自主步行机器人运动控制及相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于结构上的优势,自主步行机器人相对于履带式机器人和轮式机器人具有更广泛的适用范围。自主步行机器人往往工作在动态不确定环境中,这对机器人的运动能力、对环境的适应性和灵活性、对自身运动状态的实时辨识能力提出了很大的挑战。过去对步行机器人的运动设计、行走状态稳定性等的研究取得了一系列的成果,但随着机器人技术的发展所带来的机器人平台性能的增强以及机器人所面临任务的复杂化,对自主步行机器人的行走设计、运动状态分析及标定能力提出了更高的要求。为了提升步行机器人的行走速度,以及在高速行走时对自身运动的快速理解识别能力,从而提高机器人在未知环境中的工作能力,本文以AIBO四足机器人为研究平台,从以下三个方面对自主步行机器人的运动控制进行了研究:
     1.步行机器人的步态轨迹生成及优化
     以前的基于步态规划的步行机器人行走设计,在完成机器人腿部建模及相应的逆运动学解算后,通常是采用如矩形、梯形等固定轨迹设计机器人腿部的运动,缺乏对机器人行走的最优步态轨迹的研究,难以保证其行走设计在各种不同的条件和环境下都能达到较好的结果。本文在步行机器人步态设计基础上,提出了采用曲线拟合的方法在机器人肢体运动空间内生成步态轨迹曲线,通过引入遗传算法,让机器人能够自主的搜索良好的步态轨迹,增强了机器人的运动能力。
     2.步行机器人的行走状态分析模型
     行走速度的提高对步行机器人行走的稳定性提出了更高的要求,已有的研究主要关注机器人在行走是否发生翻转,缺乏对碰撞定量描述、行走稳定程度等方面的考虑。针对这一问题,结合步行机器人行走的动力学特性,本文对机器人的加速度传感器信息进行离散傅立叶变换,建立了行走相关特征值的概率模型,通过使用马氏距离作为判定标准,对步行机器人的行走稳定性给出定量描述。AIBO四足步行机器人平台上的实验证明,本文提出的模型能够实时反应机器人的行走特性,帮助机器人在行走状态受环境影响发生改变时,根据行走特征及时调整运动,保证其稳定性。
     3.自标定的步行机器人行走状态模型
     相对轮式机器人和履带式机器人,步行机器人的行走往往更为复杂,为了准确标定其运动状态,特别是运动频繁改变时,必须提高机器人运动中的在线自标定能力,以增强其对自身状态的快速理解识别能力。因此,以提高机器人对自身行走状态模型的标定能力为出发点,本文结合文献[79]提出的运动模型和本文建立的基于加速度传感器信息的行走状态传感器模型,通过运动模型和传感器模型间的互标定,使步行机器人能够在正常行走下在线完成对行走状态的自标定。
     本文以AIBO四足机器人作为实验平台,分别对上述三方面的研究进行了实验并取得了良好的实验结果。实验结果表明,本文所提出的步态轨迹生成方法能有效的提高步行机器人的行走速度,基于加速度传感器信息的行走状态模型可以定量描述步行机器人运动的稳定性,自标定的行走状态模型能够让步行机器人在行走时在线标定自身行走状态。
     通过上述三方面的工作,本文在自主步行机器人的行走设计、优化,行走状态的辨识,以及行走状态模型的自标定进行了研究,这些研究结果完善了步行机器人的运动控制,增强了机器人对自身运动状态的理解能力以及对未知环境的适应能力。
Because of the advantage of structure, the work area of autonomous legged robot is broader than that of crawler robot and wheeled robot. Autonomous legged robot often works in dynamic uncertain environment; it's a great challenge for legged robot in locomotion, flexibility and real-time walking status recognition. A lot of research results have been achieved in locomotion design and walking stability. But, with the development of robot technology and the enhanced performance of robot platform, the task is also more complicated than before, and the higher demand is put forward in walking design, walking status analysis and calibration for autonomous legged robot. In order to improve the walking speed of legged robot and increase the capability of legged robot to understand its own status in high-speed movement to enhance robot work ability in unknown environment, with the research platform, quadrupedal robot AIBO, this paper studies the locomotion control of autonomous legged robot in the following three aspects:
     1. The gait locus generation and optimization of legged robot
     In the previous walking design of legged robot which is based on gait design, the rectangle locus and trapezoid locus are often used after the leg model building and inverse kinematic, the lack of research of optimization gait locus makes it difficult for the walking design to work well in different environments and conditions. Based on the gait design, this paper presents a curve fitting planning method to generate the gait locus in the work space of the limb of legged robot while incorporating genetic algorithms, it makes legged robot search gait locus automatically to enhance the robot movement ability.
