InGaAs/InAlAs量子级联激光器物理、材料及器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作围绕工作于中远红外波段的量子级联激光器这一主题,以对量
     子级联激光器的理论研究为切人点,开展了对量子级联激光器材料、器件
     及其表征和物理分析的研究,取得的结果如下:
     通过对波函数做泰勒展开,提出了计算偏压下耦合非对称多量子阱中
     电子子能级位置和波函数的方法,该方法能被有效地用来计算量子级联激
     光器有源区中的子能级、波函数和注人区中的微带、微禁带位置及形状。
     通过研究激光器中粒子数反转必须满足的条件和跃迁矩阵元振子强
     度,首次指出了设计量子级联激光器时电场、有源区中势饼势垒的取值范
     围、数字递变超晶格的合理设计和优化办法。
     首次将半导体材料的折射率色散关系应用到量子级联激光器的设计
     中,考虑了载流子的带间吸收和带内吸收,通过适当选择的掺杂浓度有效
     裁剪接触层中的折射率,实现有效的光学限制和自由载流子限制。
     用微扰理论首次计算了折射率耦台分布反馈量子级联激光器中的耦合
     系数,定量地给出了耦合系数随光栅深度、波长的变化关系,计算了λ=
     3~20μm,光栅深度为250nm的矩形、正弦、三角光栅的耦合系数。
     计算了量子级联激光器的自发辐射谱和增益谱,指出了它们对温度、子
     能级寿命的依赖性,并与实验结果进行了比较。计算了粒子数反转因子为
     0,0.25,0.5,l.0,1.5情况下的量子级联激光器增益谱。
     首次提出用递变超晶格连接两个三饼耦合的量子级联激光器,设计了
     一个可同时工作于λ~5μm和λ~8μm的双色量子级联激光器结构。该结构包
     含了32级的λ~5μm有源区和注人区,和35级的λ~5μm有源区和注入区。对
     这个结构,设计的工作电场是65kV/cm,工作阈值电流密度大约为 2
     kA/cm~2。
     首次提出并证明了一个任意选择的“A”形调制超晶格较非调制超晶
     格,可以作为更好的能量过滤器。对“A”调制超晶格,微带中透射几率
     的振荡被很大幅度地压制。我们也证明了调制势垒的形状的精确控制对能
     量过滤器来说并不十分重要。
     用傅立叶变换红外光致发光谱和高分辨x-ray衍射谱系统地研究了
     InAlAs/InGaAs/InP量子级联激光器单层、单阱、多阱和三阱耦合
     InAlAs/InGaAs/InAlAs结构材料的光学特性和结构特性,研究了傅立叶变换红
     外和x-ray衍射表征方法、模拟和技术,得出:
     通过分析InGalls,InAlAs外延层与InP衬底之间存在错向角对的衍射圆锥,
     我们利用简明的衍射几何关系提出了一个测量外延层与衬底之间错向角
     n
     \
     Mpe--1
    
    
    的方法及相应的计算错向角的公式,同时提出了检验办祛。同时指出,采
    用常见的二射线双晶方祛的旋转 180度两次测量法,根据衍射峰间距所测量
    的错向角为实际值的下限。
     观察到InGaASqllHDes/InP结构X射线非对称衍射中掠人射和掠出射情况
    下,外延层的Bug衍射峰半峰宽与传统理论预测不一致。用垂直方向应变
    梯度机制成功地解释了上述现象,并al用xw三轴二维meare观察到外
    延层中的垂直应变梯度。
     对IhADes/InGallS/InAIAS多量子饼和单量子饼,用带内弛豫机制解释了量
    子陕中的激子光致发光的发光主峰随激发强度增大而蓝移的现象,并用
    玻色一爱因思坦统计拟合了随温度升高发光峰的红移,该拟合较传统的基
    于德拜温度的拟合更接近实验值。对气态源分子束外延生长的
    AllllHs/GalnAs/AllnAs三饼耦会结构及单量子饼结构,指出其界面起伏的范
    围是在垂直于生长方向的平面内,每隔三个等效激子半径(约63 urn)才发生
    一个单原子层的起伏。
     作为课题组主要研究人员之一,研制出我国AJIL Ill.a--S1GaAShaP第一
    类量子级联激光器材料,实现5l po中红外和8.16w远红外激射。8·16W远
    红外Q工材料与激光器:250 K下脉冲激射,1mK下功率的功w,8 K下功率飞
    mw。特征温度 T。229 K(100-250 K),Jibl.8 lt/bm‘i 5.lwn中红外QCL材料与激光
    器,105 K下脉冲激射,26 K下激射功率 24 mw,77 K下 15 mw,特征温度 T。208 K
    (60-150 K),Jib 3.3 hA/Cm。
     本工作的研究结果积累了对量子级联激光器理论和实践的认知,为独
    立自主设计和研究量子?
