基于被动性和欠驱动性的双足机器人运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双足仿人机器人在环境适应性和人机交互的亲和力等方面具有很大的优势,但利用现有双足运动控制理论和技术实现的双足运动在效率和灵活性上和人类的双足运动相比还有非常大的差距。受人类双足运动的被动性和欠驱动性启发,本文结合了基于被动的控制,能量塑造控制,混杂零动态控制,时间放缩控制等方法,从被动性和欠驱动性的角度研究稳定、灵活、高效的双足运动控制方法。总的来说,本文的研究工作集中在如下几个方面:
     首先,针对基于被动的全驱动双足机器人,本文提出结合时间放缩和能量塑造的方法设计对应不同步长和步速的参考轨迹和过渡轨迹,采用反馈线性化的方法设计控制来扩大系统的收敛域,给出了每一步开始时刻更新的控制器条件,使步态响应轨迹和参考轨迹之间的误差渐近地收敛到零。首次从理论上解决了基于被动的全驱动双足机器人变步幅、变步速以及适应复杂环境的稳定行走控制问题,极大地提高了运动的灵活性。
     其次,针对考虑欠驱动自由度的双足机器人的平衡站立控制问题,本文利用虚拟完整性约束方法,把机器人驱动关节的角度指定为支撑脚脚板与地面夹角的函数,给出了单脚稳定平衡站立所能承受的外界扰动范围的理论分析方法。当扰动较大,无法实现单脚平衡时,虚拟完整性约束会保证机器人变成双脚支撑状态以避免翻倒,这种扰动下的平衡动作和人非常类似。另外,针对一种特殊的欠驱动平衡站立问题—机器人单脚脚尖平衡站立,本文也首次从理论上给出了虚拟完整性约束设计条件和收敛域估计方法。
     再次,针对更一般的欠驱动自由度为一的n自由度的双足机器人,本文首次提出结合时间放缩控制和受控对称性方法来设计统一的反馈控制器,成功实现了欠驱动机器人从一个原始的步态(这个原始的步态既可以是特定斜坡上的一个被动的极限环,也可以是主动控制作用下机器人在地面上产生的一个周期性的行走步态)产生不同斜坡上的周期性步态,并给出了不同斜坡上周期性步态存在性和稳定性的充分必要条件,应用该方法可以极大提高欠驱动双足运动的灵活性和适应性。
     最后,本文研究了一种带有储能机构的欠驱动双足机器人的稳定奔跑问题,以其平地上存在的自然的被动奔跑极限环为基础,给出了反馈控制器设计方法,实现水平地面上稳定、节能的奔跑运动。基于文中的控制策略,在理想状态下,奔跑的步态收敛到被动的极限环上之后,系统将没有能量消耗,这一结论对于实现双足机器人高效的类人运动具有重要启示。
     针对提出的控制器设计方法,本文在相应的各个章节给出了详细的理论分析,并通过数字仿真进行验证。
Bipedal humanoid robot has a great advantage in adaptability to the environment and strong affinity in human-machine interaction. However, there is a great disparity between bipedal locomotion developed by the existing control theory and real human bipedal loco-motion. Inspired by the passivity and underactuation existing in human bipedal locomotion, this dissertation combines passivity-based control, energy shaping control, hybrid zero dy-namics and time scaling control in order to study stable, agile and efficient locomotion control methods of bipedal robots based on passivity and underactuation. The contribution of this paper can be listed as follows:
     Firstly, method combined time scaling control and energy shaping control is proposed for full actuated bipedal robot to construct reference trajectories with different step length and walking speed. A feedback control law is obtained via feedback linearization technique so that the trajectory of the robot converges to a desired passive walking gait. A larger basin of attraction can be obtained. Corresponding feedback control laws are updated at the beginning of each step. Then, the controller condition that the errors measuring the difference of the response trajectory and the reference one asymptotically converge to zero is given. The problem of achieving a stable walking in complex environments for full actuated bipedal robot with regulable step length and walking speed is first solved in this dissertation. The agility of bipedal locomotion is increased.
     Secondly, balance control problem of planar bipedal robots with underactuation dur-ing disturbed standing is investigated. Virtual holonomic constraints which specify the an-gles of actuated joints as a function of the rotation angle between the sole of stance foot and ground are introduced. Several conditions guaranteeing the balance of standing for given virtual holonomic constraints arc obtained. Moreover, for a disturbance beyond the bal-ance conditions for single-leg support, robot changes to a double support posture to avoid turnover by the virtual holonomic constraints and this reaction is very human-like. Further, for a special kind of balance:standing on toe which leads to underactuation, the design conditions of virtual holonomic constraints and estimate set of basin of attraction are first given in theory.
     Thirdly, a unified feedback control law for n degree-of-freedom biped robots with one degree of underactuation so as to generate periodic orbits on different slopes is first developed in this dissertation. The periodic orbits on different slopes are produced from an original periodic orbit, which is either a natural passive limit cycle on a specific slope or a stable periodic walking gait on level ground generated with active control. Necessary and sufficient conditions are investigated for the existence and stability properties of periodic orbits on different slopes with the proposed control law. The adaptability and agility of undcractuated bipedal locomotion are greatly increased.
     Fourthly, stable running problem of a planar underactuated biped robot which has two springy telescopic legs and one actuated joint in the hip is investigated. Based on a natural passive running limit cycle in level ground, a feedback control is proposed to stabilize the passive limit cycle and enlarge the basin of attraction. By this controller, there is no energy consumed when state vector of the robot reaches the running limit cycle under ideal impact condition. This conclusion is a great inspiration for achieving efficient human-like bipedal locomotion.
     This dissertation gives rigorous theoretical proof for the proposed analysis and control design methods. Several simulations are given in each chapter to illustrate the results.
引文
[1]BUEHLER M, KODITSCHEK D E. Analysis of a simplified hopping robot[J]. International Journal of Robotics Research,1991,10:587-605.
    [2]MCGEER T. Passive bipedal running[C]// Proceedings of the Royal Society of London. Series B, Biological Sciences. The Royal Society 1990:107-134.
    [3]MCGEER T. Passive dynamic walking[J]. The International Journal of Robotics Research,1990.9(2):62-82.
    [4]RAIBERT M H, TELLO E R. Legged robots that balance[J]. IEEE Expert [see also IEEE Intelligent Systems and Their Applications],1986, 1(4):89-89.
    [5]HIROSE S. A study of design and control of a quadruped walking vehicle[J]. The International Journal of Robotics Research,1984,3(2):113.
    [6]KREBS H I, HOGAN N. Therapeutic robotics:A technology push[J]. Proceedings of the IEEE,2006,94(9):1727-1738.
    [7]GREGG R D, BRETL T W, SPONG M W. A control theoretic approach to robot-assisted locomotor therapy[C]// Proceedings of 49th IEEE conference on Decision and Control, Atlanta,USA.2010:1679-1686.
    [8]MARCHAL-CRESPO L, REINKENSMEYER D J. Review of control strategies for robotic movement training after neurologic injury[J]. Journal of neuroengineering and rehabilitation,2009,6(l):20.
    [9]JAEGERS S M H J, ARENDZEN J H, DE JONGH H J. Prosthetic gait of unilateral transfemoral amputees:a kinematic study[J]. Archives of physical medicine and rehabilitation,1995,76(8):736-743.
    [10]NEDERHAND M J, ASSELDONK E H F V, DER KOOIJ H, ct al. Dynamic balance control (dbc) in lower leg amputee subjects; contribution of the regulatory activity of the prosthesis side[J]. Clinical Biomechanics,2012,27(1):40-45.
    [11]SIMONS C D M, VAN ASSELDONK E H F, KOOIJ H, et al. Ankle-foot orthoses in stroke:Effects on functional balance, weight-bearing asymmetry and the con-tribution of each lower limb to balance control[J]. Clinical Biomechanics,2009, 24(9):769-775.