     2. The walking state analysis model of legged robot
     With the development of legged robot walking speed, the higher demand of walking stability has been put forward. Many research results concentrate on whether turnover is occurred, lack of ideas about the quantitative description of collision and walking stability. Bearing this problem in mind, this paper presents a possibility walking state analysis model for legged robot which is based on the feedback of acceleration sensor. The feedback of acceleration sensor is processed by Discrete Fourier Transform while incorporating the dynamic analysis of the walking of legged robot firstly, then, according to be estimated by Mahalanobis Distance, the result can express the legged robot walking status quantitatively. Using quadrupled robots as a platform for evaluation, this model is shown to be able to descript the walking of legged robot and express the walking status in real time, and it could be helpful for legged robot to adjust its locomotion with the change of environment to ensure the walking stability of legged robot.
     3. A self-calibration walking state model of legged robot
     The walking of legged robot is more complicated than crawler robot and wheeled robot, the walking state calibration for legged robot is very important, especially when motion is changed rapidly, so the on-line walking state model self-calibration capability of legged robot must be enhanced to increase the capability of understanding its own status in high-speed movement. With the idea of improving the calibration capability of legged robot, by combining the motion model of paper[79] and the walking state model which is based on acceleration sensor, this paper presents a self-calibration model for the walking state of legged robot. Utilizing the inter-calibration between motion model and sensor model, legged robot can on-line self-calibrate its own walking state.
     Using quadrupled robots as a platform for evaluation, this paper makes the experimental study in the three research aspects and achieves good results. The experimental results show that the gait locus generation method can improve the walking speed of legged robot effectively, the walking state model which is based the feedback of acceleration sensor can descript the walking stability of legged robot quantitatively, and the self-calibration walking model make legged robot be able to calibrate its own walking state online.
     Through the three aspects, this paper studies in the walking design, optimization, identification of walking state and self-calibration of walking state model of autonomous legged robot. The research results improve the walking design of legged robot, enhance the performance of legged robot with the capability of understanding its own walking status and make legged robot be able to adapt to different environments.
引文
[1]金周英.关于我国智能机器人发展的几点思考[J].机器人技术与应用,2001,(4):527.
    [2]Miller D P.Multiple behavior-controlled micro-robots for planetary surface missions[A].Proceedings of the IEEE International Conference on Systems,Man and Cybernetics[C].USA:IEEE,1990.289 - 292.
    [3]Delcomyn F,Nelson M E.Architectures for a biomimetic hexapod robot[J].Robotics and Autonomous Systems,2000,30(1):5 - 15.
    [4]Bares J E,WhittakerW L.Walking robot with a circulating gait[A].Proceedings of the 1990IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS90)[C].USA:SPIE,1991.809 - 816.
    [5]Celaya E,Porta JM.Control of a six-legged robot walking on abrupt terrain[A].Proceedings of the 1996 IEEE International Conference on Robotics and Automation[C].USA:IEEE,1996.2731 - 2736.
    [6]Clark J E,Cham J G,Bailey SA,et al.Biomimetic design and fabrication of a hexapedal running robot[A].Proceedings of the IEEE International Conference on Robotics and Automation[C].USA:IEEE,2001.3643 - 3649.
    [7]Altendorfer R,Moore N,Komsuoglu H,et al.RHex:a biologically inspired hexapod runner [J].Autonomous Robots,2001,11(3):207 - 213.