Quantum cascade (QC) lasers are unipolar semiconductor lasers based on one type of carrier (electrons) making transitions between energy levels created by quantum confinement. They have been regarded as a milestone in both semiconductor materials and in semiconductor lasers. In this thesis, we have focused ourselves on the QC lasers made of InGaAs/InAlAs/InP material system, working at the mid- and far-infrared atmospheric window, to carry out the research on physics, material, and device of QC lasers.
    By expanding the wave-functions as Taylor series, we have proposed a method to calculate the electron subband energy levels and wave-functions in biased, asymmetrically coupled multiple quantum wells. By means of analyzing the population inversion condition in lasers, with the combination of the calculation of transition matrix element strength, we have pointed out the possible range of electric field, well width and barrier thickness in the active region of QC lasers. Also, we have pointed out the way of design and optimization of a QC laser.
    The dispersion of semiconductor refractive indices has been successfully transplanted into the design of QC lasers. We have considered both the interband and the intrakand absorption of free carriers. Appropriate doping concentration has been adopted in the contact layer to suppress the refractive index, as a result, efficient optical confinement and free carrier confinement have been achievement.
    The coupling coefficients of coupled modes in index-coupled distributed-feedback QC lasers have been calculated with the perturbation theory for the first time. The coupling coefficients are given as functions of grating depth, and of laser wavelength quantitatively. Moreover, we have compared the coupling coefficients for rectangular grating, sinusoidal grating, and sawtooth grating, with the grating depth fixed as 250 nm.
    The spontaneous emission spectra and gain spectra of QC lasers have been calculated. We have discussed the dependence of the spectra on temperature and on subband lifespans. The theoretical results are then compared with the experimental ones. The gain spectra for different population-inversion parameter ~= 0, 0.25, 0.5, 1.0, 1.5 are given.
    A double-color quantum cascade laser structure operating at both X? pin and X? pm has been proposed for the first time. The structure contains 32 stages of X? p.m active regions and injectors, and 35 stages of X? pm active regions and injectors. A well-designed conjunction graded-gap superlattice connects these two kinds of active regions and injectors. The whole structure is proposed to work under an electric field of 65 kV/cm and a threshold current density of
    2 kAIcm2.
    we have proposed and demonstrated for the first time that a randomly chosen 揂?shape modulated superlattice can serve as a better energy filter than an un-modulated superlattice. The
    
    
    
    
    
    oscillation of transmission probability in the minibands of the 揂?shape modulated superlattice is shown to be greatly suppressed. We also demonstrate that the precise control of the potential shape is not crucial for energy filters.
    An overall investigation of x-ray diffraction, photolunainescence, and electroluminescence have been carried out on the materials of InAIAs, JnGaAs single epilayers and 1n0.53Ga0.47As/ 1n0.52Al0 48As quantum wells. The following results have been achieved for the structural and optical properties of the InGaAs/[nAlAsfInP materials for type-I QC lasers:
    A method of x-ray diffraction with simple geometly was developed to quantitatively analyze the structure of strained InGaAs, InAlAs epilayer with a tilting angle to the In? substrate. Results showed an excellent consistency between data measured and calculated from the model. It was pointed out that the conventional 1 800-rotation twice-measurement method usually got a value smaller than the real value of the tilting angle.
    The difference between the x-ray-diffraction Bragg peak width under the grazing incidence geometry and under the grazing emergence geometry for InGaAs/L
引文
1. K.G. Basov, O. N. Droklin, and Y. M. Popov, "Production of negative temperature states in p-n junctions of degenerate semiconductors," Sov. Phys. JETP 13,1320 (1961) .
    2. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission from GaAs junctions," Phys. Rev. Lett. 9, 366-368 (1962) .
    3. M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, "Stimulated emission of radiation from GaAs p-n junctions," Appl. Phys. Lett. 1, 62-64 (1962) .
    4. N. Holonyak and S. F. Bevacqua, "Coherent (visible) light emission from GaAsP junctions," Appl. Phys. Lett. 1, 82-83 (1962) .
    5. T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeiger, "Semiconductor maser of GaAs," Appl. Phys. Lett. 1, 91-92 (1962) .
    6. H. C. Casey, and M. B. Panish, Heterostructure Lasers, Part A: Fundamental Principles, Academic, New York, 1978.
    7. H. Kroemer, "A proposed class of heterojunction injection lasers," Proc. IEEE 51, 1782-1783 (1963) .
    8. H. Kresell and H. Nelson, "Close confinement gallium arsenide p-n junction lasers with reduced optical loss at room temperature," RCA Rev. 30, 106-113 (1969) .
    9. Z. I. Alferov, V. M. Andreev, E. L. Portnio, and M. K. Trukan, "AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold," Sov. Phys. Semicond. 3, 1107-1110 (1970) .
    10. I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, "Junction lasers which operate continuously at room temperature," Appl. Phys. Lett. 17, 109-111 (1970) .
    11. R. Dingle, W. Wiegmann, and C. H. Henry, "Quantum states of confined carriers in very thin AlGaAs-GaAs-AlGaAs heterostructures," Phys. Rev. Lett. 33, 827-830 (1974) .