    [12]KHALIL H K, GRIZZLE J W. Nonlinear systems[M]. Prentice hall,1992.
    [13]郑大钟.线性系统理论[M].北京:清华大学出版社,2002.
    [14]CHARBONNIER F, ALLA H, DAVID R. Discrete-event dynamic systems[J]. IEEE Transactions on Control Systems Technology,1999,7(2):175-187.
    [15]郑大钟.离散事件动态系统[M].北京:清华大学出版社,2001.
    [16]ZEIGLER B P, PRAEHOFER H, KIM T G. Theory of modeling and simulation: Integrating discrete event and continuous complex dynamic systems[M]. Academic Press,2000.
    [17]VAN DER SCHAFT A, SCHUMACHER H. An Introduction to Hybrid Dynamical Systems[M]. Berlin:Springer-Vcrlag,2000.
    [18]BRANICKY M S, BORKAR V S, MITTER S K. A unified framework for hybrid control:Model and optimal control theory[J]. IEEE Transactions on Automatic Control,1998,43(1):31-45.
    [19]BECCUTIA G, MORARIT G M. A hybrid system approach to power systems volt-age control [C]//Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain.2005:12-15.
    [20]ANTONIOTTI M, MISHRA B. Discrete event models+ temporal logic=supervi-sory controller:Automatic synthesis of locomotion controllers[C]// Proceedings of IEEE international Conference on Robotics and Automation. Nagoya, Aichi, Japan: 1995.
    [21]DAVID R, ALLA H. Discrete, Continuous, and Hybrid Petri Nets[M]. Springer, 2004.
    [22]FEBBRARO A D, GIGLIO D, SACCO N. Urban traffic control structure based on hybrid petri nets[J]. IEEE Transactions on Intelligent Transportation Systems,2004, 5(4):224-237.
    [23]TOMLIN C, PAPPAS G J, SASTRY S. Conflict resolution for air traffic manage-ment:A study in multiagent hybrid systems [J]. IEEE transactions on Automatic Control,1998,43(4):509-521.
    [24]RAIBERT M H, CRAIG J J. Hybrid position/force control of manipulators [J]. Jour-nal of Dynamic Systems, Measurement, and Control,1981,103:126.
    [25]HOSODA K, IGARASHI K, ASADA M. Adaptive hybrid control for visual and force servoing in an unknown environment[J]. IEEE Robotics & Automation Mag-azine,1998,5(4):39-43.
    [26]APKARIAN P. Structured stability robustness improvement by eigenspace techniques-a hybrid methodology(in multivariable linear feedback systems for flight control)[J]. Journal of Guidance, Control, and Dynamics,1989,12:162-168.
    [27]LAN Y, YAN G, LIN Z. A hybrid control approach to cooperative target tracking with multiple mobile robots[C]//Proceedings of the American Control Conference, St. Louis, USA.2009:2624-2629.
    [28]CHEVALLEREAU C, ABBA G, AOUSTIN Y, et al. Rabbit:a testbed for advanced control theory[J]. IEEE Control Systems Magazine,2003,23(5):57-79.
    [29]WESTERVELT E R, GRIZZLE J W. CHEVALLEREAU C, et al. Feedback Control of Dynamic Bipedal Robot Locomotion[M]. CRC Press,2007.
    [30]VUKOBRATOVIC M, BOROVAC B. Zero-moment point-thirty five years of its life[J]. International Journal of Humanoid Robotics,2004,1(1):157-173.
    [31]VUKOBRATOVIC M, BOROVAC B, POTKONJAK V. Zmp:A review of some basic misunderstandings[J]. International Journal of Humanoid Robotics,2006, 3(2):153-176.
    [32]GOSWAMI A. Postural stability of biped robots and the foot-rotation indicator (fri) point[J]. The International Journal of Robotics Research,1999.18(6):523-533.
    [33]SARDAIN P, BESSONNET G. Forces acting on a biped robot. center of pressure-zero moment point[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2004,34(5):630-637.
    [34]SURDILOVIC D, JINYU Z, BERNHARDT R. Gait phase and centre of pressure measuring system[C]//Proceedings of 2004 2nd IEEE International Conference on Industrial lnforrmatics,Berlin,Germany.2004:331-334.
    [35]ERBATUR K, OKAZAKI A, OBIYA K, et al. A study on the zero moment point measurement for biped walking robots[C]// Proceedings of 2002 7th International Workshop on Advanced Motion Control, Maribor, Slovenia.2002:431-436.
    [36]HUANG Q, KANEKO K, YOKOI K, et al. Balance control of a piped robot com-bining off-line pattern with real-time modification[C]// Proceedings of 2000 IEEE International Conference on Robotics and Automation,San Francisco, USA. vol 4. 2000:3346-3352.
    [37]WIKIPEDIA. Humanoid robot.http //en.wikipedia.org/wiki/Humanoid_robot,2011.
    [38]YAMAGUCHI J, INOUE S, NISHINO D, et al. Development of a bipedal hu-manoid robot having antagonistic driven joints and three dof trunk[C]// Proceed-ings of 1998 IEEE/RSJ International Conference on Intelligent Robots and Sys-tems,Victoria, Canada, vol 1.1998:96-101.
    [39]LIM H, YAMAMOTO Y, TAKANISHI A. Control to realize human-like walking of a biped humanoid robot[C]// Proceedings of 2000 IEEE International Conference on Systems, Man, and Cybernetics, Nashville, USA. vol 5.2000:3271-3276.
    [40]LIM Hr SETIAWAN S A, TAKANISHI A. Balance and impedance control for biped humanoid robot locomotion[C]//Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems,Maui,USA. vol1.2001:494-499.
    [41]ERBATUR K, SEVEN U, E.TASKRAN, et al. Suralp:a new full-body humanoid robot platform[C]// Proceedings of 2009 IEEE/RSJ International Conference on In-telligent Robots and Systems, St. Louis, USA.2009:4949-4954.
    [42]ERBATUR K, SEVEN U, TASKIRAN E, et al. Suralp-1-the leg module of a new hu-manoid robot platform[C]// Proceedings of 2008 8th IEEE/RAS International Con-ference on Humanoid Robots, Daejeon, Korea.2008:168-173.
    [43]HIROSE R, TAKENAKA T. Development of the humanoid robot asimo[J]. Honda R&D Technical Review,2001,13(1):1-6.
    [44]SAKAGAMI Y, WATANABE R, AOYAMA C, et al. The intelligent asimo:System overview and integration[C]// Proceedings of 2002 IEEE/RSJ International Con-ference on Intelligent Robots and Systems, Lausanne, Switzerland. vol 3.2002: 2478-2483.
    [45]ISHIDA T. Development of a small biped entertainment robot qrio[C]// Proceed-ings of the 2004 International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan.2004:23-28.
    [46]NAGASAKA K, KUROKI Y, SUZUKI S, et al. Integrated motion control for walk-ing, jumping and running on a small bipedal entertainment robot[C]// Proceedings of 2004 IEEE International Conference on Robotics and Automation, New Orleans, USA. vol 4.2004:3189-3194.
    [47]GEPPERT L. Qrio, the robot that could[J]. IEEE Spectrum,2004,41(5):34-37.
    [48]TAJIMA R, HONDA D, SUGA K. Fast running experiments involving a humanoid robot[C]// Proceedings of 2009 IEEE International Conference on Robotics and Au-tomation, Kobe, Japan.2009:1571-1576.
    [49]KIM J H, PARK S W, PARK I W, et al. Development of a humanoid biped walk-ing robot platform khr-1-initial design and its performance evaluation [J]. feedback, 2002,1:12.