    [8]Yan G Z,Dai Y.A novel biomimetic hexapod micro-robot[A].Proceedings of the 2002IEEE International Symposium on Microme-chatronics and Human Science[C].USA:IEEE,2002.79 - 84.
    [9]Nelson GM,Quinn R D.Posture control of a cockroach-like robot[A].Proceedings of the 1998 IEEE International Conference on Robotics and Automation[C].USA:IEEE,1998.157-162.
    [10]Simmons R,Krotkov E.An integrated walking system for the ambler planetary rover[A].Proceedings of the 1991 IEEE International Conference on Robotics and Automation[C].Washington:IEEE Computer Society Press,1991.2086 - 2091.
    [11]Tee TW,Low K H,Ng H Y,et al.Mechatronics design and gait implementation of a quadruped legged robot[A].The Seventh International Conference on Control,Automation, Robotics and Vision[C].USA:IEEE,2002.826-832.
    [12]Kitano H,Asada M,Osawa E,et al.RoboCup:A Challenge Problem for AI[J].AI Magazine,1997,18(1):73-85.
    [13]陈小平.国际机器人足球(RoboCup)最新进展[J].机器人技术与应用,2001,1:25-28.
    [14]M.伍科布拉托维奇著,马培荪,沈乃熏,译.步行机器人和动力型假肢[M].北京:科学出版社,1983.
    [15]Capek K.Rossum's Universal Robots.http://capek.misto.cz/english/,1920
    [16]孟庆春,齐勇,张淑军,杜春侠,殷波,高云。智能机器人及其发展[J]。中国海洋大学学报,2004,34(5):831-838
    [17]Buehler M.Dynamic locomotion with one,four and six-legged robots[J].Journal of the Robotics Society of Japan,2002,20(3):15 - 20
    [18]刘静,赵晓光,谭民.腿式机器人的研究综述[J].机器人,2006,28(1):81-88.
    [19]Pratt J,Dilworth P,Pratt G.Virtual model control of a bipedal walking robot[A].Proceedings of the IEEE International Conference on Robotics and Automation[C].USA:IEEE Computer Society Press,1997.193 - 198.
    [20]谢涛,徐建峰,张永学,等.仿人机器人的研究历史、现状及展望[J].机器人,2002,24(4):367-374.
    [21]贾丁.仿人机器人概述[J].机器人技术与应用,2002,(5):6-7.
    [22]机器人ASIMO[EB/OL].hnp://zhouxiaohu.blogbus.com/logs/2004/02/91634.html,2004.
    [23]HONDA ASIMO亲善大使来台[EB/OL].http://www.eauto.com.tw/perl/newcar/article.pl? CMD=detail&ARTNO=03090013 &MAG_CAT= 01&OTHER=E,2003.
    [24]日本本田公司的人形机器人[J].机器人技术与应用,2000,(1):21-23.
    [25]我国仿人机器人研究实现重大突破-“十五”863计划机器人技术主题近期成果简介[J].机器人技术与应用,2003,(1):18-19.
    [26]刘英卓,张艳萍.仿人机器人发展状况和挑战[J].辽宁工学院学报,2003,23(4):1-5.
    [27]合肥晚报.国产仿人机器人诞生[EB/OL].http://www.hf365.com/epublish/gb/paper2/20021118//h class000200006wz23944.htm.2002.
    [28]Kagami S,Okada K,KabasawaM,et al.A vision-based legged robot as a research platform[A].Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems[C].USA:IEEE,1998.235 - 240.
    [29] Buehler M, Saranli U, Papadopoulos D, et al. Dynamic locomotion with four and six-legged robots[A]. International Symposium on Adaptive Motion of Animals and Machines[C]. http: // rhex. seas.upenn. edu / rhex/publications. php, 2000.
    [30] Pack D J, Kak A C. A simplified forward gait control for a quadruped walking robot[A]. Proceedings of the 1994 IEEE /RSJ /GI International Conference on Intelligent Robots and Systems[C].USA: IEEE, 1994.1011 -1018.
    [31] Pack D J, Kang H S. An Omnidirectional Gait Control Using a Graph Search Method for a Quadruped Walking Robot. IEEE Int. Conf. on Robotics and Automation, Nagoya, Japan, 1995.