    12. R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, "Room-temperature laser operation of quantum well GaALAs-GaAs laser diodes grown by metal organic chemical vapor deposition," Appl. Phys. Lett. 32,295-297 (1978) .
    13. R. D. Dupuis, P. D. Dapkus, N. Holonyak, and R. M. Kolbas, "Continuous room-temperature multiple-quantum-well laser operation of AlGaAs-GaAs injection laser grown by metal organic chemical vapor deposition," Appl. Phys. Lett. 35, 221-223 (1979) .
    14. N. Holonyak, R. M. Kolbas. R. D. Dupuis, and P. D. Dapkus, "Quantum-well heterostructure lasers," IEEE J. Quantum Electron. QE-16, 170-186 (1980) .
    15. W. T. Tsang, "A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam," Appl. Phys. Lett. 39, 134-137 (1981) .
    16. E. Yablonovitch and E. O. Kane, "Reduction of lasing threshold current density by the lowering of valence band effective mass," J. Lightwave Technol. LT-4, 504-506 (1986) , Erratum, LT-4, 961 (1986) .
    17. A. R. Adams, "Band-structure engineering for low-threshold high-efficiency semiconductor lasers," Electron. Lett. 22, 249-250 (1986) .
    
    
    18. H. K. Choi and C. A. Wang, "InGaAs/AlGaAs strained quantum well diode lasers with extremely low threshold current density and high efficiency," Appl. Phys. Lett. 57, 321-323 (1990) .
    19. P. Bhattacharya, Y. Yuan, T. Brock, C. Caneau, and R. Bhat, "Temperature dependence of the threshold current in 1. 55-mu m strain-compensated multiquantum-well distributed-feedback lasers," IEEE Photonics Technol. Lett. 10, 778-780 (1998) .
    20. M. Toivonen, P. Savolainen, H. Asonen, and R. Murison, "All solid source molecular beam epitaxy growth and characterization of strain-compensated 1. 3 mu m InAsP/InGaP/InP multiquantum well lasers for high-temperature operation," J. Vac. Sci. Technol. B 14,1736-1738 (1996) .
    21. Y. Arakawa and A. Yariv, "Quantum well lasers: gain, spectra, dynamics," IEEE J. Quantum Electron. QE-22, 1887-1899 (1986) .
    22. E. Kapon, "Quantum wire lasers," Proc. IEEE 80, 398-410 (1992) .
    23. A. Yariv, "Scaling laws and minimum threshold currents for quantum-confined semiconductor lasers," Appl. Phys. Lett. 53,1033-1035 (1988) .
    24. W. Wegscheider, L. N. Pfeiffer, M. M. Dignam, A. Pinczuk, K. W. West, S. L. McCall, and R. Hull, "Lasing from excitons in quantum wires," Phys. Rev. Lett. 71,4071-4074 (1993) .
    25. J. Lopez, G. Witjaksono, and D. Botez, "Single-mode, single-lobe operation of surface-emitting, second-order distributed feedback lasers," Appl. Phys. Lett. 75, 885-887 (1999) .
    26. J. M. Wiesenfeld, G. Hasnain, J. S. Perino, J. D. Wynn, R. E. Leibenguth, Y. H. Wang, and A. Y. Cho, "Gain-switched GaAs vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. QE-29, 1996-2005 (1993) .
    27. K. Iga, S. Ishkawa, S. Ohkouchi, and T. Nishimura, "Room temperature pulsed oscillation of GaAlAs/GaAs surface emitting junction laser," IEEE J. Quantum Electron. QE-21, 315-320 (1985) .
    28. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992) .
    29. A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, "Room temperature operation of microdisc lasers with submillamp threshold current," Electron. Lett. 28, 1010-1011 (1992) .
    30. Y. Yamamoto and R. E. Slusher, "Optical processes in micorcavities," Physics Today 46, 66-73 (1993) .
    31. M. Tacke, "New developments and applications of tunable IR lead salt lasers," Infrared Phys. Technol. 36,447-463 (1995) .
    32. R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707 (1971) .
    33. F. Capasso, "Band-gap engineering: From physics and materials to new semiconductor devices," Science 235,172-176 (1987) .
    34. F. Capasso and A. Y. Cho, "Bandgap engineering of semiconductor heterostructures by molecular beam epitaxy: physics and applications," Surf. Science 299/300, 878-891 (1994) .
    35. F. Capasso, H. M. Cox, A. L. Hutchinson, N. A. Olsson, and S. G. Hummel, "Pseudo-quaternary GalnAsP semiconductors: A new GaO.47InO.53As/InP graded gap superlattice and its applications to avalanche photodiodes," Appl. Phys. Lett. 45 (11) , 1193-1195 (1984) .
    
    
    36. F. Capasso, K. Mohammed, A. Y. Cho, R. Hull, and A. L. Hutchinson, "Effective mass filtering: Giant quantum amplification of the photocurrent in a semiconductor superlattice," Appl. Phys. Lett. 47 (4) , 420-422 (1985) .