    [50]KIM J H, OH J H. Realization of dynamic walking for the humanoid robot platform khr-1[J]. Advanced Robotics.2004.18(7):749-768.
    [51]KIM J Y, PARK I W, LEE J, et al. System design and dynamic walking of humanoid robot khr-2[C]//Proceedings of 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain.2005:1431-1436.
    [52]KIM J Y, PARK I W, OH J H. Experimental realization of dynamic walking of the biped humanoid robot khr-2 using zero moment point feedback and inertial mea-surement[J]. Advanced Robotics,2006,20(6):707-736.
    [53]PARK I W, KIM J Y. LEE J, et al. Mechanical design of humanoid robot platform khr-3 (kaist humanoid robot 3:Hubo)[C]//Proceedings of 2005 5th IEEE-RAS In-ternational Conference on Humanoid Robots,Tsukuba Japan.2005:321-326.
    [54]OH J H, HANSON D, KIM W S,et al. Design of android type humanoid robot albert hubo[C]//Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China.2006:1428-1433.
    [55]PARK I W, KIM J Y, OH J H. Online walking pattern generation and its application to a biped humanoid robot khr-3 (hubo)[J]. Advanced Robotics.2008,2(3):159-190.
    [56]KANEKO K, KANEHIRO F, KAJITA S, et al. Humanoid robot hrp-2[C]//Pro-ceedings of 2004 IEEE International Conference on Robotics and Automation, New Orleans, USA.2004:1083-1090.
    [57]KAJITA S, NAGASAKI T, KANEKO K, et al. A hop towards running humanoid biped[C]//Proceedings of 2004 IEEE International Conference on Robotics and Au-tomation, New Orleans, USA. vol 1.2004:629-635.
    [58]KAJITA S, NAGASAKI T, KANEKO K. et al. A running controller of humanoid biped hrp-21r[C]//Proceedings of 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain.2005:616-622.
    [59]KAJITA S, KANEKO K, MORISAWA M, et al. Zmp-based biped running enhanced by toe springs[C]// Proceedings of 2007 IEEE International Conference on Robotics and Automation,Roma, Italy.2007:3963-3969.
    [60]KANEKO K, HARADA K, KANEHIRO F, et al. Humanoid robot hrp-3[C]// Pro-ceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Sys-tems, Nice, France.2008:2471-2478.
    [61]KANEKO K, KANEHIRO F, MORISAWA M, et al. Humanoid robot hrp-4-humanoid robotics platform with lightweight and slim body[C]// Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA.2011:4400-4407.
    [62]中国科学院计算机网络信息中心.我国的仿人形机器人研究.http: //www.kepu.net.cn/gb/technology/robot/advance/adv104.html,2011.
    [63]JARFI A R, HUANG Q, ZHANG L, et al. Realization and trajectory planning for obstacle stepping over by humanoid robot bhr-2[C]// Proceedings of 2006 IEEE In-ternational Conference on Robotics and Biomimetics,Kunming, China.2006:1384-1389.
    [64]PENG Z, FU Y, TANG Z, et al. Online walking pattern generation and system software of humanoid bhr-2[C]// Proceedings of 2006 IEEE/RSJ International Con-ference on Intelligent Robots and Systems, Beijing, China.2006:5471-5476.
    [65]LIU L, WANG J, CHEN K, et al. The biped humanoid robot thbip-i[C]/7 Proceedings of 2001 International Workshop on Bio-Robotics and Teleoperation.Beijing China. 2001:164-167.
    [66]ZHAO M, LIU L, WANG J, et al. Control system design of thbip-i humanoid robot[C]// Proceedings of 2002 IEEE International Conference on Robotics and Au-tomation, Washington. USA. vo13.2002:2253-2258.
    [67]XIA Z, LIU L, XIONG J, et al. Design aspects and development of humanoid robot thbip-2[J]. Robotica,2008,26(1):109-116.
    [68]LI J, CHEN W. Modeling and control for a biped robot on uneven surfaces [C]// Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China.2009:2960-2965.
    [69]汤卿.仿人机器人设计及步行控制方法[D]. PhD thesis.浙江大学,2009.
    [70]求是新闻网. 浙大研发大型仿人机器人http: //www.news.zju.edu.cn/news.php?id=34245,2011.
    [71]HUANG Q, YOKOI K, KAJITA S, et al. Planning walking patterns for a biped robot[J]. IEEE Transactions on Robotics and Automation,2001,17(3):280-289.
    [72]KAJITA S, KANEHIRO F, KANEKO K, et al. Biped walking pattern generation by using preview control of zero-moment point[C]// Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan of China, vol 2.2003: 1620-1626.
    [73]KAJITA S, KANEHIRO F, KANEKO K. et al. A realtime pattern generator for biped walking[C]// Proceedings of 2002 IEEE International Conference on Robotics and Automation, Washington, USA. vol 1.2002:31-37.
    [74]TLALOLINI D, AOUSTIN Y. CHEVALLEREAU C. Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3d biped using the parametric optimization[J]. Multibody System Dynamics, 2010,23(1):33-56.
    [75]HUANG Q, KAJITA S, KOYACHI N. et al. A high stability, smooth walking pat-tern for a biped robot[C]// Proceedings of 1999 IEEE International Conference on Robotics and Automation.Dctroit, USA. vol 1.1999:65-71.
    [76]KAJITA S, KANEHIRO F, KANEKO K. et al. The 3d linear inverted pendulum mode:A simple modeling for a biped walking pattern generation[C]/7 Proceed-ings of 2001 IEEE/RSJ International Conference on Intelligent Robots and Sys-tems,Maui,USA. vol 1.2001:239-246.
    [77]LOFFLER K, GIENGER M, PFEIFFER F, et al. Sensors and control concept of a biped robot[J]. IEEE Transactions on Industrial Electronics,2004,51(5):972-980.
    [78]PARK J H, KIM K D. Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control[C]//Proceedings of 1998 IEEE Inter-national Conference on Robotics and Automation.Leuven, Belgium,. vol 4.1998: 3528-3533.
    [79]PARK J, YOUM Y. General zmp preview control for bipedal walking[C]// Proceed-ings of 2007 IEEE International Conference on Robotics and Automation,Roma, Italy.2007:2682-2687.
    [80]FU C, CHEN K. Gait synthesis and sensory control of stair climbing for a humanoid robot[J]. IEEE Transactions on Industrial Electronics,2008,55(5):2111-2120.
    [81]JEON K S, KWON O, PARK J H. Optimal trajectory generation for a biped robot walking a staircase based on genetic algorithms[C]// Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, vol 3. 2004:2837-2842.
    [82]SHRIVASTAVA M, DUTTA A, SAXENA A. Trajectory generation using ga for an 8 dof biped robot with deformation at the sole of the foot[J]. Journal of Intelligent & Robotic Systems,2007,49(1):67-84.
    [83]FUJIMOTO Y. Trajectory generation of biped running robot with minimum energy consumption[C]// Proceedings of 2004 IEEE International Conference on Robotics and Automation, New Orleans, USA. vol 4.2004:3803-3808.
    [84]KAJITA S, NAGASAKI T, YOKOI K. et al. Running pattern generation for a hu-manoid robot[C]// Proceedings of 2002 IEEE International Conference on Robotics and Automation,Washington, USA. vol 3.2002:2755-2761.
    [85]SUGIHARA T. Standing stabilizability and stepping maneuver in planar bipedalism based on the best com-zmp regulator[C]// Proceedings of 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan.2009:1966-1971.
    [86]LI J, CHEN W. Energy-efficient gait generation for biped robot based on the passive inverted pendulum model[J]. Robotica,2011,29(04):595-605.
    [87]HASHIMOTO K. SUGAHARA Y, HAYASHI A, ct al. New foot system adaptable to convex and concave surface[C]// Proceedings of 2007 IEEE International Confer-ence on Robotics and Automation.Roma,Italy.2007:1869-1874.
