedman, A., et al., Programmed acute electrical stimulation of ventral tegmental area alleviatesdepressive-like behavior. Neuropsychopharmacology,2009.34(4): p.1057-66.
    72. Malone, D.A., Jr., et al., Deep brain stimulation of the ventral capsule/ventral striatum fortreatment-resistant depression. Biol Psychiatry,2009.65(4): p.267-75.
    73. Kim, D.R., A. Pesiridou, and J.P. O'Reardon, Transcranial magnetic stimulation in the treatmentof psychiatric disorders. Curr Psychiatry Rep,2009.11(6): p.447-52.
    74. Slotema, C.W., et al., Should we expand the toolbox of psychiatric treatment methods to includeRepetitive Transcranial Magnetic Stimulation (rTMS)? A meta-analysis of the efficacy of rTMS inpsychiatric disorders. J Clin Psychiatry,2010.71(7): p.873-84.
    75. Dell'osso, B. and A.C. Altamura, Augmentative transcranial magnetic stimulation (TMS)combined with brain navigation in drug-resistant rapid cycling bipolar depression: a case reportof acute and maintenance efficacy. World J Biol Psychiatry,2009.10(4Pt2): p.673-6.
    76. Alexander, B., et al., Reversal of depressed behaviors in mice by p11gene therapy in the nucleusaccumbens. Sci Transl Med,2010.2(54): p.54ra76.
    77. Kreitzer, A.C., Physiology and pharmacology of striatal neurons. Annu Rev Neurosci,2009.32: p.127-47.
    78. Gerfen, C.R., et al., D1and D2dopamine receptor-regulated gene expression of striatonigral andstriatopallidal neurons. Science,1990.250(4986): p.1429-32.
    79. Le Moine, C., E. Normand, and B. Bloch, Phenotypical characterization of the rat striatalneurons expressing the D1dopamine receptor gene. Proc Natl Acad Sci U S A,1991.88(10): p.4205-9.
    80. Le Moine, C., et al., Dopamine receptor gene expression by enkephalin neurons in rat forebrain.Proc Natl Acad Sci U S A,1990.87(1): p.230-4.
    81. Surmeier, D.J., et al., Dopamine receptor subtypes colocalize in rat striatonigral neurons. ProcNatl Acad Sci U S A,1992.89(21): p.10178-82.
    82. Surmeier, D.J., et al., Are neostriatal dopamine receptors co-localized? Trends Neurosci,1993.16(8): p.299-305.
    83. Nicola, S.M., J. Surmeier, and R.C. Malenka, Dopaminergic modulation of neuronal excitabilityin the striatum and nucleus accumbens. Annu Rev Neurosci,2000.23: p.185-215.
    84. Kelley, A.E., Ventral striatal control of appetitive motivation: role in ingestive behavior andreward-related learning. Neurosci Biobehav Rev,2004.27(8): p.765-76.
    85. Horger, B.A. and R.H. Roth, The role of mesoprefrontal dopamine neurons in stress. Crit RevNeurobiol,1996.10(3-4): p.395-418.
    86. Di Chiara, G., P. Loddo, and G. Tanda, Reciprocal changes in prefrontal and limbic dopamineresponsiveness to aversive and rewarding stimuli after chronic mild stress: implications for thepsychobiology of depression. Biol Psychiatry,1999.46(12): p.1624-33.
    87. Espejo, E.F. and F.J. Minano, Prefrontocortical dopamine depletion induces antidepressant-likeeffects in rats and alters the profile of desipramine during Porsolt's test. Neuroscience,1999.88(2): p.609-15.
    88. West, C.H., et al., Rats selectively bred for high and low swim-test activity show differentialresponses to dopaminergic drugs. Psychopharmacology (Berl),1999.146(3): p.241-51.
    89. Cyr, M., et al., Dopaminergic activity in transgenic mice underexpressing glucocorticoidreceptors: effect of antidepressants. Neuroscience,2001.102(1): p.151-8.
    90. Jensen, J., et al., Direct activation of the ventral striatum in anticipation of aversive stimuli.Neuron,2003.40(6): p.1251-7.
    91. Amore, M. and M.C. Jori, Faster response on amisulpride50mg versus sertraline50-100mg inpatients with dysthymia or double depression: a randomized, double-blind, parallel group study.Int Clin Psychopharmacol,2001.16(6): p.317-24.