    37. F. Capasso, K. Mohammed, A. Y. Cho, R. Hull, and A. L. Hutchinson, "New quantum photoconductivity and large photocurrent gain by effective-mass filtering in a forward-biased superlattice p-n junction," Phys. Rev. Lett. 55,1152-1155 (1985) .
    38. F. Capasso, K. Mohammed, and A. Y. Cho, "Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications," IEEE J. Quantum Electron. QE-22,1853-1869, (1986) .
    39. F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, Nature 358, 565 (1992) .
    40. C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, "Quantum wells with localized states at energies above the barrier height: A Fabry-Perot electron filter," Appl. Phys. Lett. 61(8) , 898-900(1992) .
    41. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, and A. Y. Cho, "Narrowing of the intersubband absorption spectrum by localization of continuum resonances in a strong electric field," Appl. Phys. Lett. 62 (16) , 1931-1933(1993) .
    42. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994) .
    43. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade laser" , Appl. Phys. Lett. 70 (20) , 2670-2672 (1997) .
    44. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994) .
    45. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, "Quantum cascade laser: Temperature dependence of the performance characteristics and high TO operation," Appl. Phys. Lett. 65 (23) , 2901-2903 (1994) .
    46. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Vertical transition quantum cascade laser with Bragg confined excited state," Appl. Phys. Lett. 66 (5) , 538-841 (1995) .
    47. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Continuous wave operation of a vertical transition quantum cascade laser above T=80 K," Appl. Phys. Lett. 67 (21) , 3057-3059(1995) .
    48. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "High power mid-infrared (λ-5 μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68 (26) , 3680-3682 (1996) .
    49. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertsen, and A. Y. Cho, "Quantum cascade lasers without intersubband population inversion," Phys. Rev. Lett. 76 (3) , 411-414(1996) .
    50. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Laser action by tuning the oscillator strength," Nature 387 (6635) , 777-782 (1997) .
    
    
    51. J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, "Controlling the sign of quantum interference by tunneling from quantum wells," Nature 390, 589-591 (1997) .
    52. J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "High-power continuous-wave quantum cascade lasers," IEEE J. Quantum Electron. QE-34, 336-343, (1998) .
    53. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Short wavelength (X ~ 3. 4 um) quantum cascade laser based on strained-compensated InGaAs/AlInAs," Appl. Phys. Lett. 72 (6) , 680-682(1998) .
    54. C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, "Long-wavelength (9. 5-11. 5 um) microdisk quantum-cascade lasers," IEEE QE-33 (9) , 1567-1573 (1997) .
    55. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high-power pulsed operation of index-coupled distributed feedback quantum cascade laser at lambda approximate to 8. 5 μm," Appl. Phys. Lett. 72 (12) , 1430-1432(1998) .
    56. C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, "Noncascaded intersubband injection lasers at λ≈7. 7 μm," Appl. Phys. Lett. 73 (26) . 3830-3832 (1998) .
    57. C. Gmachl, F. Capasso, E. E. Narimanov, J. H. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, "High power directional emission from microlaser with chaotic resonator," Science 280, 1556 (1998) .
    58. C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "High-power λ-8 um quantum cascade lasers with near optimum performance," Appl. Phys. Lett. 72 (14) , 3130-3132 (1998) .
    59. C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, "Bidirectional semiconductor laser," Science 286, 749-752 (1999) .
    60. C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade unipolar intersubband light emitting diodes in the 8-13 um wavelength region," Appl. Phys. Lett. 66 (1) , 4 (1995) .
    61. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Long wavelength infrared (λ-11 μm) quantum cascade lasers," Appl. Phys. Lett. 69, 2810-2812, (1996) .
    62. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser with plasmon-enhanced waveguide operating at 8. 4 um wavelength," Appl. Phys. Lett. 66 (24) , 3242-3244(1996) .
    63. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, "Continuous wave operation of midinfrared (7. 4-8. 6 μm) quantum cascade laser up to 110 K temperature," Appl. Phys. Lett. 68 (13) , 1745-1747 (1996) .
    64. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Mid-infrared (8. 5 μm) semiconductor lasers operating at room temperature," IEEE Photon. Technol. Lett. 9 (3) , 294-296 (1997) .
    
    
    65. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Resonant tunneling in quantum cascade lasers," IEEE J. Quantum Electron. QE-34 (9) , 1722-1729 (1998) .
    66. C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, "Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGal-xAs," IEEE Photonics Technol. Lett. 11 (9) , 1090-1092 (1999) .
    67. A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Long wavelength superlattice quantum cascade lasers at λ,-17 μm," Appl. Phys. Lett. 74 (5) , 638-640 (1999) .
    68. A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, J. Faist, and G. Scamarcio, "High-power inter-miniband lasing in intrinsic superlattices," Appl. Phys. Lett. 72 (19) , 2388-2390(1998) .