    [32] Hirose S H. A Study of Design and Control of a Quadruped Walking Vehicle. The Int. J. of Robotics Research, 1984, 3(2): 113 ~133
    [33] McGeer T. Passive dynamic walking[ J ]. The International Journal of Robotics Research, 1990,9 (2): 62 - 82.
    [34] Sahota M K. Real time intelligent behavior in dynamic enviroments: Soccer playing robots[Master Thesis]. Canada: University of British Columbia, 1993
    [35] Krotkov E, Simmons R, Cozman F, et al. Safeguarded teleoperation for lunar rovers: from human factors to field trials. Proceedings of IEEE Planetary Rover Technology and System Workshop, Minn, MN, USA, 1996
    [36] Achim S, Stone P, Veloso M. Building a dedicated robotic soccer system. Proceedings of the IROS-6 Workshop on RoboCup, 1996
    [37] Veloso M, Stone P, Han K, et al. Cmunited: A team of robotic soccer agents collaborating in an adversarial environment. Proceedings of the First International Workshop on RoboCup, 1997
    [38] Stone P, Veloso M, Achim S. Collaboration and learning in robotic soccer. Proceedings of the Micro Robot World Cup Soccer Tournament, Taejon, Korea, 1996
    [39] SONY Corporation, Japan, Sony Dog AIBO hardware specification, 2002
    [40]张霄汉,陈小平,李嘉玲,李响.一种基于视觉的步行机器人 Monte Carlo自定位系统. 机器人.2006,Vol 28(4)
    [41] Christian Ridderstrom. Legged Locomotion: Balance, Control and Tools - From Equation to Action [D]. Ph.D, Royal Institute of Technology, Sweden. 2003.
    [42] J. E. Pratt. Virtual Model Control of A Biped Walking Robot [D]. Master, Cambridge, MA: Massachusetts Institute of Technology,1995.
    [43]M.Hildebrand.Symmetrical gaits of horses.Science,150:701-708,1965.
    [44]R.McN.Alexander.Optimization and gaits in the locomotion of vertebrates.Phys.Rev.,69(4):1199-1227,1989.
    [45]H.Adachi.Development of quadruped walking robots and their gait study.Journal of Robotics and Mechatronics,1993,6(5):548-560
    [46]胡凌云,孙增圻.双足机器人步态控制研究方法综述[J].计算机研究和发展,2005,42(5):728-733。
    [47]Craig J J.Introduction to Robotics:Mechanics and Control.Second edition,Addison-Wesley Longman Publishing Co.1989.
    [48]毛勇,王家廞,贾培发,韩灼.双足被动步行研究综述[J].机器人,2007,29(3):274-280.
    [49]Endo G,Morimoto J,Nakanishi J,et al.An empirical exploration of a neural oscillator for biped locomotion control[A].Proceedings of the IEEE International Conference on Robotics and Automation[C].Piscataway,NJ,USA:IEEE,2004.3036 - 3042.
    [50]Nakanishi J,Morimoto J,Endo G,et al.An empirical exploration of phase resetting for robust biped locomotion with dynamical movement primitives[A].Proceedings of the IEEE /RSJ International Conference on Intelligent Robots and Systems[C].New York,NY,USA:IEEE,2004.919-924.
    [51]Tedrake R,Zhang TW,Seung H S.Stochastic policy gradient reinforcement learning on a simple 3D biped[A].Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Sys2tems[C].New York,NY,USA:IEEE,2004.2849 - 2854.
    [52]Wisse M.Three additions to passive dynamic walking;actuation,an upper body,and 3D stability[A].Proceedings of the IEEE International Conference on Humanoid Robots[C].New York,NJ,USA:IEEE,2004.113 - 132.
    [53]Morimoto J,Nakanishi J,Endo E,et al.Poincare-map-based reinforcement learning for biped walking[A].Proceedings of the IEEE International Conference on Robotics and Automation[C].New York,NY,USA:IEEE,2005.2381 - 2386.