    [88]SANO S, YAMADA M. UCHIYAMA N, et al. Point-contact type foot with springs and posture control for biped walking on rough terrain[C]// Proceedings of 2008 10th IEEE International Workshop on Advanced Motion Control, Trento, Italy. 2008:480-485.
    [89]CHOI J H. Model-based control and analysis of anthropomorphic walking[D]. PhD thesis. University of Michigan,2006.
    [90]YANG T, WESTERVELT E R, SCHMIEDELER J P, et al. Design and control of a planar bipedal robot ernie with parallel knee compliance[J]. Autonomous robots, 2008,25(4):317-330.
    [91]GRIZZLE J W, HURST J, MORRIS B, et al. Mabel, a new robotic bipedal walker and runner[C]// Proceedings of 2009 American Control Conference.St. Louis, USA. 2009:2030-2036.
    [92]KAJITA S, YAMAURA T, KOBAYASHI A. Dynamic walking control of a biped robot along a potential encrgyconserving orbit[J]. IEEE Transactions on Robotics and Automation,1992.8(4):431-438.
    [93]GARCIA M, CHATTERJEE A. RUIN A A. et al. The simplest walking model: Stability, complexity, and scaling[J]. Journal of Biomechanical Engineering,1998, 120(2):281-288.
    [94]SPONG M W. Passivity based control of the compass gait biped[C]// Proceedings of IFAC World Congress, Beijing, China.1999:19-23.
    [95]WISSE M, SCHWAB A L, HELM F C T V D. Passive dynamic walking model with upper body[J]. Robotica,2004,22(06):681-688.
    [96]CHU B, HONG D, PARK J, et al. Passive dynamic walker controller design employ-ing an rls-based natural actor-critic learning algorithm[J]. Engineering Applications of Artificial Intelligence,2008,21(7):1027-1034.
    [97]ASANO F, LUO Z W. Asymptotic stability of dynamic bipedal gait with constraint on impact posture[C]// Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, USA.2008:1246-1251.
    [98]FREIDOVICH L B, METTIN U, HIRIAEV A S, et al. A passive 2-dof walker:hunt-ing for gaits using virtual holonomic constraints[J]. IEEE Transactions on Robotics, 2009,25(5):1202-1208.
    [99]SCHWAB A L, WISSE M. Basin of attraction of the simplest walking model[C]// Proceedings of 2001 ASME Design Engineering Technical Conferences and Com-puters and Information in Engineering Conference, Pittsburgh, USA.2001.
    [100]GOSWAMI A, THUILOT B, ESPIAU B. A study of the passive gait of a compass-like biped robot:symmetry and chaos[J]. The International Journal of Robotics Research,1998,17(12):1282-1311.
    [101]KUO A D. Stabilization of lateral motion in passive dynamic walking[J]. The International Journal of Robotics Research,1999,18(9):917-930.
    [102]OSTROWSKI J P. Computing reduced equations for robotic systems with con-straintsand symmetries[J]. IEEE Transactions on Robotics and Automation,1999, 15(1):111-123.
    [103]COLLINS S H, WISSE M, RUINA A. A three-dimensional passive-dynamic walk-ing robot with two legs and knees[J]. The International Journal of Robotics Re-search,2001,20(7):607-615.
    [104]COLLINS S. RUINA A, TEDRAKE R, et al. Efficient bipedal robots based on passive-dynamic walkers [J]. Science,2005,307(5712):1082-1085.
    [105]REYNOLDS A. Design and control of a clutch for a minimally-actuated biped based on the passive-dynamic simple walker[D]. PhD thesis. Massachusetts Institute of Technology,2006.
    [106]HOBBELEN D, DE BOER T, WISSE M. System overview of bipedal robots flame and tulip:Tailor-made for limit cycle walking[C]// Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice. France.2008: 2486-2491.
    [107]HOBBELEN D G E, WISSE M. Active lateral foot placement for 3d stabilization of a limit cycle walker prototype[J]. International Journal of Humanoid Robotics, 2009,6(1):93-116.
    [108]BLOCH A M, LEONARD N E, MARSDEN J E. Controlled lagrangians and the sta-bilization of mechanical systems i:the first matching theorem[J]. IEEE Transactions on Systems and Control,2000,45:2253-2270.
    [109]BLOCH A M, CHANG D E, LEONARD N E, et al. Controlled lagrangians and the stabilization of mechanical systems ii:potential shaping[J]. IEEE Transactions on Automatic Control,2001,46(10):1556-1571.
    [110]ACOSTA J A, ORTEGA R. ASTOLFI A, et al. Interconnection and damping as-signment passivity-based control of mechanical systems with underactuation degree one[J]. IEEE Transactions on Automatic Control,2005,50(12):1936-1955.
    [111]ORTEGA R, SCHAFT A J V D, MASCHKE B, et al. Interconnection and damp-ing assignment passivity-based control of port-controlled hamiltonian systems[J]. Automatica,2002,38(4):585-596.
    [112]ORTEGA R, GARCIA-CANSECO E. Interconnection and damping assignment passivity-based control:a survey [J]. European Journal of Control.2004,10(5):432-450.
    [113]HOLM J K. Control of passive-dynamic robots using artificial potential energy fields[D]. Master's thesis. University of Illinois.2005.
    [114]SPONG M W, BULLO F. Controlled symmetries and passive walking[J]. IEEE Transactions on Automatic Control,2005,50(7):1025-1031.
    [115]SPONG M W, HOLM J, LEE D. Passivity-based control of bipedal locomotion[J]. IEEE Robotics & Automation Magazine,2007,14(2):30-40.
    [116]BYL K, TED RAKE R. Approximate optimal control of the compass gait on rough terrain[C]// Proceedings of 2008 IEEE International Conference on Robotics and Automation,Pasadena, USA.2008:1258-1263.
    [117]IIDA F, TEDRAKE R. Minimalistic control of biped walking in rough terrain[J]. Autonomous Robots,2010,28(3):355-368.
    [118]WISSE M, SCHWAB A L, VAN DER LINDE R Q, et al. How to keep from falling forward:elementary swing leg action for passive dynamic walkers [J]. IEEE Trans-actions on Robotics,2005,21(3):393-401.
    [119]HOBBELEN D G E, WISSE M. Ankle actuation for limit cycle walkers[J]. The International Journal of Robotics Research,2008,27(6):709-735.
    [120]WANG Q, HUANG Y, ZHU J, et al. Effects of foot shape on energetie efficiency and dynamic stability of passive dynamic biped with upper body[J]. International Journal of Humanoid Robottics,2010,7(2):295-313.
    [121]WANG Q, HUANG Y, WANG L. Passive dynamic walking with flat feet and ankle compliance[J]. Robotica,2010,28(3):413-425.
    [122]WANG Q, HUANG Y, ZHU J, et al. Dynamic walking on uneven terrains with passivity-based bipedal robots[J]. Informatics in Control Automation and Robotics, 2011,187-199.
    [123]DONG H, ZHAO M, ZHANG N. High-speed and energy-efficient biped locomotion based on virtual slope walking[J]. Autonomous Robots.2011,1-18.
    [124]OZAWA R,1SHIZAKI J. Passivity-based balance control for a biped robot[C]// Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai, China.2011:550-556.
    [125]HYON S H, EMURA T. Running control of a planar biped robot based on energy-preserving strategy[C]// Proceedings of 2004 IEEE International Conference on Robotics and Automation, New Orleans. USA. vol 4.2004:3791-3796.
    [126]OWAKI K 0 D,ISHIGURO A. Enhancing stability of a passive dynamic running biped by exploiting a nonlinear spring[C]// Proceedings of 2006 IEEE/RSJ Interna-tional Conference on Intelligent Robots and Systems, Beijing, China.2006:4923-4928.