    69. A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "High performance interminiband quantum cascade lasers with graded superlattices," Appl. Phys. Lett. 73 (15) , 2101-2103 (1998) .
    70. A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "A multiwavelength semiconductor laser," Nature 396, 350-355 (1998) .
    71. F. Capasso, J. Faist, C. Sirtori, and A. Y. Cho, "Infrared (4-11 μm) quantum cascade lasers," Solid State Commun. 102 (2-3) , 231-236 (1997) .
    72. G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "High-power infrared superlattices (8-micrometer wavelength) lasers," Science, 276, 773-776 (1997) .
    73. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, "Type-II quantum-well lasers for the mid-wavelength infrared," Appl. Phys. Lett. 67, 757-759 (1995) .
    74. M. Rochat, J. Faist, M. Beck, U. Oesterle, and Marc Ilegems, "Far-infrared (λ=88 μm) electroluminescence in a quantum cascade structure," Appl. Phys. Lett. 73, 3724-3726 (1998) .
    75. G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, and E. Gornik, "GaAs/AlGaAs superlattice quantum cascade lasers at lambda approximate to 13 mu m," Appl. Phys. Lett. 75 (10) , 1345-1347 (1999) .
    76. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Photoacoustic spectroscopy using quantum cascade lasers," Opt. Lett. 24 (3) , 178-180 (1999) .
    77. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Sensitive absorption spectroscopy using a room temperature distributed feedback quantum cascade laser," Opt. Lett. 23 (3) , 219-221 (1998) .
    78. S. Slivken, C. Jelen, A. Rybaltowski, J. Diaz, M. Razeghi, "Gas-source molecular beam epitaxy growth of an 8. 5 mu m quantum cascade laser," Appl. Phys. Lett. 71 (18) , 2593-2595 (1997) .
    79. S. Slivken, A. Matlis, C. Jelen, A. Rybaltowski, J. Diaz, and M. Razeghi, "High-temperature continuous-wave operation of λ-8 μm quantum cascade lasers," Appl. Phys. Lett. 74 (2) , 173-175 (1999) .
    
    
    80. S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu, M. Razeghi, "Low-threshold 7. 3 mu m quantum cascade lasers grown by gas-source molecular beam epitaxy," Appl. Phys. Lett. 74 (19) , 2758-2760 (1999) .
    81. A. Muller, M. Beck, J. Faist, U. Oesterle, and M. Ilegems, "Electrically tunable, room-temperature quantum-cascade lasers," Appl. Phys. Lett. 75 (11) , 1509-1511(1999) .
    82. A. Z. Li, J. X. Chen, Q. K. Yang, C. Lin and Y. C. Ren, "Gas source MBE growth high performance quantum cascade lasers operating at 8. 16μm wavelength" , J. Cryst. Growth 201/202, 901-904 (1999) .
    83. R. Q. Yang, Superlatt. Microstruct. 17, 77 (1995) .
    84. R. Q. Yang and S. S. Pei, "Novel type-II quantum cascade lasers," J. A Phys. 79, 8197-8203 (1996) .
    85. C. H. Lin, S. S. Pei, H. Q. Le, J. R. Meyer, and C. L. Felix, "Low-threshold quasi-cw type-II quantum well lasers at wavelengths beyond 4 um," Appl. Phys. Lett. 71, 3281-3283 (1997) .
    86. C. L. Felix, J. R. Meyer, I. Vurgaftman, C. H. Lin, S. J. Murry, D. Zhang, and S. S. Pei, "High temperature 4. 5 um type-II quantum-well laser with Auger suppression," IEEE. Photon. Technol. Lett. 9, 734-736 (1997) .
    87. I. Vurgaftman and J. R. Meyer, "Optically pumped type-II interband terahertz lasers," Appl. Phys. Lett. 75, 899-901(1999) .
    88. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, "Type-II quantum-well lasers for the mid-wavelength infrared," Appl. Phys. Lett. 67, 757-759 (1995) .
    89. J. R. Meyer, C. L. Felix, W. W. Bewley, I. Vurgaftman, E. H. Aifer, L. J. Olafsen, J. R. Lindle, C. A. Hoffman, M. J. Yang, B. R. Bennett, B. V. Shanabrook, H. Lee, C. H. Lin, S. S. Pei, and R. H. Miles, "Auger coefficients in type-II InAs/GalnSb quantum wells," Appl. Phys. Lett. 73, 2857-2859 (1999) .
    90. W. W. Bewley, C. L. Felix, I. Vurgaftman, D. W. Stokes, E. H. Aifer, L. J. Olafsen, J. R. Meyer, M. J. Yang, B. V. Shanabrook, H. Lee, R. U. Martinelli, and A. R. Sugg, "High-temperature continuous-wave 3-6. 1 μm ' W' lasers with diamond-pressure-bond heat sinking," Appl. Phys. Lett. 74, 1075-1077(1999) .
    91. C. H. Lin, R. Q. Yang, D. Zhang, S. J. Murry, S. S. Pei, A. A. Allerman, and S. R. Krutz, "Type-II interband quantum cascade laser at 3. 8 urn," Electron Lett. 33, 598-599, (1997) .