    92. Smeraldi, E., Amisulpride versus fluoxetine in patients with dysthymia or major depression inpartial remission: a double-blind, comparative study. J Affect Disord,1998.48(1): p.47-56.
    93. Racagni, G., et al., Consensus on the use of substituted benzamides in psychiatric patients.Neuropsychobiology,2004.50(2): p.134-43.
    94. Ruther, E., et al., Antidepressant action of sulpiride. Results of a placebo-controlled double-blindtrial. Pharmacopsychiatry,1999.32(4): p.127-35.
    95. Budde, G., Efficacy and tolerability of flupenthixol decanoate in the treatment of depression andpsychosomatic disorders: a multicenter trial in general practice. Prog NeuropsychopharmacolBiol Psychiatry,1992.16(5): p.677-89.
    96. Zhu, X., et al., Maternal deprivation-caused behavioral abnormalities in adult rats relate to anon-methylation-regulated D2receptor levels in the nucleus accumbens. Behav Brain Res,2010.209(2): p.281-8.
    97. Zhu, X., et al., Stress-induced depressive behaviors are correlated with Par-4and DRD2expression in rat striatum. Behav Brain Res,2011.223(2): p.329-35.
    98. Pare, W.P.,"Behavioral despair" test predicts stress ulcer in WKY rats. Physiol Behav,1989.46(3):p.483-7.
    99. Pare, W.P., Stress ulcer susceptibility and depression in Wistar Kyoto (WKY) rats. Physiol Behav,
    1989.46(6): p.993-8.
    100. Lahmame, A., et al., Are Wistar-Kyoto rats a genetic animal model of depression resistant toantidepressants? Eur J Pharmacol,1997.337(2-3): p.115-23.
    101. Malkesman, O. and A. Weller, Two different putative genetic animal models of childhooddepression--a review. Prog Neurobiol,2009.88(3): p.153-69.
    102. Malkesman, O., et al., Two different putative genetic animal models of childhood depression. BiolPsychiatry,2006.59(1): p.17-23.
    103. Tejani-Butt, S., J. Kluczynski, and W.P. Pare, Strain-dependent modification of behavior followingantidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry,2003.27(1): p.7-14.
    104. Reber, L., C.A. Da Silva, and N. Frossard, Stem cell factor and its receptor c-Kit as targets forinflammatory diseases. Eur J Pharmacol,2006.533(1-3): p.327-40.
    105. Wong, M.L. and J. Licinio, Localization of stem cell factor mRNA in adult rat hippocampus.Neuroimmunomodulation,1994.1(3): p.181-7.
    106. Morii, E., et al., Spatial expression of genes encoding c-kit receptors and their ligands in mousecerebellum as revealed by in situ hybridization. Brain Res Dev Brain Res,1992.65(1): p.123-6.
    107. Motro, B., et al., Contiguous patterns of c-kit and steel expression: analysis of mutations at the Wand Sl loci. Development,1991.113(4): p.1207-21.
    108. Kita, T., H. Kita, and S.T. Kitai, Passive electrical membrane properties of rat neostriatal neuronsin an in vitro slice preparation. Brain Res,1984.300(1): p.129-39.
    109. Nisenbaum, E.S. and C.J. Wilson, Potassium currents responsible for inward and outwardrectification in rat neostriatal spiny projection neurons. J Neurosci,1995.15(6): p.4449-63.
    110. Perez, M.F., F.J. White, and X.T. Hu, Dopamine D(2) receptor modulation of K(+) channelactivity regulates excitability of nucleus accumbens neurons at different membrane potentials. JNeurophysiol,2006.96(5): p.2217-28.
    111. O'Donnell, P. and A.A. Grace, Physiological and morphological properties of accumbens coreand shell neurons recorded in vitro. Synapse,1993.13(2): p.135-60.
    112. Vaidya, V.A., K. Fernandes, and S. Jha, Regulation of adult hippocampal neurogenesis: relevanceto depression. Expert Rev Neurother,2007.7(7): p.853-64.
    113. aan het Rot, M., S.J. Mathew, and D.S. Charney, Neurobiological mechanisms in major depressivedisorder. Cmaj,2009.180(3): p.305-13.
    114. De La Garza, R.,2nd and J.J. Mahoney,3rd, A distinct neurochemical profile in WKY rats atbaseline and in response to acute stress: implications for animal models of anxiety and depression.Brain Res,2004.1021(2): p.209-18.