    [127]OWAKI D, OSUKA K, ISHIGURO A. On the embodiment that enables passive dynamic bipedal running[C]// Proceedings of 2008 IEEE International Conference on Robotics and Automation, Psadena, USA.2008.
    [128]ROUTH EJ. A treatise on the stability of a given state of motion:particularly steady motion[M]. MacMillan,1877.
    [129]ROUTH E J. Advanced rigid dynamics[M]. McMillan,1884.
    [130]ARNOLD V I. Encyclopaedia of Mathematical Sciences:Dynamical Systems III[M]. Springer-Verlag,1988.
    [131]MARSDEN J E, SCHEURLE J. Lagrangian reduction and the double spherical pendulum[J]. Journal of Applied Mathematics and Physics,1993,44(1):17-43.
    [132]MARSDEN J E, SCHEURLE J. The reduced euler-lagrange equations[J]. Fields Institute Communications,1993,1:139-164.
    [133]AMES A D, SASTRY S. Hybrid routhian reduction of lagrangian hybrid sys-tcms[C]// Proceedings of 2006 American Control Conference, Minneapolis. USA. 2006:2640-2645.
    [134]AMES A D, SASTRY S. Hybrid geometric reduction of hybrid systems[C]// Pro-ceedings of the 45th IEEE Conference on Decision and Control.San Diego, USA,. 2006:923-929.
    [135]AMES A D. GREGG R D, WENDEL E D B, et al. Towards the geometric reduc-tion of controlled three-dimensional robotic bipedal walkers[C]// Proceedings of 3rd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Nagoya, Japan.2006.
    [136]AMES A D, GREGG R D. Stably extending two-dimensional bipedal walking to three dimensions[C]// Proceedings of American Control Conference, New York, USA.2007:2848-2854.
    [137]AMES A D, GREGG R D, WENDEL E D B, et al. On the geometric reduction of controlled three-dimensional bipedal robotic walkers [J]. Lecture Notes in Control and Information Sciences,2007,366:183-196.
    [138]AMES A D, GREGG R D, SPONG M W. A geometric approach to three-dimensional hipped bipedal robotic walking[C]// Proceedings of Conference on De-cision and Control, New Orleans, USA.2007.
    [139]GREGG R D, SPONG M W. Reduction-based control with application to three-dimensional bipedal walking robots[C]// Proceedings of American Control Confer-ence, Seattle, USA.2008:880-887.
    [140]AMES A D, SINNET R W, WENDEL E D B. Three-dimensional kneed bipedal walking:a hybrid geometric approach[C]// Proceedings of the 12th International Conference on Hybrid Systems:Computation and Control, San Francisco, USA. 2009:16-30.
    [141]GREGG R D, SPONG M W. Reduction-based control of branched chains:applica-tion to three-dimensional bipedal torso robots[C]// Proceedings of 48th IEEE Con-ference on Decision and Control and 28th Chinese Control Conference, Shanghai, China.2009:8166-8173.
    [142]SINNET R W, AMES A D.2d bipedal walking with knees and feet:a hybrid control approach[C]// Proceedings of 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China.2009:3200-3207.
    [143]SINNET R W, AMES A D.3d bipedal walking with knees and feet:A hybrid control approach[C]// Preceedings of 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China.2009:3208-3213.
    [144]GREGG R D, SPONG M W. Reduction-based control of three-dimensional bipedal walking robots[J]. The International Journal of Robotics Research,2010,29(6):680-702.
    [145]MARGARIA R, MARGARIA R. Biomechanics and energetics of muscular exer-cise[M]. Clarendon Press Oxford,1976.
    [146]ALEXANDER R M. Optimization and gaits in the locomotion of vertebrates.[J]. Physiological Reviews,1989,69(4):1199-1227.
    [147]MINETTI A E, ALEXANDER R. A theory of metabolic costs for bipedal gaits[J]. Journal of Theoretical Biology,1997,186(4):467-476.
    [148]SRINIVASAN M, RUIN A A. Computer optimization of a minimal biped model discovers walking and running[J]. Nature,2005.439(7072):72-75.
    [149]RACIC V, PAVIC A, BROWNJOHN J M W. Experimental identification and ana-lytical modelling of human walking forces:Literature review[J]. Journal of Sound and Vibration,2009,326(1):1-49.
    [150]WINTER D A. Biomechanics and motor control of human movement[M]. John Wiley & Sons Inc,2009.
    [151]SARDAIN P. BESSONNET G. Gait analysis of a human walker wearing robot feet as shoes[C]// Proceedings of 2001 IEEE International Conference on Robotics and Automation, Seoul. Korea, vol 3.2001:2285-2292.
    [152]NAKAOKA S, NAKAZAWA A, KANEHIRO F, et al. Task model of lower body motion for a biped humanoid robot to imitate human dances[C]// Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Ed-monton, Canada.2005:3157-3162.
    [153]METTIN U, HERA P X L, FREIDOVICH L B. et al. Motion planning for humanoid robots based on virtual constraints extracted from recorded human movements[J]. Intelligent Service Robotics,2008, 1(4):289-301.
    [154]METTIN U, HERA P L, FREIDOVICH L, et al. Generating human-like motions for an underactuated three-link robot based on the virtual constraints approach[C]// Proceedings of 46th IEEE Conference on Decision and Control,New Orleans, USA. 2007:5138-5143.
    [155]PCHELKIN S, SHIRIAEV A, FREIDOVICH L, et al. Natural sit-down and chair-rise motions for a humanoid robot[C]// Proceedings of 49th IEEE conference on Decision and Control Atlanta,USA.2010:1136-1141.
    [156]AMES A D, COUSINEAU E A, POWELL M J. Dynamically stable robotic walking with nao via human-inspired hybrid zero dynamics[C]//to appear in Proceedings of International Conference on Hybrid Systems:Computation and Control.2012.
    [157]AMES A D. First steps toward automatically generating bipedal robotic walking from human data[C]// Proceedings of 8th International Workshop on Robotic Mo-tion and Control, to appear in Lecture notes in Control and Information Science. 2011.
    [158]SINNET R W, POWELL M J, JIANG S, et al. Compass gait revisited:A human data perspective with extensions to three dimensions[C]// to appear in Proceedings of 50th IEEE Conference on Decision and Control and European Control Conference. 2011.
    [159]SINNET R W. POWELL M J, SHAH R P, et al. A humaninspired hybrid con-trol approach to bipedal robotic walking[C]// Proceedings of the 18th IFAC World Congress, Milano,Italy.2011.
    [160]MUSCATO G, SPAMPINATO G. Kinematical model and control architecture for a human inspired five dof robotic leg[J]. Mechatronics,2007,17(1):45-63.
    [161]MUSCATO G, SPAMPINATO G. A pneumatic human inspired robotic leg:con-trol architecture and kinematical overview[J]. International Journal of Humanoid Robotics,2006,3(1):49-66.
    [162]TAHBOUB K A. Biologically-inspired humanoid postural control[J]. Journal of Physiology-Paris,2009.103(3-5):195-210.
    [163]GRILLNER S, WALLEN P, B RODIN L, et al. Neuronal network generating loco-motor behavior in lamprey:circuitry, transmitters, membrane properties, and simu-lation[J]. Annual Review of Neuroscience,1991,14(1):169-199.
    [164]ENDO G, MORIMOTO J, MATSUBARA T, et al. Learning cpg-based biped lo-comotion with a policy gradient method:Application to a humanoid robot[J]. The International Journal of Robotics Research,2008,27(2):213.
    [165]MATSUBARA T, MORIMOTO J, NAKANISHI J, et al. Learning cpg-based biped locomotion with a policy gradient method[J]. Robotics and Autonomous Systems, 2006,54(11):911-920.
