步态训练机器人骨盆控制机构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疾病、老龄化、外伤以及交通事故等,都会给人的肢体留下不同程度的后遗症,给患者及其家庭带来不同程度的麻烦。而对其进行康复机器人的辅助训练,恢复其肢体的运动机能也是众多学者多年以来的研究方向。
     步态训练机器人主要是用于康复人体行走功能为目的的,但大多是以康复下肢为主要手段,而忽略了骨盆运动的重要性。人体的盆部上连腰椎下接双腿,是运动过程中的一个重要环节。协调的骨盆运动,是掌握正确步态的关键。临床实践证明通过盆训练能够显著提高患者下肢的步行能力,因此在步态训练过程中对人体盆部进行一定的康复训练,对患者恢复良好的运动状态是必要的、可行的。
     本文根据目前有关人体骨盆运动轨迹的研究现状,提出了一种四自由度骨盆控制机构的总体设计方案,并应用Pro/E三维设计软件进行了骨盆控制机构运动平台的总体结构设计,同时提出了一种骑坐方式的悬挂式重力支撑系统。
     本文所设计的四自由度机器人只有三个驱动源,属于欠驱动运动机器人。因此,对无驱动运动方向提出了两种约束方法,分别为对中弹簧不完全约束法和绳索半驱动约束法。利用SimMechanics构建的仿真模型进行了上述两种方法的控制仿真实验,理论上验证了两种方法的可行性。基于理论研究,通过dSPACE实时仿真平台进行了实验样机的半物理仿真实验研究,证实了理论分析的正确性和方法的实用性。完成了骨盆驱动机构的控制实验,系统运行平稳,跟踪误差达到设计目标,验证此骨盆控制机构设计的合理性和正确性。
Illness, aging, Physical Trauma and accidents are factors leading to various level harms to people's limb and making people suffering differently. So the assistant training robot helping to recover from this suffering is a hot research topic in the academic community.
     Gait training robot is mainly used to help human beings regain the ability of working. Now most research work focus on lower limbs, ignoring a significant factor:the pelvis. Human's pelvis, which connects lumbar vertebra and legs, plays an important role in motion, so harmonious pelvis movement is the key point of mastering right gait. Clinical practices proved that patient's lower limb walking ability could be proved by pelvis training. Consequently, it's necessary and reasonable to provide the patient with the pelvis training treatment during the process of gait training.
     This paper presents the overall design of pelvic control mechanism with 4-DOF based on the current motion trajectory research of the human pelvis. And the platform for pelvis training system is designed. In addition, a suspension system for supporting the gravity by riding is proposed.
     Robot concerned in this paper only has three acutators while DOF is four, which means this robot is categorized into the under-actuated system. Therefore two constraint approaches, no fully constraints on the middle spring and half driven constraint on the rope actuators in the direction of free motion, is adopted to solve the under-actuator problem. Those two approaches is verified by the simulation using the SimMechanics. Based on both theoretical analysis and semi-physical simulation based on the platform of dSPACE real-time simulation system, the theory is proven and approaches are effective. Also the results of the experimental work in controling the pelvic-driven mechanism show that the system is stable and the track errors are in the allowance, which give the rationality and correctness of proposed pelvic control mechanism.
引文
[1]http//new.sohu.com/20091020/n26755881.shtm
    [2]http//new.qq.com/a/20091026/001072.htm
    [3]金德文,张济川.康复工程学的研究与发展.现代康复.2000,4(5):643-646页
    [4]袁启明.蓬勃发展的康复医学工程.医疗保健器具.1999,(6):31-33页
    [5]王珏,金德闻.中国康复工程发展道路之思考.中国康复理论与实践.2005,11(3):161-163页
    [6]张付祥,付宜利,王树国.康复机器人研究进展.河北工业科技.2005,22(2):100-105页
    [7]吕广明,孙立宁,彭龙刚.康复机器人技术发展现状及关键技术分析.哈尔滨工业大学学报.2004,36(9):1224-1227,1231页
    [8]韩雯,常均.现代康复工程的发展概述.医疗装备2007.(4):13-15页
    [9]励建安.减重训练的研究进展.2002.12,24(12):759-761页
    [10]杜志江,孙立宁,富历新.医疗机器人发展概况综述.机器人2003,25(2):182-187页
    [11]杜志江,孙传杰,陈艳宁.康复机器人研究现状.中国康复医学杂志,2003,18(5):293-294页
    [12]王彤.减重步行训练在康复医学中的应用.现代康复,2001.15:26-28页
    [13]杜巨豹,宋为群,王茂斌.减重步行训练在卒中后偏瘫康复中的应用.中国脑血管病杂志,2006,3(8):361-364页