    [54]Geng T,Porr B,Worgotter F.Fast biped walking with a sensor-driven neuronal controller and real-time online learning[J].The International Journal of Robotics Research,2006,25(3):243 - 259.
    [55]Collins S,Ruina A,Tedrake R,et al.Efficient bipedal robots based on passive2dynamic walkers[J].Science,2005,307(5712):1082 - 1085.
    [56]林玎玎,刘莉,赵建东.双足步行机器人的ZMP-COP检测及研究[J].机器人,2004,26(4):368.
    [57]包志军,马培荪,等。用Zero Moment Point描述类人型机器人步行稳定的不完善性探讨[J]。上海交通大学学报,2001,35(1):68-71
    [58]Chatterjee A,Garcia M.Small slope imp lies low speed for McGeerps passive walking machines[J].Dynamics and Stability of Systems,2000,15(2):139-157.
    [59]WisseM.Essentials of Dynamic Walking:Analysis and Design of Two-Legged Robots[D].Netherlands:TU Delft,2004.
    [60]Wisse M,Schwab A L,van der Linde R Q,et al.How to keep from falling forward:elementary swing leg action for passive dynamic walkers[J].IEEE Transactions on Robotics,2005,21(3):393 - 401.
    [61]Thomas Rofer.Germanteam RoboCup 2004.Tech Report[EB/OL].http://www.germanteam.org.2004-12-3.
    [62]Zheng(David)Wang.rUNSWift RoboCup 2002.Tech Report[EB/OL].http://www.cse.unsw.edu.au.2002-11-5.
    [63]Bernhard Hengst,Darren Ibbotson,Son Bao Pham,Claude Sammut.rUNSWift RoboCup 2000.Teamp Report[EB/OL].http://www.cse.unsw.edu.au/~robocup.2000-11-14.
    [64]Daniel Stronger,Peter Stone.A Model-Based Approach to Robot Joint Control[A].In Daniele Nardi,Martin Riedmiler,and Claude Sammut,editors,RoboCup2004:Robot Soccer World Cup Ⅷ[C].Berlin:Springer Verlag,2005,297-309.
    [65]陈国良,王煦法,庄镇泉等。遗传算法及其应用。北京:人民邮电出版社,1996。
    [66]Tom M.Mitchell,Carnegie-Mellon University.Machine Learning.McGraw-Hill Companies,Inc.1997
    [67]J.Suzuki.A Markov chain analysis on simple genetic algorithms.IEEE Trans.Syst.,Man,Cybern.,Apr.1995,25(4):655-659.
    [68]U.Duffert and J.Hoffman.Reliable and Precise Gait Modeling For a Quadruped Robot.In RoboCup 2005:Robot Soccer World Cup Ⅸ,Lecture Notes in Artificial Intelligence:Springer,2005
    [69]Takanish A,Tochizawa M.and Kato Ⅰ.Dynamic Biped Walking Stabilized with Optimal Trunk and Waist Motion[A].In:Proc.of the IEEE/RSI Int.Workshop on Intelligent Robotics and Systems,1989.
    [70]Pan J,Cheng J.Study on Quadruped Walking Robot Climbing and Walking Down Slope[A].IEEE/RSJ Int.Workshop on Intelligent Robots and Systems(IROS'91),Osaka,Japan,1991.
    [71]Thorpe Wettergreen D.Developing Planning and Reactive Control for a Hexapod Robot[A].Robotic and Automation[C].1996,Proceedings,1996 IEEE International Conference on,1996.2718-2723.
    [72]Sonia Chernova,Manuela Veloso.An Evolutionary Approach To Gait Learning For Four-Legged Robots[A].Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,Sendai,Japan,September 28 - October 2,2004.
    [73]Nate Kohl,Peter Stone.Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion[A].In Proceedings of the IEEE International Conference on Robotics and Automation(ICRA 2004),New Orleans,LA,May 2004,pp.2619-2624.
    [74]刘莉,汪劲松,陈恳,杨东超,赵建东。基于六维力/力矩传感器的拟人机器人实际ZMP 检测[J].机器人,2001,23(5):459-462,466.