    [166]MORI T, NAKAMURA Y, SATO M A, et al. Reinforcement learning for a cpg-driven biped robot[C]//Proceedings of the 19th national conference on Artifical intelligence, San Jose,USA.2004:623-630.
    [167]TAN F, FU C, CHEN K. Biped blind walking on changing slope with reflex control system[C]// Proceedings of 2010 IEEE International Conference on Robotics and Automation,Anchorage, USA.2010:1709-1714.
    [168]FU C, TAN F, CHEN K. A simple walking strategy for biped walking based on an intermittent sinusoidal oscillator[J]. Robotica,2010,28(6):869-884.
    [169]ARAI H, TANIE K, SHIROMA N. Time-scaling control of an underactuated ma-nipulator[J]. Journal of Robotic Systems,1998,15(9):525-536.
    [170]DAHL O, NIELSEN L. Torque-limited path following by online trajectory'time scaling[J]. IEEE Transactions on Robotics and Automation,1990,6(5):554-561.
    [171]SZADECZKY-KARDOSS E, KISS B. Tracking error based on-line trajectory time scaling[C]// Proceedings of International Conference on Intelligent Engineer-ing Systems, London, UK.2006:80-85.
    [172]CHEVALLEREAU C. Time-scaling control for an underactuated biped robot[J]. IEEE Transactions on Robotics and Automation,2003,19(2):362-368.
    [173]CHEVALLEREAU C, FORMAL'SKY A, DJOUDI D. Tracking a joint path for the walk of an underactuated biped[J]. Robotica,2004,22(1):15-28.
    [174]HOLM J K, LEE D, SPONG M W. Time-scaling trajectories of passive-dynamic bipedal robots[C]// Proceedings of 2007 IEEE International Conference on Robotics and Automation, Roma, Italy.2007:3603-3608.
    [175]HOLM J K. Gait regulation for bipedal locomotion[D], PhD thesis. University of Illinois at Urbana-Champaign,2009.
    [176]FARRELL K D, CHEVALLEREAU C, WESTERVELT E R. Energetic effects of adding springs at the passive ankles of a walking biped robot[C]// Proceedings of 2007 IEEE International Conference on Robotics and Automation,Roma,ltaly. 2007:3591-3596.
    [177]CHEVALLEREAU C, DJOUDI D, GRIZZLE J W. Stable bipedal walking with foot rotation through direct regulation of the zero moment point[J]. IEEE Transactions on Robotics,2008,24(2):390-401.
    [178]TLALOLINI D, CHEVALLEREAU C, AOUSTIN Y. Optimal reference walking with rotation of the stance feet in single support for a 3d biped[C]// Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France.2008:1091-1096.
    [179]TLALOLINI D, CHEVALLEREAU C, AOUSTIN Y. Human-like walking:Optimal motion of a bipedal robot with toe-rotation motion[J]. IEEE/ASME Transactions on Mechatronics,2011,16(2).
    [180]HU Y, YAN G, LIN Z. Time-scaling control for passive walking of underactuated robots under slope-changing action[C]// Proceedings of 49th IEEE conference on Decision and Control, Atlanta,USA.2010:1116-1121.
    [181]HU Y, YAN G, LIN Z. Gait generation and control for biped robots with underactu-ation degree one[J]. Automatica,2011,47(8):1605-1616.
    [182]OLFATI-SABER R. Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles[D]. PhD thesis. Massachusetts Insti-tute of Technology,2000.
    [183]ANEKE N P I. Control of underactuated mechanical systems[M]. Technische Uni-versiteit Eindhoven,2003.
    [184]ALBAHKALI T. An impulse-momentum approach to control of a class of underac-tuated mechanical systems[D]. PhD thesis. Michigan State University,2010.
    [185]SPONG M W. Underactuated mechanical systems[J]. Control Problems in Robotics and Automation,1998,135-150.
    [186]REYHANOGLU M, VAN DER SCHAFT A, MCCLAMROCH N H. et al. Dynam-ics and control of a class of underactuated mechanical systems[J]. IEEE Transac-tions on Automatic Control,1999.44(9):1663-1671.
    [187]GRIZZLE J W, MOOG C H. CHEVALLEREAU C. Nonlinear control of mechani-cal systems with an unactuated cyclic variable[J]. IEEE Transactions on Automatic Control,2005,50(5):559-576.
    [188]SHIRIAEV A, PERRAM J W, DE WIT C C. Constructive tool for orbital stabi-lization of underactuated nonlinear systems:Virtual constraints approach[J]. IEEE Transactions on Automatic Control,2005.50(8):1164-1176.
    [189]TEDRAKE R. Underactuated robotics:Learning, planning, and control for efficient and agile machines:Course notes for mit 6.832[J]. Working draft edition,2009.
    [190]XU R, OZGUNER U. Sliding mode control of a class of underactuated systems[J]. Automatica,2008,44(1):233-241.
    [191]VIOLA G. Control of underactuated mechanical systems via passivity-based and geometric techniques[D]. PhD thesis. University of Rome Tor Vergata,2008.
    [192]DE WIT C C, ESPIAU B, URREA C. Orbital stabilization of underactuated me-chanical systems[C]// Proceedings of 15th IFAC World Congress, Barcelona, Spain. 2002.
    [193]GRIZZLE J W, ABBA G, PLESTAN F. Asymptotically stable walking for biped robots:analysis viasystems with impulse effects[J]. IEEE Transactions on Auto-matic Control,2001,46(1):51-64.
    [194]WESTERVELT E R, GRIZZLE J W, KODITSCHEK D E. Hybrid zero dynamics of planar biped walkers[J]. IEEE Transactions on Automatic Control,2003,48(1):42-56.
    [195]MORRIS B, GRIZZLE J W. A restricted poincare map for determining exponen-tially stable periodic orbits in systems with impulse effects:Application to bipedal robots[C]// Proceedings of 44th IEEE Conference on Decision and Control and 2005 European Control Conference, Seville, Spain.2005:4199-4206.
    [196]MIOSSEC S, AOUSTIN Y. A simplified stability study for a biped walk with un-deractuated and overactuated phases[J]. The International Journal of Robotics Re-search,2005,24(7):537-551.
    [197]WESTERVELT E R, BUCHE G. GRIZZLE J W. Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds[J]. The International Journal of Robotics Research,2004,23(6):559-582.
    [198]CHEVALLEREAU C, SARDAIN P. Design and actuation optimization of a 4 axes biped robot for walking and running[C]// Proceedings of IEEE International Con-ference on Robotics and Automation, San Francisco, USA.2000:3365-3370.
    [199]CHEMORI A, LORIA A. Control of a planar underactuated biped on a complete walking cycle[J]. IEEE Transactions on Automatic Control,2004,49(5):838-843.
    [200]CHEVALLEREAU C, GRIZZLE J W, SHIH C. Asymptotically stable walking of a five-link underactuated 3d bipedal robot[J]. IEEE Transactions on Robotics,2009, 25(1):37-50.
    [201]SHIH C, GRIZZLE J W, CHEVALLEREAU C. From stable walking to steering of a 3d bipedal robot with passive point feet[J]. Robotica,2010.
    [202]WESTERVELT E R, MORRIS B, FARRELL K D. Sample-based hzd control for robustness and slope invariance of planar passive bipedal gaits[C]// Proceedings of 14th Mediterancen conference on Control and Automation, Ancona, Italy.2006.
    [203]WESTERVELT E R, MORRIS B, FARRELL K D. Analysis results and tools for the control of planar bipedal gaits using hybrid zero dynamics[J]. Autonomous Robots, 2007,23(2):131-145.
    [204]YANG T. Control of aperiodic walking and the energetic effects of parallel joint compliance of planar bipedal robots[D]. PhD thesis. Ohio State University,2007.