    92. E. Dupont, J. P. McCaffrey, H. C. Liu, M. Buchanan, R. Q. Yang, C. H. Lin, D. Zhang, and S. S. Pei, "Demonstration of cascade process in InAs/GalnSb/AlSb mid-infrared light emitting devices," Appl. Phys. Lett. 72,1495-1497 (1998) .
    93. G. Strasser, L. Hvozdara, S. Gianordoli, K. Unterrainer, E. Gornik, P. Kruck, and M. Helm, "GaAs AlGaAs quantum cascade intersubband and interminiband emitter," J. Cryst. Growth 202, 919-922 (1999) .
    94. S. Gianordoli, L. Hvozdara, G. Strasser, W. Schrenk, K. Unterrainer, and E. Gornik, "GaAs/AlGaAs-based microcylinder lasers emitting at 10 mu m," Appl. Phys. Lett. 75 (8) , 1045-1047 (1999) .
    95. A. Y. Cho, J. Appl. Phys. 41, 2780 (1970) .
    
    
    96. A. Y. Cho, J. Appl. Phys. 42,2074 (1971) .
    97. A. Y. Cho, J. Vac. Sci. Technol. 8, S31 (1971) .
    98. K. G. Gunther, Z. Naturforsch. 13A, 1081 (1958) .
    99. J. E. Davey, T. Pankey, J. Appl. Phys. 39,1942 (1968) .
    100. A. Y. Cho, "Advances in molecular beam epitaxy (MBE)," J. Cryst. Growth 111, 1-13 (1991) .
    101. A. Y. Cho, "How molecular beam epitaxy (MBE) began and its projection into the future," J. Cryst. Growth 201/202,1-17 (1999) .
    102. P. F. Fewster, "A high-resolution multiple-crystal multiple-reflection diffractometer," J. Appl. Cryst. 22,64-69(1989) .
    103. P. F. Fewster, "X-ray diffraction from low-dimensional structures," Semicond. Sci. Technol. 8, 1915-1934(1993) .
    104. C. Ferrari, L. Francesio, P. Franzosi, and S. Gennari, "High resolution x-ray diffraction study of the Bragg peak width in highly mismatched III-V heterostructures," Appl. Phys. Lett. 69, pp. 4233-4235 (1996) .
    105. W. J. Bartels and W. Nijman, "X-ray double-crystal diffractometry of GaALAs epitaxial layers," J. Cryst. Growth 44, 518-525 (1978) .
    106. W. J. Bartels, J. Homstra, and D. J. W. Lobeek, "X-ray diffraction of multilayers and superlattices," Acta Crystallographica A 42, 539-545 (1986) .
    107. S. Tagaki, Acta Cryst. 15, 1311 (1962) ; J. Phys. Soc. Jpn. 26,1239 (1969) .
    108. D. Taupin, Bull. Soc. Fran. Miner. Cryst. 87, 469 (1964) .
    109. P. F. Fewster and C. J. Curling, J. Appl. Phys. 62, 4154 (1987) .
    110. 张永刚、李爱珍,“FTIR测量及双调制和步进扫描技术的应用,”半导体光电20,pp.277-280(1999) .
    111. E.O.Kane, "Band structure of indium antimonide," J. Phys. Chen. Solids 1, 249-261 (1957) .
    112. E. O. Kane, "The k.p method," Chapter 3, in R. K. Willardson and A. C. Beer Eds., Semiconductors and Semimetals, Vol. 1, Academic, New York, 1966.
    113. J. M. Luttinger, "Quantum theory of cyclotron resonance in semiconductors: General theory," Phys. Rev. 102, 1030-1041 (1956) .
    114. J. M. Luttinger and W. Kohn, "Motion of electrons and holes in perturbed periodic fields," Phys. Rev. 97, 869-883 (1955) .
    115. S. L. Chuang, Chap. 4 of Physics of optoelectronic devices, Wiley, New York, 1995.
    116. G. Bastard, "Superlattice band structure in the envelope-function approximation," Phys. Rev. B 24, 5693-5697(1981) .
    117. G. Bastard, "Theoretical investigations of superlattice band structure in the envelope-function approximation," Phys. Rev. B 25, 7584-7597 (1982) .
    118. G. Bastard and J. A. Brum, "Electronic states in semiconductor heterostructures," IEEE J. Quantum Electron. QE-22, 1625-1644 (1986) .
    119. 茹国平,中国科学院上海冶金研究博士论文,1995。
    
    
    120. L. R. Ram-Mohan, K. H. Yoo, and R. L. Aggarwal, "Transfer-matrix algorithm for the calculation of the band structure of semiconductor superlattices," Phys. Rev. B 38, 6151-6159 (1988) .