    [14]Homby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Physical Therapy,2005.85(1):52-66P
    [15]Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord.2001, 39(5):252-255P
    [16]S. Jezernik, G, Colombo, T. Keller. Robotic Orthosis Lokomat:A Rehabilitation and Research Tool. International Neuromodulation Society. 2003,6(2):108-115P
    [17]D. Aoyagi, W. E. Ichinose and S. J. Harkema. An assistive robotic device that can synchronize to the pelvic motion during human gait training. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics.2005:565-568 P
    [18]Y. Stauffer, Y. Allemand and M. Bouri. Pelvic motion measurement during over ground walking, analysis and implementation on the WalkTrainer reeducation device. IEEE/RSJ International Conference on Intelligent Robots and Systems.2008:2362-2367 P
    [19]Y. Stauffer, F. Reynard and Y. Allemand. Pelvic motion implementation on the WalkTrainer.2007 IEEE International Conference on Robotics and Biomimetics.2007:133-138 P
    [20]H. B. Lim, K. H. Hoon and K. H. Low. Pelvic control and over-ground walking methodology for impaired gait recovery. IEEE International Conference on Robotics and Biomimetics.2009:282-287 P
    [21]H. B. Lim, K. H. Hoon and Y. C. Soh. Gait planning for effective rehabilitation-from gait study to application in clinical rehabilitation. IEEE International Conference on Rehabilitation Robotics:Reaching Users & the Community.2009:271-276 P
    [22]Michael Peshkin, David A. Brown. KineAssist:A robotic overground gait and balance training device. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics June 28-July 1.2005, Chicago, IL, USA:241-246 P
    [23]DARIOP,GUGLIELMELLIE,LASCHIC.Humanoids and personal robot: Design and experiments.Journal of Robotic System,2001,8(12) 673-690 P
    [24]吕广明,孙立宁,彭龙刚.康复机器人技术发展现状及关键技术分析.哈尔滨工业大学学报.2004,36(9):1224-1225页
    [25]孙建东,金德文.一种下肢被动运动康复训练器.中国康复医学杂志.2001,16(5):298-299页
    [26]程方,王人成,贾晓红,张济川.减重步行康复训练机器人研究进展.康复医学工程.2008,23(4):366-368页
    [27]钱晋武,冯治国.下肢康复自动步态矫正器,专利200710171696.4.上海大学
    [28]徐显贵,赵俊祥.偏瘫助行器,专利:02239834.1
    [29]张俊杰.中风患者康复机,专利:02238860.5
    [30]张立勋,夏振涛,蒋赞.多功能康复机器人,发明专利:200710071877.X
    [31]张立勋,张今瑜.下肢康复机器人,发明专利:02251613
    [32]Voss DE. Proprioceptive neurofacilitation facilitation. Am J Phys Med,1967,46:838-898 P
    [33]Hungerford B, Gilleard W, Lee D. Altered patterns of pelvic pain using skin markers.Clinical Biomechanics,2004,19(2004):456-464 P
    [34]中比合作脑瘫儿童康复医师培训班教材.1996
    [35]张琦,李琪,纪树荣.骨盆训练对脑卒中偏瘫患者步行能力的影响.中国康复理论与实践.2001.161-162页
    [36]张立勋,王克义,张今喻.人体步态周期中骨盆自由度的分析.机械设计.2008.(1):12-14页
    [37]张立勋,夏振涛,刘富强,王令军.助行训练机器人骨盆位姿控制机构研究.2009.(5):42-45页
    [38]人体断面解剖图谱.金连弘主编.人民卫生出版社.2005.412-505页
    [39]张立勋.机电一体化系统设计.哈尔滨工程大学出版社.2004:20-45页
    [40]www.sh-xinkuan.com
    [41]http://www.boshanxinte.com/
    [42]ZHAO Ling-yan, ZHANG Li-xun, WANG Lan, et al. Three-dimensional motion of the pelvis during human walking[C]. IEEE ICMA 2005, Niagara Falls, Ontario, Canada,2005
    [43]张立勋,王克义,张今喻.人体步态周期中骨盆自由度的分析.机械设计.2008.(1):12-14页
    [44]Yves Stauffer. Pelvic Motion Implementation on the Walk Trainer[C].2007 IEEE International Conference on Robotics and Biomimetics December 15-18,2007, Sanya, China.
    [45]张立勋,董玉红.机电系统仿真与设计[M].哈尔滨:哈尔滨工程大学出版社,2006.37-49页
    [46]王岚,赵丹,隋立明.电机系统计算机控制.哈尔滨工程大学出版 社.137-140页
    [47]马培蓓,吴进华,纪军,徐新林.dSPACE实时仿真平台软件环境及应用.系统仿真学报,2004,16(5):936-939页
    [48]王岚,赵丹,隋立明.机电系统计算机控制.哈尔滨:哈尔滨工程大学出版社,2006:7-8页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700