    [205]YANG T, WESTERVELT E R, SERRANI A, et al. A framework for the control of stable aperiodic walking in underactuated planar bipeds[J]. Autonomous Robots, 2009,27(3):277-290.
    [206]WANG T, CHEVALLEREAU C. Stability analysis and time-varying walking con-trol for an under-actuated planar biped robot[J]. Robotics and Autonomous Systems, 2011,59(6):444-56.
    [207]GOSWAMI D, VADAKKEPAT P. Planar bipedal jumping gaits with stable land-ing[J]. IEEE Transactions on Robotics,2009,25(5):1030-1046.
    [208]CHEVALLEREAU C, AOUSTIN Y. Optimal reference trajectories for walking and running of a biped robot[J]. Robotica,2001,19(5):557-569.
    [209]CHEVALLEREAU C, WESTERVELT E R. GRIZZLE J W. Asymptotic stabiliza-tion of a five-link, four-actuator, planar bipedal runner[C]// Proceedings of 43rd IEEE Conference on Decision and Control, Nassau, Bahamas.2004:303-310.
    [210]CHEVALLEREAU C, WESTERVELT E R, GRIZZLE J W. Asymptotically sta-ble running for a five-link, four-actuator, planar bipedal robot [J]. The International Journal of Robotics Research,2005,24(6):431-464.
    [211]MORRIS B, WESTERVELT E R. CHEVALLEREAU C, et al. Achieving bipedal running with rabbit:Six steps toward infinity[J]. Lecture Notes in Control and In-formation Sciences,2006,340:277-297.
    [212]SABOURIN C, BRUNEAU O, BUCHE G. Control strategy for the robust dynamic walk of a biped robot[J]. The International Journal of Robotics Research,2006, 25(9):843-860.
    [213]MORRIS B, GRIZZLE J W. Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots[J]. IEEE Transac-tions on Automatic Control,2009,54(8):1751-1764.
    [214]MORRIS B, GRIZZLE J W. Hybrid invariance in bipedal robots with series compli-ant actuators[C]// Proceedings of the 45th IEEE Conference on Decision and Con-trol, San Diego, USA.2006:4793-4800.
    [215]POULAKAKIS I, GRIZZLE J W. The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper[J]. IEEE Transactions on Automatic Control,2009,54(8):1779-1793.
    [216]POULAKAKIS I, GRIZZLE J W. Formal embedding of the spring loaded inverted pendulum in an asymmetric hopper[C]// Proceedings of the European Control Con-ference, Kos, Greece.2007.
    [217]POULAKAKIS I, GRIZZLE J W. Monopedal running control:Slip embedding and virtual constraint controllers[C]// Proceedings of 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,San Diego, USA.2007:323-330.
    [218]POULAKAKIS I. Stabilizing monopedal robot running:Reduction-by-feedback and compliant hybrid zero dynamics[D]. PhD thesis. University of Michigan,2009.
    [219]POULAKAKIS I, GRIZZLE J W. Modeling and control of the monopedal robot thumper[C]// Proceedins of 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan.2009:3327-3334.
    [220]PARK H W, SREENATH K, HURST J W, et al. Identification of a bipedal robot with a compliant drivetrain[J]. IEEE Control Systems,2011,31(2):63-88.
    [221]PARK H W, SREENATH K, HURST J W, et al. Identification and dynamic model of a bipedal robot with a cable-differential-based compliant drivetrain[R]. University of Michigan Control Group Report, No. CGR 10-06,2010.
    [222]SREENATH K, PARK H W, POULAKAKIS I, et al. Design and experimental implementation of a compliant hybrid zero dynamics controller for walking on mabel[C]// Proceedings of 49th IEEE conference on Decision and Control, At-lanta,USA.2010:280-287.
    [223]SREENATH K. PARK H W, POULAKAKIS I. et al. A compliant hybrid zero dy-namics controller for stable, efficient and fast bipedal walking on mabcl[J]. The International Journal of Robotics Research,2011,30(9):1170-1193.
    [224]PARK H W, SREENATH K, RAMEZANI A, et al. Switching control design for ac-commodating large step-down disturbances in bipedal robot walking[C]//submitted to 2012 IEEE International Conference on Robotics and Automation.2012.
    [225]SREENATH K. Feedback control of a bipedal walker and runner with compli-ance[D]. PhD thesis. University of Michigan,2011.
    [226]SREENATH K, PARK H W, GRIZZLE J W. Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on mabel[J]. submitted to The International Journal of Robotics Research,2012.
    [227]SREENATH K, PARK H W, GRIZZLE J W. Design and experimental implementa-tion of a compliant hybrid zero dynamics controller with active force control for run-ning on mabel[C]// submitted to 2012 IEEE International Conference on Robotics and Automation.2012.
    [228]GRIZZLE J W. CHEVALLEREAU C, AMES A D, et al.3d bipedal robotic walking: Models, feedback control, and open problems[C]// Proceedings of IFAC Symposium on Nonlinear Control Systems, Bologna, Italy.2010.
    [229]LEONOV G A. Generalization of the andronov-vitt theorem[J]. Regular and chaotic dynamics,2006,11(2):281-289.
    [230]NIELSEN C. MAGGIORE M. Transverse feedback linearization of multi-input systems[C]// Proceedings of 44th IEEE Conference on Decision and Control and 2005 European Control Conference.2005:4897-4902.
    [231]SHIRIAEV A, ROBERTSSON A, PERRAM J, et al. Periodic motion planning for virtually constrained euler-lagrange systems[J]. Systems & control letters,2006, 55(11):900-907.
    [232]FREIDOVICH L, ROBERTSSON A, SHIRIAEV A, et al. Periodic motions of the pendubot via virtual holonomic constraints:Theory and experiments[J]. Automat-ica,2008,44(3):785-791.
    [233]FREIDOVICH L, GORDILLO F, A.SHIRIAEV, et al. On generating pre-defined periodic motions in underactuated mechanical systems:the cart-pendulum exam-ple[C]// Proceedings of 18th IFAC World Congress, Milano, Italy. vol 18.2011: 4588-4593.
    [234]METTIN U, SHIRIAEV A S, BATZ G, et al. Ball dribbling with an underactuated continuous-time control phase[C]// Proceedings of 2010 IEEE International Confer-ence on Robotics and Automation,Anchorage, USA.2010:4669-4674.
    [235]NAKAURA S, KAWAIDA Y, MATSUMOTO T, et al. Enduring rotatory motion control of devil stick[C]// Proceedings of the 6th IFAC Symposium on Nonlinear Control Systems, Stuttgart, Germany.2004:1073-1078.
    [236]SHIRIAEV A S, B.FREIDOVICH L. Transverse linearization for impulsive me-chanical systems with one passive link[J]. IEEE Transactions on Automatic Control, 2009,54(12):2882-2888.
    [237]TANABE Y, KANEKO K. Behavior of a falling paper[J]. Physical review letters, 1994,73(10):1372-1375.
    [238]FREIDOVICH L B, SHIRIAEV A S. Transverse linearization for mechanical sys-tems with passive links, impulse effects, and friction forces[C]// Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Confer-ence, Shanghai, China.2009:6490-6495.
    [239]SHIRIAEV A S, FREIDOVICH L B, MANCHESTER I R. Can we make a robot ballerina perform a pirouette? orbital stabilization of periodic motions of underactu-ated mechanical systems[J]. Annual Reviews in Control,2008,32(2):200-211.
    [240]SHIRIAEV A S, FREIDOVICH L B, MANCHESTER I R. Periodic motion plan-ning and analytical computation of transverse linearizations for hybrid mechan-ical systems[C]// Proceedings of 47th IEEE Conference on Decision and Con-trol,Cancun, Mexico.2008:4326-4331.
    [241]FREIDOVICH L. SHIRIAEV A, MANCHESTER I. Stability analysis and control design for an underactuated walking robot via computation of a transverse lincariza-tion[C]// Proceedings of the 17th IFAC World Congress, Seoul, Korea.2008:10.