    121. W. W. Lui and M. Fukuma, J. Appl. Phys. 60,1555 (1986)
    122. J. A. Kong, Electromagnetic Wave Theory, 2d ed., Wiley, New York (1990)
    123. P. Yeh, Optical Waves in Layered Media, Wiley, New York (1988)
    124. G. Bastard and J. A. Brum, "Electronic states in semiconductor heterostructures," IEEE J. Quantum Electron. QE-22, 1625-1644 (1986) .
    125. J. Bleuse, G. Bastard, and P. Voisin, "Electric-field-induced localization and oscillatory electro-optical properties of semiconductor superlattices," Phys. Rev. Lett. 60, 220-223 (1988) .
    126. J. B. Xia, and K. Huang, "Wannier quantization of a superlattice subband under an electric field," J. Phys. : Condens. Matter 3,4639-4644 (1991) .
    127. C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, "Nonparabolicity and sum rule associated with bound-to-bound and bound to continuum intersubband transitions in quantum wells," Phys. Rev. B 50(12) , 8663-8674(1994) .
    128. W. G. Bi and A. Z. Li, "The dispersion of the refractive index of III-V semiconductors," J. Appl. Phys. 71(6) 2826(1992) .
    129. M. Cardona, Solid State Physics, Nuclear Physics and Particle Physics, Benjamin, New York, 1968, 737.
    130. S. Adachi, "Refractive indices of III-V compounds: Key properties of InGaAsP relevant to device design," J. Appl. Phys. 53, 5863-5869 (1982) .
    131. R. Ferreira and G. Bastard, "Evaluation of some scattering times for electrons in unbiased and biased single-and multiple-quantum-well structures," Phys. Rev. B 40 (2) , 1074-1086 (1989) .
    132. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, "Quantum well carrier sweep out: relation to electroabsorption and exciton saturation," IEEE J. Quantum Electron. QE-27, 2281-2295 (1991) .
    133. H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers" , J. Appl. Phys. 43,2327-2335(1972) .
    134. W. Streifer, D. R. Scifres, and R. D. Burnham, "Coupling coefficients for distributed feedback single-and double-heterostructure diode lasers," IEEE J. Quantum Electron. QE-11, 867-873 (1975) .
    135. W. Streifer, R. D. Burnham, and D. R. Scifres, "Radiation losses in distributed feedback lasers and longitudinal mode selection," IEEE J. Quantum Electron. QE-12, 737-739 (1976) .
    136. W. Streifer, D. R. Scifres, and R. D. Burnham, "TM-mode coupling coefficients in guided-wave distributed feedback lasers," IEEE J. Quantum Electron. QE-12, 74-78 (1976) .
    137. W. Streifer, D. R. Scifres, and R. D. Burnham, "Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides," IEEE J. Quantum Electron. QE-12, 422-428 (1976) .
    138. W. Streifer, D. R. Scifres, and R. D. Burnham, "Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides II: blazing effects," IEEE J. Quantum Electron. QE-12, 494-499(1976) .
    
    
    139. W. Streifer, D. R. Scifres, and R. D. Burnham, "Coupled wave analysis of DFB and DBR lasers," IEEE J. Quantum Electron. QE-13,134-141 (1977) .
    140. A. Yariv, IEEE J. Quantum Electron QE-9, 919 (1973) .
    141. Y. Yamamoto, T. Kamiya, and H. Yanai, "Improved coupled mode analysis of corrugated waveguides and lasers," IEEE J. Quantum Electron. QE-14, 245-258 (1978) .
    142. Y. Yamamoto, T. Kamiya, and H. Yanai, "Improved coupled mode analysis of corrugated waveguides and lasers II: TM mode," IEEE J. Quantum Electron. QE-14, 620-624 (1978) .
    143. V. B. Gorfinkel, S. Luryi, and B. Gelmont, "Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations," IEEE J. Quantum Electron. 32, 1995-2003 (1996) .
    144. B. Gelmont, V. Gorfinkel, and S. Luryi, "Theory of the spectral lineshape and gain in quantum wells with intersubband transitions," Appl. Phys. Lett. 68 (16) , 2171-2173 (1996) .
    145. C. Gmachl, private communication.
    146. I. Gomez, F. Dominguez-Adame, E. Diez, and V. Bellani, J. Appl. Phys. 85, 3916 (1999) .
    147. H. H. Tung, and C. P. Lee, IEEE J. Quantum Electron. QE-32, 507 (1996) .
    148. Q. K. Yang and A. Z. Li, " Theoretical estimates for optimal parameters of quantum cascade lasers," Physica E 4, 239 (1999) .
    149. S. L. Chuang, "Efficient band-structure calculations of strained quantum wells," Phys. Rev. B 43, 9649-9661 (1991) .
    150. R. Tsu and L. Esaki, "Tunneling in a finite superlattice," Appl. Phys. Lett. 22, 562-564 (1973) .
    151. P. Gay, P. B. Hirsch, and A. Kelly, "The estimation of dislocation densities in metals from x-ray data," Acta Metallurgica 1,315-319(1953) .