    115. Lopez-Rubalcava, C. and I. Lucki, Strain differences in the behavioral effects of antidepressantdrugs in the rat forced swimming test. Neuropsychopharmacology,2000.22(2): p.191-9.
    116. Jaber, M., et al., Dopamine receptors and brain function. Neuropharmacology,1996.35(11): p.1503-19.
    117. D'Haenen H, A. and A. Bossuyt, Dopamine D2receptors in depression measured with singlephoton emission computed tomography. Biol Psychiatry,1994.35(2): p.128-32.
    118. Wallace, D.L., et al., CREB regulation of nucleus accumbens excitability mediates socialisolation-induced behavioral deficits. Nat Neurosci,2009.12(2): p.200-9.
    119. Ito, R., T.W. Robbins, and B.J. Everitt, Differential control over cocaine-seeking behavior bynucleus accumbens core and shell. Nat Neurosci,2004.7(4): p.389-97.
    120. Malykhin, N.V., et al., Structural changes in the hippocampus in major depressive disorder:contributions of disease and treatment. J Psychiatry Neurosci,2010.35(5): p.337-43.
    121. Colla, M., et al., Hippocampal volume reduction and HPA-system activity in major depression. JPsychiatr Res,2007.41(7): p.553-60.
    122. Cole, J., et al., Subregional hippocampal deformations in major depressive disorder. J AffectDisord,2010.126(1-2): p.272-7.
    123. Campbell, S., et al., Lower hippocampal volume in patients suffering from depression: ameta-analysis. Am J Psychiatry,2004.161(4): p.598-607.
    124. Videbech, P. and B. Ravnkilde, Hippocampal volume and depression: a meta-analysis of MRIstudies. Am J Psychiatry,2004.161(11): p.1957-66.
    125. Rao, U., et al., Hippocampal changes associated with early-life adversity and vulnerability todepression. Biol Psychiatry,2010.67(4): p.357-64.
    126. Gould, E., et al., Regulation of hippocampal neurogenesis in adulthood. Biol Psychiatry,2000.48(8): p.715-20.
    127. Gould, E., et al., Neurogenesis in the dentate gyrus of the adult tree shrew is regulated bypsychosocial stress and NMDA receptor activation. J Neurosci,1997.17(7): p.2492-8.
    128. Gould, E., et al., Proliferation of granule cell precursors in the dentate gyrus of adult monkeys isdiminished by stress. Proc Natl Acad Sci U S A,1998.95(6): p.3168-71.
    129. Alonso, R., et al., Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression ofneurogenesis in a mouse model of depression. Mol Psychiatry,2004.9(3): p.278-86,224.
    130. Czeh, B., et al., Stress-induced changes in cerebral metabolites, hippocampal volume, and cellproliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A,
    2001.98(22): p.12796-801.
    131. van der Hart, M.G., et al., Substance P receptor antagonist and clomipramine preventstress-induced alterations in cerebral metabolites, cytogenesis in the dentate gyrus andhippocampal volume. Mol Psychiatry,2002.7(9): p.933-41.
    132. Motro, B., et al., Steel mutant mice are deficient in hippocampal learning but not long-termpotentiation. Proc Natl Acad Sci U S A,1996.93(5): p.1808-13.
    133. Katafuchi, T., et al., Impairment of spatial learning and hippocampal synaptic potentiation in c-kitmutant rats. Learn Mem,2000.7(6): p.383-92.
    134. Cameron, H.A. and R.D. McKay, Adult neurogenesis produces a large pool of new granule cellsin the dentate gyrus. J Comp Neurol,2001.435(4): p.406-17.
    135. Kuhn, H.G., H. Dickinson-Anson, and F.H. Gage, Neurogenesis in the dentate gyrus of the adultrat: age-related decrease of neuronal progenitor proliferation. J Neurosci,1996.16(6): p.2027-33.
    136. Markakis, E.A. and F.H. Gage, Adult-generated neurons in the dentate gyrus send axonalprojections to field CA3and are surrounded by synaptic vesicles. J Comp Neurol,1999.406(4): p.449-60.
    137. Leung, L.S., Fast (beta) rhythms in the hippocampus: a review. Hippocampus,1992.2(2): p.93-8.
    138.肖越,SCF/c-Kit信号通路在抑郁症致病机理中的作用,中华人民共和国,[学位论文],上海交通大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700