    [242]MANCHESTER I R. METTIN U, IIDA F, et al. Stable dynamic walking over un-even terrain[J]. The International Journal of Robotics Research,2011.30(3):265.
    [243]MANCHESTER I R, METTIN U,IIDA F, et al. Stable dynamic walking over rough terrain:Theory and experiment[C]// Proceedings of the International Symposium on Robotics Research.2009.
    [244]SONG G, ZEFRAN M. Underactuated dynamic three-dimensional bipedal walk-ing[C]// Proceedings 2006 IEEE International Conference on Robotics and Automa-tion,Orlando.USA.2006:854-859.
    [245]SHIRIAEV A S, FREIDOVICH L B, GUSEV S V. Transverse linearization for me-chanical systems with several passive degrees of freedom with applications to orbital stabilization[C]// Proceedings of 2009 conference on American Control Conference, St. Louis, USA.2009:3039-3044.
    [246]SHIRIAEV A S, FREIDOVICH L B, GUSEV S V. Transverse linearization for controlled mechanical systems with several passive degrees of freedom[J]. IEEE Transactions on Automatic Control,2010,55(4):893-906.
    [247]FREIDOVICH L B, SHIRIAEV A S. Transverse linearization for underactuated nonholonomic mechanical systems with application to orbital stabilization[J]. Dis-tributed Decision Making and Control,2011,245-258.
    [248]HERA P X L, SHIRIAEV A S, FREIDOVICH L B. et al. Gait synthesis for a three-link planar biped walker with one actuator[C]// Proceedings of 2010 IEEE International Conference on Robotics and Automation, Anchorage, USA.2010: 1715-1720.
    [249]MANCHESTER I. Transverse dynamics and regions of stability for nonlinear hy-brid limit cycles. arXiv:1010.2241 [math.DS],2010.
    [250]PARRILO P A. Structured semidefinite programs and semialgebraic geometry meth-ods in robustness and optimization[D]. PhD thesis. California Institute of Technol-ogy,2000.
    [251]PARRILO P A. Semidefinite programming relaxations for semialgebraic prob-lems[J]. Mathematical Programming,2003,96(2):293-320.
    [252]TOPCU U, PACKARD A, SEILER P. Local stability analysis using simulations and sum-of-squares programming[J]. Automatica,2008,44(10):2669-2675.
    [253]TAN W, PACKARD A. Stability region analysis using polynomial and composite polynomial lyapunov functions and sum-of-squares programming[J]. IEEE Trans-actions on Automatic Control,2008,53(2):565-571.
    [254]TED RAKE R. Lqr-trees:Feedback motion planning on sparse randomized trees[C]// Proceedings of the Robotics:Science and Systems, Washington, USA. 2009:17-24.
    [255]TEDRAKE R, MANCHESTER I R, TOBENKIN M, et al. Lqr-trees:Feedback motion planning via sums-of-squares verification[J]. The International Journal of Robotics Research,2010,29(8):1038-1052.
    [256]TOBENKIN M M, MANCHESTER I R, TEDRAKE R. Invariant funnels around trajectories using sum-of-squares programming. arXiv:1010.3013 [math.DS],2010.
    [257]REIST P, TEDRAKE R. Simulation-based lqr-trees with input and state con-straints[C]// Proceedings of 2010 IEEE International Conference on Robotics and Automation,Anchorage, USA.2010:5504-5510.
    [258]MANCHESTER I, TOBENKIN M M, LEVASHOV M, et al. Regions of attraction for hybrid limit cycles of walking robots. arXiv:1010.2247 [math.DS],2010.
    [259]CHEVALLEREAU C. Bipedal robots:modeling, design and walking synthesis[M]. Wiley-ISTE,2009.
    [260]MURRAY R M, LI Z, SASTRY S S. A mathematical introduction to robotic ma-nipulation[M]. CRC,1994.
    [261]HOLM J K, SPONG M W. Kinetic energy shaping for gait regulation of underac-tuated bipeds[C]// Proceedings of IEEE International Conference on Control Appli-cations, San Antonio, USA.2008:1232-1238.
    [262]ROUCHE N, HABETS P, LALOY M, ct al. Stability theory by Liapunov's direct method[M]. Springer-Verlag,1977.
    [263]FORREST A R. Interactive interpolation and approximation by bezier polynomi-als[J]. The Computer Journal,1972.15(1):71-79.
    [264]ALFELD P. NEAMTU M, SCHUMAKER L L. Bernstein-bezier polynomials on spheres and sphere-like surfaces[J]. Computer Aided Geometric Design,1996. 13(4):333-349.
    [265]ROGERS D F. ADAMS J A. Mathematical elements for computer graphics[M]. McGraw-Hill,1990.
    [266]HU Y, YAN G, LIN Z. Stable walking for compass-like biped robot in complex environments[C]// Proceedings of American Control Conference, Baltimore, USA. 2010:3208-3213.
    [267]SCHEINT M, SOBOTKA M,, et al. Virtual holonomic constraint approach for planar bipedal walking robots extended to double support[C]// Proceedings of 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China.2009:8180-8185.
    [268]DE WIT C C. On the concept of virtual constraints as a tool for walking robot control and balancing[J]. Annual Reviews in Control,2004,28(2):157-166.
    [269]CONSOLINI L, MAGGIORE M. Control of a bicycle using virtual holonomic constraints[C]// Proceedings of 49th IEEE conference on Decision and Control, At-lanta,USA.2010:5204-5209.
    [270]CONSOLINI L, MAGGIORE M. Virtual holonomic constraints for euler-lagrange systems[C]// Proceedings of the 8th IFAC Symposium on Nonlinear Control Sys-tems, Bologna, Italy.2010.
    [271]SPONG M W, HUTCHINSON S, VIDYASAGAR M. Robot Dynamics and Con-trol[M]. John Wiley & Sons,2004.
    [272]RAIBERT M H. Legged Robots That Balance[M]. MIT Press,1986.
    [273]VAKAKIS A F, BURDICK J W. Chaotic motions in the dynamics of a hopping robot[C]// Proceedings of 1990 IEEE International Conference on Robotics and Au-tomation, Tsukuba, Japan.1990:1464-1469.
    [274]SATO A, BUEHLER M. A planar hopping robot with one actuator:design, sim-ulation, and experimental results[C]// Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan.2004:3540-3545.
    [275]POULAKAKIS I, PAPADOPOULOS E, BUEHLER M. On the stability of the passive dynamics of quadrupedal running with a bounding gait[J]. The International Journal of Robotics Research,2006,25(7):669-687.
    [276]SATOSHI S, KATSUHISA F, SHOSHIRO H. Passive walking towards running[J]. Mathematical and Computer Modelling of Dynamical Systems,2005,11(4):371-395.
    [277]BORZOVA E, HURMUZLU Y. Passively walking five-link robot[J]. Automatica, 2004,40(4):621-629.
    [278]WISSE M, FELIKSDAL G, FRANKKENHUYZEN J V, et al. Passive-based walk-ing robot[J]. IEEE Robotics & Automation Magazine,2007.14(2):52-62.
    [279]PARKER T S, CHUA L O. Practical Numerical Algorithms for Chaotic Sys-tems[M]. Springer Vcrlag,1989.
    [280]WESTERVELT E R, GRIZZLE J W, DE WIT C C. Switching and pi control of walking motions of planar biped walkers[J]. IEEE Transactions on Automatic Con-trol,2003,48(2):308-312.
    [281]GRIZZLE J W, WESTERVELT E R, DE WIT C. Event-based pi control of an underactuated biped walker[C]// Proceedings of 42nd IEEE Conference on Decision and Control, Maui, USA. vol 3.2003:3091-3096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700