    152. M. J. Hordon and B. L. Averbach, "X-ray measurements of dislocation density in deformed copper and aluminum single crystals," Acta Metallurgica 9, 237-246 (1961) .
    153. J. E. Ayers, "The measurement of threading dislocation densities in semiconductor crystals by x-ray diffraction," J. Cryst. Growth 135, 71-77 (1994) .
    154. P. D. Healey, K. Bao, M. Gokhale, J. E. Ayers, and F. C. Jain, "X-ray determination of the dislocation densities in semiconductor crystals using a Bartels five-crystal diffractometer," Acta Crystallographica A 51, 498-503 (1994) .
    155. L. Tapfer and K. Ploog, Phys. Rev. B 33, 5565(1986)
    156. W. J. Bartels, J. Hornstra, and D. J. W. Lobeek, "X-ray diffraction of multilayers and superlattices," Acta Crystallographica A 42, 539-545 (1986) .
    157. V. Bublik and S. Gorelik, Krist. Tech., 12, 859 (1977)
    158. H. Nagai, J. Appl. Phys. 45, 3789 (1974)
    159. J. S. Harris, Mater. Res. Soc. Symp. Proc. , V91, Heteroepitaxy on silicon, 2, Anaheim, California, USA., 3(1981)
    160. H. Nagai, J. Appl. Phys. 45, 3789 (1974)
    161. J. W. Lee, J. P. Salerno and R. P. Gale, Mater. Res. Soc. Symp. Proc., Vol91, Heteroepitaxy on Silicon, Anaheim, California, USA, 1981.
    
    
    162. 许顺生,冯端,《X射线衍射貌相学》,科学出版社, 518(1987) .
    163. 胡福义,李爱珍,王建新,半导师体学报, 12(10) , 588 (1991) .
    164. 胡福义,中国科学院上海冶金研究硕士论文, 28(1990) .
    165. J. Feldmann, G. Peter, E.O. Gobel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliott, Phys. Rev. Lett. 59, 2337 (1987) .
    166. U. Cebulla, G. Bacher, A. Forchel, G. Mayer, and W. T. Tsang, Phys. Rev. B 39, 6257 (1989)
    167. B. K. Ridley, Phys. Rev. B 41,12191 (1990) .
    168. G. Bacher, C. Hartmann, H. Schweizer, T. Held, G. Mahler, and H. Nickel, Phys. Rev. B 47, 9545 (1993) .
    169. W. Z. Shen, Y. Chang, S. C. Shen, W. G. Tang, Y. Zhao, and A. Z. Li, J. Appl. Phys. 79, 2139 (1996) .
    170. Y. P. Varshni, Physica (Amsterdam), 34,149 (1967) .
    171. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35,9174 (1987) .
    172. G. D. Cody, Semiconductors and Semimetals, edited by J.I. Pankove (Academic, New York, 1984) , Vol. 21B,p11.
    173. W. Z. Shen, S. C. Shen, W. G. Tang, Y. Zhao, and A. Z. Li, J. Appl. Phys. 78, 5696,1995.
    174. Y. Kawamura, K. Wakita, and H. Asahi, Electron. Lett. 21, 1168 (1985) .
    175. D. F. Welch, G. W. Wicks, and L. F. Eastman, Appl. Phys. Lett. 46, 991 (1985) .
    176. H. B. Bebbs and E. H. Williams, Semiconductors and Semimetals, edited by R.K. Williardson and A. C. Beer (Academic, New York, 1972) , Vol. 8, p256.
    177. See, for example, GaInAsP Alloy Semiconductors, edited by T. P. Pearsall (John Wiley & Sons Ltd., 1982) ,p456.
    178. S. Iyer, S. Hegde, A. Abul-Fadl, K. K. Bajaj, and W. Mitchel, "Growth and photoluminescence of GaSb and GaInAsSb grown on GaSb substrates by liquid-phase electroepitaxy," Phys. Rev. B 47, 1329-1339(1993) .
    179. see, for example, K. H. Hellwege Ed., Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series, Groups III-V 22a, Springer, Berlin, 1986.
    180. H. Mathieu, P. Lefebvre, and P. Christol, "Simple analytical method for calculating exciton binding energies in semiconductor quantum wells," Phys. Rev. B 46, 4092-4101 (1992) .
    181. J. D. Lambkin, L. Considine, S. Walsh, G. M. O. Connor, C. J. McDonagh, and T. J. Glunn, Appl. Phys. Lett. 65, 73 (1994) .
    182. J. Singh, K. K. Bajaj, and S. Chaudhuri, "Theory of photoluminescence line shape due to interfacial quality in quantum well structures," Appl. Phys. Lett. 44, 805-807 (1984) .
    183. J. Singh, and K. K. Bajaj, "Role of interface roughness and alloy disorder in photoluminescence in quantum-well structures," J. Appl. Phys. 57, 54335437 (1985) .
    184. E. F. Schubert and W. T. Tsang, "Photoluminescence line shape of excitons in alloy semiconductors," Phys. Rev. B 34,2991 (1986) .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700