    [75]付宜利,曹政才,王树国,靳保。传感器在多关节机器人系统实时避障中的应用[J].机器人,2003,25(1):73-79.
    [76]G.Canepa,J.M.Hollerbach,and A.J.M Boelen.Kinematic calibration by means of a triaxial accelerometer.In Proceedings of ICRA-1994,the International Conference on Robotics and Automation,1994.
    [77]Ozan Cakmakci,Joelle Coutaz,Kristof Van Laerhoven,and Hans-Werner Gellersen.Context awareness in systems with limited resources.In Proceedings of AIMS-2002,Artificial Intelligence in Mobile Systems,2002.
    [78]D.Vail,and M.Veloso.2004.Learning from Accelerometer Data on a Legged Robot.In Proceedings of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles (IAV2004),Lisbon,Portugal,July 2004.
    [79]Jan Hoffmann,Daniel Gohring.Sensor-Actuator-Comparison as a Basis for Collision Detection for a Quadruped Robot[A].In 8th International Workshop on RoboCup 2004,Lecture Notes in Artificial Intelligence.Springer,2005,3276:150-159.
    [80]I.J.Cox and G.T.Wilfong,editors.Autonomous Robot Vehicles.Springer Verlag.1990.
    [81]M.Vukobratovic.Introduction to Robotics.Springer Publisher,Berli,New York.1989
    [82]ISO,ISO 9283.Manipulating Industrial Robots Performance Criteria and Related Test Methods [S]. International Standard Organization, 1993.
    [83] ROTH Z, W MOORING B, BAHRAM R. An overview of robot calibration[J]. IEEE Transactions on Robotics and Automation, 1987,3(5):377-385.
    [84] J.Borenstein. Internal correction of dead-reconing errors with the smart encoder trailer. In Proc. IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems, pages 127-134, September 1994.
    [85] W.D. Rencken. Concurrent localisation and map building for mobile robots using ultrasonic sensors. In Proc. IEEE.RSJ Int. Conf. on Intelligent Robots and Systems, pages 2129-2197, Yokohama, Japan, July 1993.
    [86] S.Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence,99:21-71,1998.
    [87] Chia JuWu, Huang ching Huo. Fuzzy parameter identification of direct drive robots[J] . Journal of Franklin Institute, 1996, 333 (B): 289 - 310.
    [88] O. Castillo, P. Melin. Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach[J]. Applied soft computing, 2003 (3):363-378.
    [89] M. Gautierl Extended kalman filtering and weighted least squares dynamic identification of robot[J]. Control engineering practice, 2001 (9): 1361 -1372.
    [90] Jan Swevers, Chris Ganseman, Dilek Bilgin Tukel, et al. Optimal robot excitation and identification[J]. IEEE transactions on robotics and automation, 1997,13(5):730 - 740.
    [91] G. Galafiore, M. Indri. Experiment design for robot dynamic calibration[C]. Proceedings of the 1998 IEEE international conference on robotics and automation, Leuven, Belgium, 1998: 3303 - 3309.
    [92] Gu Fang, M.W.G. Dissanayake. Neural networks for modeling robot forward dynamics [EB/OL]. http:// www.google.com.
    [93] N. Roy and S. Thrun, "Online self-calibration for mobile robots," in Proceeding of the IEEE International Conference on Robotics and Automation, vol. 3. Detroit, MI: IEEE Computer Society Press, May 1999, pp. 2292-2297.
    [94] A. Martinelli, N. Tomatis, A. Tapus, and R. Siegwart, "Simultaneous localization and odometry calibration for mobile robot," in Proceedings of the 2003 International Conference on Intelligent Robots and Systems, Las Vegas, NV, October 2003.
    [95] L. Kleeman, "Advanced Sonar and Odornetry Error Modeling for Simultaneous Localisation and Map Building", in proceeding of the 2003 International Conference on Intelligent Robots and Systems, Las Vegas, October 2003.
    
    [96] Daniel Stronger and Peter Stone. Simultaneous calibration of action and sensor models on a mobile robot. In IEEE International Conference on Robotics and Automation, April 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700